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Abstract 

In this paper we present our 

participation at TAC 2008 opinion 

summarization task. We make use of 

a statistical model for opinion 

extraction and the subsequent 

summarization of the extracted 

opinions. We also present its 

performance as per the official TAC 

2008 evaluation results. 

 

 

1 Introduction 

 

The TAC 2008 Opinion Summarization 

task was to generate query-based summary 

of opinions as present in the given 

collection of blog documents. One of the 

largest sources of information on the web 

is in the form of weblogs, where people 

express their opinions on a variety of 

topics ranging from politics, movies, 

music to new products that have hit the 

market. So it is quite an obvious fact that 

if we can harvest the information 

contained in these blogs, then we would 

have a huge storehouse of information at 

our disposal which will be very useful to 

the people. This is where the opinion 

mining problem comes up. This task also 

deals effectively with another aspect of 

information retrieval i.e. summarization of 

the information available. The query-

focused summarization is useful in 

presenting the user with a compact answer 

to what exactly s/he wants instead of 

giving an entire document/s to the user as 

output.  

 

 

2 Background 

 

DUC (precursor of TAC) has conducted 

competitions on summarization, but the 

TAC 2008 task on opinion summarization 

of blogs is a relatively new research field. 

A number of techniques have already been 

developed for automated document 

summarization [5], both single and multi-

document like SUMMONS 

(SUMMarizing Online NewS articles) [4]. 

Graph-based models such as PageRank, 

LexRank [3] have been used for ranking 

documents and sentences, and summaries 

developed on the node-weights and their 

similarities. Experiments have been going 



on for developing good Opinion extraction 

systems. The kind of data available on 

web like, product reviews, blogs, movie 

reviews, surveys etc. have facilitated the 

need to develop a system which can cater 

to a user‟s query on the opinions expressed 

in any document on any domain. For 

example, a consumer who wants to buy 

any product, say a camera, would be very 

happy to get a quick summary of the 

opinions expressed by other consumers 

about any particular camera model or a 

more general overview of consumer 

reviews on different camera models. Also 

the opinions extracted should be 

summarized and presented in a structured 

format which is easy to understand for the 

users. 

 

 

 

3 Our Approach 

 

Our entire system was divided into three 

main modules: Text extraction, Opinion 

sentence extraction and summarization. 

The major steps in that are as follows: 

1. First, a simple parser was developed 

for extraction of relevant text from 

the blog documents provided. This 

module gave us all the sentences 

present in the blog documents (Let‟s 

call the set of these sentences to be 

D). 

2. The sentences extracted from the 

blog documents (D) were then used 

by the Opinion extraction module to 

extract all the sentiment sentences 

(let it be set S, S⊆D). This module 

also made use of the target query and 

optional snippets provided by TAC 

along with a sentiment wordlist 

acquired from a corpus (sub-section 

3.1). Firstly, we filtered out the 

query-related sentences from D, and 

then opinion sentences(S) were 

extracted from these filtered 

sentences. In case we could not get 

any opinion sentences due to 

inefficient query-based text filtering 

or opinion extraction, then we used 

the snippets to derive the opinion 

sentences from that document. Then 

we compared the length of S with the 

summary word-limit.  

3. If the opinion sentences(S), so 

extracted, were within the word-limit 

of the summary then these sentences 

were reordered as per their document 

index keeping the sentences in the 

same document together. This was 

done to make the summary more 

fluent making a crude assumption 

that two sentences in the same 

document are more likely to be 

coherent. 

4. If the extracted opinion sentences(S) 

were not within the summary word-

limit, then we used the extractive 

summarization module to get the 

final opinion summary. The 

summarizer used only the opinion 

sentences(S) for generating the 

summary, ignoring all other text in 

the blog documents. 

 

 

  We present below an overview of our 

system, depicting the modular structure 

that we have implemented. 



 

 

 
Figure 1: An overview of the System.  

(* → provided by TAC) 

 

 

 The algorithm for opinion extraction uses 

a sentiment wordlist to determine the 

opinion polarity of a text and based on a 

ranking formula determines the opinion 

content of a piece of text. We used an 

extractive summarization system based on 

the Lexrank algorithm for summarization 

but with a new formula for ranking of the 

sentences. The entire system was built in 

Python and we used the Natural Language 

ToolKit extensively. The sub-section 3.1 

presents the method used to acquire the 

opinion wordlist. In sub-section 3.2 we 

explain the method used for Opinion 

extraction. And in sub-section 3.3 we 

show the algorithm used for document 

summarization. 

 

 

 

3.1 Vocabulary Acquisition 

 

For our system, we needed a list of 

sentiment words. For this purpose, we 

used seeding. At first we analyzed some 

documents on the web, mostly blogs to 

collect a set of approximately 100 positive 

and 100 negative opinion words. The 

blogs that we analyzed mainly dealt with 

movie reviews, political reviews and book 

reviews. We also made extensive use of 

the opinion corpus by Bo Pang and Lilian 

Lee [1]
 
for finding the list of sentiment 

words. After manually preparing the initial 

seed list, we passed the list through the 

Wordnet. During extraction from 

Wordnet, we have considered only 

Synonyms, Hyponyms, Meronyms for 

same polarity and the Antonyms for words 



with opposite polarity. The results that we 

obtained were as follows:- 

 

 

Number 

of 

Iteration 

Number 

of 

words 

obtained 

Number 

of words 

correctly 

classified 

Percentage 

accuracy 

First 1634 1458 89.22% 

Second 3872 3109 80.29% 

Third 6982 6108 87.48% 

Table 1: Results of sentiment words 

extraction from corpus 

 

The corpus acquired by the above method 

consisted of two lists of words – one for 

positive opinion polarity and the other for 

negative opinion polarity. The words were 

then manually processed to correct the 

errors caused during the automatic 

classification process to get a more refined 

list of words.  

 

In the next step, the words were classified 

according to sentiment level. This part of 

the operation was also manual. We 

grouped the words under the following 

categories:- 

 Strongly Positive (Score=2) 

 Weakly Positive (Score=1) 

 Mixed opinion (Score=0) 

 Weakly Negative (Score=-1) 

 Strongly Negative (Score=-2) 

 

The final corpus consisted of a list of 

sentiment words that were grouped under 

the polarity and the strength of opinion. 

We considered unigrams and bigrams only 

in this system because of the generic 

nature of the system. A more domain 

specific system would be able to 

incorporate higher order N-grams in its 

computational model. 

 

Another part of the corpus was a list of 

some 50 quantifiers that are able to reverse 

the opinion polarity of a word. For 

example:- 

 This is a good book. 

This sentence conveys a positive opinion. 

But the following sentence:- 

 This is not a good book. 

conveys a negative opinion. This is due to 

the presence of the word „not‟ which 

reverses the polarity of „good‟. This list is 

an integral part of the opinion extraction 

algorithm. 

 

 

3.2 Algorithm for Opinion 

Extraction  

 

The opinion extraction algorithm is run on 

the individual documents belonging to a 

particular topic separately [2]. It has not 

been designed for multi-document opinion 

extraction. Another feature of this system 

is that it is query-focused. The opinion 

finding algorithm consists of the following 

steps:- 

 

STEP 1: The query statement is parsed to 

extract the names in the query statement. 

These names form the search keywords. 

Also, the words in the query statement are 

matched with the list of sentiment words 

in order to find out what kind of opinion is 

being asked for by the user. In case of no 



matches, the words are passed through 

Wordnet and the resulting set of 

Synonyms, Meronyms and Hyponyms are 

matched with the words in the existing 

wordlist.  

 

STEP 2: Segment the document into 

sentences. 

 

STEP 3: For each sentence, find the 

occurrence of the query keywords (say w). 

Let they be located at position i in the 

sentence. 

 

STEP 4: Check for all words in positions 

(i-6) to (i+6). If there is a sentiment word 

in that region, mark that sentence as one 

opining about word w.  If not, go to step 2. 

 

STEP 5: If the sentiment word occurs at 

position k, check for words in the 

positions (k-2) to (k+2). If there are words 

in that range which are also in the list of 

negation words, then reverse the polarity 

of the sentence.  

 

STEP 6: From the list of polarity strength, 

calculate the total strength of the sentiment 

words. This computation is to be done 

keeping in mind the reversal of polarity. 

For example, a word with strength -1, if 

reversed, gets a strength of +1. Compute 

the average polarity of words by dividing 

the sum by the number of sentiment words 

found.  

 

STEP 7: The opinion polarity of the 

sentences is computed as follows:- 

 Average Polarity>1 => Strongly 

positive opinion 

 0.3<Average Polarity <1 => 

Weakly positive opinion 

 -0.3<Average Polarity <0.3 => 

Neutral opinion 

 -1<Average Polarity <-0.3 => 

Weakly negative opinion 

 Average Polarity <-1 => Strongly 

negative opinion 

 

STEP 8: Goto step 2 

 

 

The proximity from the keywords for 

searching for sentiment words has been 

determined experimentally. We performed 

a number of experiments on the distance 

from the keywords and found that a 

distance of 6 on either side gave the best 

results, both in terms of precision and 

recall.  

 

 

3.3 Summarization of Extracted 

Opinions 

 

The list of opinion sentences extracted 

from the documents was next passed 

through the summarization system. The 

system is based on single document 

extractive summarization. We did not 

perform any Natural Language 

Generation. The basic algorithm used for 

summarization task acts on the term 

frequency list and tries to identify 

sentences with maximum weights 

(according to the formula we used) and 

groups the maximally dissimilar sentences 

into the summary. We have done a simple 

unigram matching of relevant words 

(nouns, verbs) to find similarity between 



any two sentences. Thus the summarizer 

also makes sure that there is no repetition 

of information in the final summary. 

The algorithm is as follows:- 

 

1. We prepare the Word Frequency list 

for the document without 

considering the stopwords. 

2. Following the following rules get a 

new document from the old one:- 

a. Find the noun and pronoun and 

link them first, if compatible, 

or else move back along the 

document to get a proper 

matching noun. 

b. For a text within quotes, „I‟ 

refers to the last personal noun 

before „say‟,‟told‟,‟said‟ etc. 

3. Each sentence was given a weight 

based on the Word Frequency list. A 

threshold value was experimentally 

determined and all words with 

frequency above the threshold were 

considered determining the sentence 

weights.  

For a sentence S, Weight=W(S) 

= , where =Frequency of 

term above the threshold. 

4. We find the similarity between two 

sentences using a simple unigram 

matching. We defined a value 

Relation Coefficient (RC) to show 

the relative similarity between any 

two sentences. RC was defined as 

(Number of unigrams matched / 

maximum number of unigrams in 

any one of the two sentences 

matched).  

Example:  

S1= My name is Tom Sawyer. 

S2=Tom is friends with Huck Finn. 

Here the matched unigrams are 

„Tom‟ and „is‟ .Length of S1=5. 

Length of S2=6. 

          So, RC12= (2/6) =0.3333 

5. We take the sentence with the 

highest weight. Let it be Si. Si is 

added to the summary list and 

removed from the sentence list. To 

reduce redundancy we removed any 

other sentence (Sj) with a RC 

value>=0.5 with Si. 

6.  If the sentence list does not become 

empty, we repeat from step #5 

7. We repeat step #1 to step #6, till we 

get the summary limit. 

8. Finally all the sentences in the 

summary list are rearranged 

according to their indexes in the 

original document to get the final 

summary. 

 

 

This algorithm takes into consideration the 

information content in a sentence by the 

Term Frequency measure and also makes 

sure that there is no repetition of 

information by computing the RCs 

between the sentence pairs and selecting 

only the dissimilar sentences. In the end 

all the sentences in the summary are 

restructured on the basis of their index in 

the document with the assumption that this 

will keep the overall coherence intact to 

some level. It has  space complexity 

and a time complexity of  where n = 

The number of sentences in the document 

to be summarized. 

 

 



4 Evaluation 

 

In the TAC 2008 Opinion Summarization 

task, we were provided with blog 

documents, “squishy list” questions, and 

optional answer snippets from the TAC 

2008 Opinion QA task. For evaluation,  

 

5 Conclusion And Future 

Work 

 

We submitted a single run for TAC 2008 

opinion summarization task. Our system 

had two separate modules for opinion 

extraction and summarization. The TAC

 

 

Score Category Score for 

Our  Run 

Highest Score 

among 36  

evaluated runs 

Position/Rank of our 

run among the 36 

evaluated runs 

Average Pyramid F-

score (beta=1) 
0.332 0.534 8

th
 

Average score for 

Grammaticality 
5.545 7.545 12

th
 

Average score for 

Non-redundancy 
6.045 8.045 16

th
 

Average score for 

Structure/Coherence  2.636 3.591 20
th

 

Average score for 

Overall 

fluency/readability 

3.909 5.318 10
th

 

Average score for 

Overall 

responsiveness 

4.364 5.773 9
th

 

Table 2: Summary of Official TAC 2008 results 

 

 

 

 

 

TAC considered summaries for 22 targets 

for each team run. Finally there were 36 

evaluated runs. We present below brief 

information of the TAC Results for our 

run and it‟s comparison with other teams‟ 

performance. 

 

 

2008 results for our system reflect that 

without proper implementation of sentence 

ordering, the coherence and grammar of 

the summary is not good. We used the 

rearrangement of the sentences as per the 

indexes in the original document to 

improve the fluency to certain extent. But 

this did not give us good results for 

coherence. A more extensive handling of 



sentiment analysis can improve the overall 

accuracy of the summary by improving its 

precision. 

We also found that for some target 

documents, our opinion extraction module 

returned opinion sentences well within the 

summary-limit. In such cases we need not 

go for any further summarization and 

instead restructuring the opinion sentences 

gave the final summary. This was 

illustrated in the summary for targetID 

1001.  

    Since this is the first time we are 

participating in TAC, we were unable to 

try more sophisticated and efficient 

techniques. In future work, we plan to 

experiment with new methods for opinion 

extraction, and extended co-referencing to 

improve the structure of summary. We 

will also try to work on improving the 

readability with proper sentence formation 

in summary. 
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