
IIT Kharagpur at TAC 2008:

Statistical Model for Opinion Summarization

Sushant Kumar and Diptesh Chatterjee

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

India – 721302

sushant3d@gmail.com, dipteshc@iitkgp.ac.in

Abstract

In this paper we present our

participation at TAC 2008 opinion

summarization task. We make use of

a statistical model for opinion

extraction and the subsequent

summarization of the extracted

opinions. We also present its

performance as per the official TAC

2008 evaluation results.

1 Introduction

The TAC 2008 Opinion Summarization

task was to generate query-based summary

of opinions as present in the given

collection of blog documents. One of the

largest sources of information on the web

is in the form of weblogs, where people

express their opinions on a variety of

topics ranging from politics, movies,

music to new products that have hit the

market. So it is quite an obvious fact that

if we can harvest the information

contained in these blogs, then we would

have a huge storehouse of information at

our disposal which will be very useful to

the people. This is where the opinion

mining problem comes up. This task also

deals effectively with another aspect of

information retrieval i.e. summarization of

the information available. The query-

focused summarization is useful in

presenting the user with a compact answer

to what exactly s/he wants instead of

giving an entire document/s to the user as

output.

2 Background

DUC (precursor of TAC) has conducted

competitions on summarization, but the

TAC 2008 task on opinion summarization

of blogs is a relatively new research field.

A number of techniques have already been

developed for automated document

summarization [5], both single and multi-

document like SUMMONS

(SUMMarizing Online NewS articles) [4].

Graph-based models such as PageRank,

LexRank [3] have been used for ranking

documents and sentences, and summaries

developed on the node-weights and their

similarities. Experiments have been going

on for developing good Opinion extraction

systems. The kind of data available on

web like, product reviews, blogs, movie

reviews, surveys etc. have facilitated the

need to develop a system which can cater

to a user‟s query on the opinions expressed

in any document on any domain. For

example, a consumer who wants to buy

any product, say a camera, would be very

happy to get a quick summary of the

opinions expressed by other consumers

about any particular camera model or a

more general overview of consumer

reviews on different camera models. Also

the opinions extracted should be

summarized and presented in a structured

format which is easy to understand for the

users.

3 Our Approach

Our entire system was divided into three

main modules: Text extraction, Opinion

sentence extraction and summarization.

The major steps in that are as follows:

1. First, a simple parser was developed

for extraction of relevant text from

the blog documents provided. This

module gave us all the sentences

present in the blog documents (Let‟s

call the set of these sentences to be

D).

2. The sentences extracted from the

blog documents (D) were then used

by the Opinion extraction module to

extract all the sentiment sentences

(let it be set S, S⊆D). This module

also made use of the target query and

optional snippets provided by TAC

along with a sentiment wordlist

acquired from a corpus (sub-section

3.1). Firstly, we filtered out the

query-related sentences from D, and

then opinion sentences(S) were

extracted from these filtered

sentences. In case we could not get

any opinion sentences due to

inefficient query-based text filtering

or opinion extraction, then we used

the snippets to derive the opinion

sentences from that document. Then

we compared the length of S with the

summary word-limit.

3. If the opinion sentences(S), so

extracted, were within the word-limit

of the summary then these sentences

were reordered as per their document

index keeping the sentences in the

same document together. This was

done to make the summary more

fluent making a crude assumption

that two sentences in the same

document are more likely to be

coherent.

4. If the extracted opinion sentences(S)

were not within the summary word-

limit, then we used the extractive

summarization module to get the

final opinion summary. The

summarizer used only the opinion

sentences(S) for generating the

summary, ignoring all other text in

the blog documents.

 We present below an overview of our

system, depicting the modular structure

that we have implemented.

Figure 1: An overview of the System.

(* → provided by TAC)

 The algorithm for opinion extraction uses

a sentiment wordlist to determine the

opinion polarity of a text and based on a

ranking formula determines the opinion

content of a piece of text. We used an

extractive summarization system based on

the Lexrank algorithm for summarization

but with a new formula for ranking of the

sentences. The entire system was built in

Python and we used the Natural Language

ToolKit extensively. The sub-section 3.1

presents the method used to acquire the

opinion wordlist. In sub-section 3.2 we

explain the method used for Opinion

extraction. And in sub-section 3.3 we

show the algorithm used for document

summarization.

3.1 Vocabulary Acquisition

For our system, we needed a list of

sentiment words. For this purpose, we

used seeding. At first we analyzed some

documents on the web, mostly blogs to

collect a set of approximately 100 positive

and 100 negative opinion words. The

blogs that we analyzed mainly dealt with

movie reviews, political reviews and book

reviews. We also made extensive use of

the opinion corpus by Bo Pang and Lilian

Lee [1]

for finding the list of sentiment

words. After manually preparing the initial

seed list, we passed the list through the

Wordnet. During extraction from

Wordnet, we have considered only

Synonyms, Hyponyms, Meronyms for

same polarity and the Antonyms for words

with opposite polarity. The results that we

obtained were as follows:-

Number

of

Iteration

Number

of

words

obtained

Number

of words

correctly

classified

Percentage

accuracy

First 1634 1458 89.22%

Second 3872 3109 80.29%

Third 6982 6108 87.48%

Table 1: Results of sentiment words

extraction from corpus

The corpus acquired by the above method

consisted of two lists of words – one for

positive opinion polarity and the other for

negative opinion polarity. The words were

then manually processed to correct the

errors caused during the automatic

classification process to get a more refined

list of words.

In the next step, the words were classified

according to sentiment level. This part of

the operation was also manual. We

grouped the words under the following

categories:-

 Strongly Positive (Score=2)

 Weakly Positive (Score=1)

 Mixed opinion (Score=0)

 Weakly Negative (Score=-1)

 Strongly Negative (Score=-2)

The final corpus consisted of a list of

sentiment words that were grouped under

the polarity and the strength of opinion.

We considered unigrams and bigrams only

in this system because of the generic

nature of the system. A more domain

specific system would be able to

incorporate higher order N-grams in its

computational model.

Another part of the corpus was a list of

some 50 quantifiers that are able to reverse

the opinion polarity of a word. For

example:-

 This is a good book.

This sentence conveys a positive opinion.

But the following sentence:-

 This is not a good book.

conveys a negative opinion. This is due to

the presence of the word „not‟ which

reverses the polarity of „good‟. This list is

an integral part of the opinion extraction

algorithm.

3.2 Algorithm for Opinion

Extraction

The opinion extraction algorithm is run on

the individual documents belonging to a

particular topic separately [2]. It has not

been designed for multi-document opinion

extraction. Another feature of this system

is that it is query-focused. The opinion

finding algorithm consists of the following

steps:-

STEP 1: The query statement is parsed to

extract the names in the query statement.

These names form the search keywords.

Also, the words in the query statement are

matched with the list of sentiment words

in order to find out what kind of opinion is

being asked for by the user. In case of no

matches, the words are passed through

Wordnet and the resulting set of

Synonyms, Meronyms and Hyponyms are

matched with the words in the existing

wordlist.

STEP 2: Segment the document into

sentences.

STEP 3: For each sentence, find the

occurrence of the query keywords (say w).

Let they be located at position i in the

sentence.

STEP 4: Check for all words in positions

(i-6) to (i+6). If there is a sentiment word

in that region, mark that sentence as one

opining about word w. If not, go to step 2.

STEP 5: If the sentiment word occurs at

position k, check for words in the

positions (k-2) to (k+2). If there are words

in that range which are also in the list of

negation words, then reverse the polarity

of the sentence.

STEP 6: From the list of polarity strength,

calculate the total strength of the sentiment

words. This computation is to be done

keeping in mind the reversal of polarity.

For example, a word with strength -1, if

reversed, gets a strength of +1. Compute

the average polarity of words by dividing

the sum by the number of sentiment words

found.

STEP 7: The opinion polarity of the

sentences is computed as follows:-

 Average Polarity>1 => Strongly

positive opinion

 0.3<Average Polarity <1 =>

Weakly positive opinion

 -0.3<Average Polarity <0.3 =>

Neutral opinion

 -1<Average Polarity <-0.3 =>

Weakly negative opinion

 Average Polarity <-1 => Strongly

negative opinion

STEP 8: Goto step 2

The proximity from the keywords for

searching for sentiment words has been

determined experimentally. We performed

a number of experiments on the distance

from the keywords and found that a

distance of 6 on either side gave the best

results, both in terms of precision and

recall.

3.3 Summarization of Extracted

Opinions

The list of opinion sentences extracted

from the documents was next passed

through the summarization system. The

system is based on single document

extractive summarization. We did not

perform any Natural Language

Generation. The basic algorithm used for

summarization task acts on the term

frequency list and tries to identify

sentences with maximum weights

(according to the formula we used) and

groups the maximally dissimilar sentences

into the summary. We have done a simple

unigram matching of relevant words

(nouns, verbs) to find similarity between

any two sentences. Thus the summarizer

also makes sure that there is no repetition

of information in the final summary.

The algorithm is as follows:-

1. We prepare the Word Frequency list

for the document without

considering the stopwords.

2. Following the following rules get a

new document from the old one:-

a. Find the noun and pronoun and

link them first, if compatible,

or else move back along the

document to get a proper

matching noun.

b. For a text within quotes, „I‟

refers to the last personal noun

before „say‟,‟told‟,‟said‟ etc.

3. Each sentence was given a weight

based on the Word Frequency list. A

threshold value was experimentally

determined and all words with

frequency above the threshold were

considered determining the sentence

weights.

For a sentence S, Weight=W(S)

= , where =Frequency of

term above the threshold.

4. We find the similarity between two

sentences using a simple unigram

matching. We defined a value

Relation Coefficient (RC) to show

the relative similarity between any

two sentences. RC was defined as

(Number of unigrams matched /

maximum number of unigrams in

any one of the two sentences

matched).

Example:

S1= My name is Tom Sawyer.

S2=Tom is friends with Huck Finn.

Here the matched unigrams are

„Tom‟ and „is‟ .Length of S1=5.

Length of S2=6.

 So, RC12= (2/6) =0.3333

5. We take the sentence with the

highest weight. Let it be Si. Si is

added to the summary list and

removed from the sentence list. To

reduce redundancy we removed any

other sentence (Sj) with a RC

value>=0.5 with Si.

6. If the sentence list does not become

empty, we repeat from step #5

7. We repeat step #1 to step #6, till we

get the summary limit.

8. Finally all the sentences in the

summary list are rearranged

according to their indexes in the

original document to get the final

summary.

This algorithm takes into consideration the

information content in a sentence by the

Term Frequency measure and also makes

sure that there is no repetition of

information by computing the RCs

between the sentence pairs and selecting

only the dissimilar sentences. In the end

all the sentences in the summary are

restructured on the basis of their index in

the document with the assumption that this

will keep the overall coherence intact to

some level. It has space complexity

and a time complexity of where n =

The number of sentences in the document

to be summarized.

4 Evaluation

In the TAC 2008 Opinion Summarization

task, we were provided with blog

documents, “squishy list” questions, and

optional answer snippets from the TAC

2008 Opinion QA task. For evaluation,

5 Conclusion And Future

Work

We submitted a single run for TAC 2008

opinion summarization task. Our system

had two separate modules for opinion

extraction and summarization. The TAC

Score Category Score for

Our Run

Highest Score

among 36

evaluated runs

Position/Rank of our

run among the 36

evaluated runs

Average Pyramid F-

score (beta=1)
0.332 0.534 8

th

Average score for

Grammaticality
5.545 7.545 12

th

Average score for

Non-redundancy
6.045 8.045 16

th

Average score for

Structure/Coherence 2.636 3.591 20
th

Average score for

Overall

fluency/readability

3.909 5.318 10
th

Average score for

Overall

responsiveness

4.364 5.773 9
th

Table 2: Summary of Official TAC 2008 results

TAC considered summaries for 22 targets

for each team run. Finally there were 36

evaluated runs. We present below brief

information of the TAC Results for our

run and it‟s comparison with other teams‟

performance.

2008 results for our system reflect that

without proper implementation of sentence

ordering, the coherence and grammar of

the summary is not good. We used the

rearrangement of the sentences as per the

indexes in the original document to

improve the fluency to certain extent. But

this did not give us good results for

coherence. A more extensive handling of

sentiment analysis can improve the overall

accuracy of the summary by improving its

precision.

We also found that for some target

documents, our opinion extraction module

returned opinion sentences well within the

summary-limit. In such cases we need not

go for any further summarization and

instead restructuring the opinion sentences

gave the final summary. This was

illustrated in the summary for targetID

1001.

 Since this is the first time we are

participating in TAC, we were unable to

try more sophisticated and efficient

techniques. In future work, we plan to

experiment with new methods for opinion

extraction, and extended co-referencing to

improve the structure of summary. We

will also try to work on improving the

readability with proper sentence formation

in summary.

Acknowledgements

We would like to express our sincerest

gratitude to Dr. Sudeshna Sarkar

(Professor, Dept. of Comp. Sc, IIT

Kharagpur) for her constant support and

invaluable guidance which has been of

great help in our endeavors.

References

[1] Bo Pang, Lillian Lee, and

Shivakumar Vaithyanathan, Thumbs

up? Sentiment Classification using

Machine Learning Techniques,

Proceedings of EMNLP 2002

[2] Bo Pang and Lillian Lee, Seeing

stars: Exploiting class relationships

for sentiment categorization with

respect to rating scales, Proceedings

of ACL 2005

[3] Dragomir R. Radev and Güneş Erkan

2004. LexRank: Graph-based Lexical

Centrality as Salience inText

Summarization.

[4] Dragomir R. Radev and Kathy

McKeown. 1998. Generating natural

language summaries from multiple

online sources. Computational

Linguistics.

[5] Hovy, E.H. 2005. Automated Text

Summarization. In R. Mitkov (ed),

The Oxford Handbook of

Computational Linguistics, pp. 583–

598. Oxford: Oxford University

Press.

