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Abstract
This paper talks about participation of the University
of Illinois at Urbana-Champaign (UIUC) in TAC 2008
Opinion Summarization pilot. We mainly explored two
ideas: (1) use of entity recognition and parsing to en-
hance a standard retrieval method for opinion retrieval,
and (2) use of a coherence language model to optimize
the ordering of sentences in a summary. Our result showed
that use of entity recognition during retrieval led to mixed
results and re-ordering with coherence language model
was not as good as heuristic polarity-based ordering us-
ing guiding phrases. Our additional experiments showed
that the performance of coherence language model can
be different depending on probability function and word
selection.

1 Introduction
As more people post their opinions on the Web, the In-
ternet is fast becoming a popular and dynamic source
for opinions. Due to the large volume and wide range of
data, there is a growing need to summarize opinionated
documents. The opinion summarization pilot task of the
2008 Text Analysis Conference (TAC) offered a good
opportunity to study and evaluate methods for summa-
rizing opinionated text documents. We participated in
this task and studied two problems in opinion summa-
rization: (1) Can we improve sentence retrieval by as-
signing more weights to noun phrases or entities in the
query? (2) How can we optimize the ordering of sen-
tences to increase the coherence of a summary?

The pilot Opinion Summarization Task in TAC 2008
asked the participating teams to summarize the opin-

ions expressed in the blog documents. The data used
was BLOG06 corpus that had been used earlier in 2006
and 2007 in many TREC tracks. There was a set of
target topics on which the participants were evaluated.
For each target topic, there was a set of questions, usu-
ally dealing with the opinion expressed about the target
topic. Also, a set of relevant document ids was released
for every target topic. The final goal was to generate a
summary of the opinions expressed in the given docu-
ment set about the particular aspects of the target topic
as referred to in the given set of questions. Additionally,
there were some sample answer snippets released for ev-
ery target topic that participating teams could optionally
use.

Each summary had a restriction on the length that
was based on the number of questions in the target topic.
The submitted summaries were evaluated on how many
relevant opinions were covered, the length of the sum-
mary generated, and the coherence of the summary.

Our overall approach for solving this problem was
to break the task into four steps, viz. data preprocess-
ing, sentence retrieval, sentence filtering, and summary
generation. Fig. 1 shows an overview of the system.
In the data preprocessing step, we eliminated useless
tags from the target documents and identified meaning-
ful keywords in the query questions. In the sentence re-
trieval step, we extracted relevant sentences from target
documents with the queries from the previous step. In
the sentence filtering step, we filtered the retrieved sen-
tences based on the question and the target sentence po-
larity. We also removed redundant sentences from the
list. In the summary generation step, we ordered re-
trieved sentences based on polarity and a statistical co-
herence language model.



Figure 1: System overview

Specifically, to retrieve relevant sentences, we used
standard language modeling approach and inference net-
work retrieval frameworks. We explored an idea of as-
signing different weights on words in the query ques-
tion based on linguistic analysis. Since a large portion
of questions asked about people’s opinion on some tar-
get topics, we hypothesized that named entities and noun
phrases should probably have higher weights than other
words in the query. So, we used natural language pro-
cessing techniques to identify named entities and noun
phrases, and studied whether assigning more weights on
them would improve retrieval accuracy.

After retrieving a set of relevant sentences about the
target, we used opinion orientation features to further fil-
ter out retrieved sentences that do not match the desired
opinion polarity. The most important difference between
our opinion summarization task and a normal summa-
rization task is that the query question and target docu-
ments are opinionated. If the question asked for positive
aspect of one object, the answer also should follow the
same orientation. To facilitate this, we used a heuristic
dictionary-based method for predicting opinion polarity,
and filtered out sentences that do not match the polarity
orientation of the question.

The next step in our method was to select a set of rep-
resentative sentences by removing redundancy. We used
some simple methods to assess sentence similarity and
used the maximal marginal relevance (MMR) ranking
method [1] to select up to a certain number of sentences
that were not redundant with respect to each other.

The last step was to generate a readable coherent
summary based on the selected non-redundant sentences.
The main question we studied in this step was how to
optimize the coherence of a summary. We proposed a
statistical coherence language model to order sentences.
Specifically, we estimated the probability of two words,
u and v, occurring in a pair of adjacent sentences, using

some natural text as training data. We could then use
this model to compute a coherence score of a candidate-
ordering of two sentences included in a summary. An
optimal order of multiple sentences can be generated
using a greedy algorithm by maximizing the pair-wise
coherence scores. In addition to this statistical method,
we also explored using polarity to separate opinions and
heuristically adding additional words to improve read-
ability.

We submitted three runs: a polarity based run (UIUC1),
a coherence-based run (UIUC2), and a baseline run (UIUC3).
Specific information of each run will be explained in
later sections and is summarized in Table 1. None of
these runs used the answer snippets provided along with
the data because we believe that in a real application of
opinion summarization, we would not have such infor-
mation. All these runs followed the general method de-
scribed above with key variations in some of the steps.
The results of these runs and some follow-up experi-
ments show that increasing the weights of entities and
noun phrases in the query improved performance for some
queries but could not make significant improvement for
some queries. Also, simple statistical coherence opti-
mization did not perform as well as heuristic polarity
ordering method with guiding phrases.

In the rest of the paper, we will first describe each
step of our method in more detail and then discuss results
with our additional experiments.

2 Data preprocessing

2.1 Document processing
Remove tags and special characters: We used the In-
dri toolkit1 for our experiments. We, first, eliminated
UNICODE special characters from the documents.

Extract main contents: In a blog document, we are
mainly interested in the textual contents of the blog en-
try. So, in addition to eliminating the HTML tags, we
also delete the text between two tags if it is too short and
does not belong to the main part of the blog. In addition,
we also filter out the sections generated by a javascript.

Sentence splitting: We use a sentence as the basic
unit of retrieval. We believe that a sentence is a natu-
ral unit for summarization because it is a smallest unit
that can deliver a coherent message, and a summary can
be composed of a sequence of sentences. We applied a
Sentence Segmentation tool2 to each preprocessed doc-

1From http://www.lemurproject.org/
2From http://L2R.cs.uiuc.edu/∼cogcomp/atool.php?tkey=SS



ument. The Sentence Segmentation tool handles hon-
orifics and initials within names, so we were able to ob-
tain a clean sentence boundary using the tool.

2.2 Question processing
Common word elimination: Before we retrieve sen-
tences using questions as queries, we removed common
words from the questions. As most query questions have
similar formats, there are words that are not related to the
topic, such as “people”, “opinion”, and function words.
We applied a simple heuristic on the frequency of words:
we counted all the words in the given questions and we
filtered out words having a frequency count more than a
threshold = 3.

Find more important words: We considered named
entities and noun phrases as more important words be-
cause they convey distinct information compared to com-
mon words, and most of questions were asking for opin-
ions about a specific entity. We parsed the question to
find all the named entities. We built an NE recognizer
using Learning Based Java (LBJ)3 to identify PERSON,
ORGANIZATION, and LOCATION entities. LBJ is a
modeling language for the rapid development of learning-
based systems, designed for use with the Java program-
ming language. Further, we parsed each question de-
scription with a POS tagger3 to identify noun phrases.
For example, in the sentence “The new mobile phone
was released today at the tech expo.”, “mobile phone”
and “tech expo” are identified as noun phrases.

3 Sentence Retrieval
For sentence retrieval, we used the basic retrieval model
in Indri, which is a combination of the language mod-
eling and inference network retrieval frameworks, with
term weighting [7]. We considered each individual sen-
tence as a document, and built an Indri index over all
sentence-documents. We then retrieved the sentences
using the filtered list of words from the questions as
queries.

With IndriQuery, we can assign different weights for
individual words / groups of words. We built an Indri
query using a weighted combination of the named en-
tities, noun phrases, and other words from the query to
improve the recall. The retrieved sentences formed the
initial ranked candidate-list. For the run using differ-
ent weighting (UIUC1), we used 10:2:1 as weights for
named entity : noun phrase : other words. Our approach

3From http://L2R.cs.uiuc.edu/∼cogcomp/software.php

gave named entities a much higher weight compared to
other terms and also gave noun phrases a slightly higher
weight than other words. The weighting scheme was
decided based on preliminary experiments of relevance
judgment results from TREC Blog retrieval task. We
checked the MAP score for different weighting schemes,
such as 2:1:1, 5:2:1, 10:2:1, etc., and chose 10:2:1 be-
cause it had the highest score. Although both experi-
ments used the same BLOG06 data, we cannot be sure
that this is the optimal weighting for the current task
at hand because the evaluation was done on a differ-
ent query set. It is possible that another combination of
weights may improve the performance for this task. In
fact, our UIUC1 run did not perform as well as the other
run (UIUC2) which uses uniform weighting.

4 Sentence Filtering

4.1 Polarity filtering
We implemented simple dictionary-based polarity deci-
sion module. We first obtained lists of words express-
ing positive and negative sentiments from the follow-
ing sources: 1) sentiment words4 and 2) good and bad
(positive and negative) sentiment adjectives5. We also
added some positive and negative words that commonly
occur in questions to generate the final positive/negative
word list. The following is the complete list of words we
added to the existing lists: Positive words: support, like,
great, suggest, approve, want; Negative words: negative,
complain, complaint, object, oppose. These word lists
were then used by the polarity decision module to de-
cide one of four polarities: viz. positively-opinionated,
negatively-opinionated, mixed-opinionated, and non opin-
ionated. For an input text segment, the polarity deci-
sion module counted the number of words that over-
lapped with the positive/negative word lists. Depend-
ing on the number of positively and negatively inclined
words in the target text segment, the polarity module
decided whether the text segment is positively, nega-
tively, or mixed opinionated. If the number of positive
and negative words were quite skewed, we classified the
document as either positive or negative. If we find a
negation in a sentence, such as “not” or “never”, we re-
versed the polarity. If the numbers of positive and nega-
tive words were quite even, then we classified the docu-
ment as a mixed-opinionated document. If there were no
common words between the text segment and the posi-

4From http://eqi.org/index.htm
5From http://www.keepandshare.com/doc/view.php?u=12894



tive/negative lists, then we classified the text segment as
non opinionated.

We applied the polarity decision module in two steps.
First, based on the assumption that the task wanted us
to summarize “opinions”, we simply filtered out all non-
opinionated sentences from our initial candidate list. Sec-
ond, we applied opinion decision module to the ques-
tion as well, and then based on the question polarity, we
selected sentences which have the same polarity as the
question. For example, if the question asked for “peo-
ple’s positive opinion about” a particular target, only
positively opinionated sentences about the target were
retained.

Polarity decision module was also used for paragraph
division (See Sec. 5).

4.2 Remove redundancy
After the initial retrieval and filtering based on polarity,
there can still be many similar sentences in the candi-
date list. In such a case, we need to keep only one rep-
resentative and eliminate others from the candidate list.
We used the Text Similarity tool6 to find pairwise sen-
tence similarity. The tool provides lesk value [6] based
on counting common words and phrases between two
strings. Phrasal matching gets higher scores than single
word match. Since longer sentences tend to have more
matches, the final scores are normalized by the length of
strings.

Based on this similarity score, we applied MMR tech-
nique [1] to eliminate redundant sentences. For each
sentence s, we calculated similarity score with each sen-
tence ranked higher than s, and if the sentence similarity
score of s with any of them is above a set threshold, we
removed s from the candidate list. This way all “du-
plicate” low-ranked sentences are filtered out. For our
submissions, we set the similarity threshold to 0.8.

4.3 Cut sentence list up to the limit
Finally, we retained all the sentences in the rank order
and pruned the list when the total length of sentences
reached the summary size limit (7000 non-white spaced
characters per question, each target has one to three ques-
tions). Among summaries for 22 targets, 14 summaries
reached the limit, and the average length of our final
summary results was 11, 080 non-white spaced charac-
ters (accumulated over all sub-questions in one target).

6From http://www.d.umn.edu/∼tpederse/text-similarity.html

5 Summary Generation

5.1 Result post-processing
Based on the preliminary experiment results, we noticed
that a few noisy phrases such as date and time of blog
entry occurred frequently in the blog article collection.
Since these did not contribute to a blog opinion, we re-
moved them by matching against the following simple
regular expression:

Posted by: ([A-Za-z0-9()]+ )*?\|
\w\w\w \d+, \d\d\d\d \d\d?:\d\d:\d\d
[AP]M

5.2 Paragraph division
Even though we had a good list of relevant sentences
as summary, we needed additional structure to make the
summary more coherent. We divided the summary into
paragraphs based on the questions. The answer to each
question was grouped together in one paragraph. Addi-
tionally, we needed to distinguish the positive opinions
from the negative opinions on a topic. Hence, we further
organized the paragraphs by polarity. We kept all sen-
tences with a positive polarity together at the start of the
paragraph, followed by all sentences with negative and
mixed polarity. This way, we avoided changing the topic
of interest and the sentiment orientation too often in the
final summary and hence increased coherence.

To make paragraph division more clear and the change
of topic more lucid, we also inserted guiding text snip-
pets. At the beginning of each paragraph, we added
guiding sentences like “The first question is ... ” or “Fol-
lowing are positive opinions ...”.

5.3 Statistical coherence optimization
We also experimented with ordering the sentences so
as to optimize the statistical coherence. We considered
the following simple statistical approach: Suppose S =
{s1, . . . , sn} is the set of candidate sentences in the sum-
mary. Let c(si, sj) be an asymmetric coherence measure
between two sentences si and sj . We can then gener-
ate a summary by enumerating all the possible orders of
these n sentences and choosing the one that maximizes
the overall “pairwise coherence”. That is, we seek for
an ordering of sentences s′1, . . . , s

′
n that maximizes the

overall sum c(s′1, s
′
2) + c(s′2, s

′
3) + . . .+ c(s′n−1, s

′
n).

Because enumerating all the permutations is infeasi-
ble, we use a greedy algorithm to approximate it. We
try to build a sequence of sentences, one pair at a time.



Among all the pairs, we selected the one that has the
highest coherence score. Let it be 〈si, sj〉. This forms
the first unit in the sentence sequence. Then, we find
the highest coherence pair among the ones that can be
used to extend the sentence sequence in either direc-
tion. In other words, if the current sentence sequence is
〈si, . . . , sj〉, then among all the pairs of the form 〈·, si〉
or 〈sj , ·〉, we selected the one with the highest coherence
score and added it to the sentence sequence.

The coherence measure c(si, sj) can be defined in
many ways. In our experiments, we defined it as the
average pointwise mutual information of a word in the
first sentence, si, and a word in the second sentence,
sj(= si+1). For every word pair 〈u, v〉, we first find
ppmi(u, v), the pointwise mutual information of word
u in a sentence si and word v in the following sen-
tence sj . Since this is sensitive to the order of sen-
tences, ppmi(u, v) is asymmetric. We used simple ad-
ditive smoothing.

ppmi(u, v) =
cnt(u, v) + 0.001

freq(u)freq(v) + 1.0
(1)

where cnt(u, v) is the count of u and v in two adjacent
sentences in order (u in si and v in sj), and freq(u) is
the frequency of u in the corpus.

Then, we define the asymmetric coherence measure
c(si, sj) over two sentences si, sj , as

c(si, sj) =
∑

u∈si,v∈sj

ppmi(u, v)
|si||sj |

where ppmi(u, v) is as defined above and estimated us-
ing all adjacent sentences in the training data. Compu-
tationally, we get all the words in adjacent sentences si,
si+1 and accumulate the number of times we observe
each combination of words (u, v) with u coming from
sentence si and v from sentence si+1 over the training
data. We then normalize the counts to get the pointwise
mutual information ppmi(u, v).

This approach is similar to the Mirella Lapata’s method
[5] with some differences in the definition of the scoring
function and the technique used to search for the best
order.

6 Evaluation

6.1 Submission
We submitted three runs, labeled UIUC1, UIUC2, and
UIUC3. To evaluate the effect of different techniques,
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Figure 2: Scatter-plot comparing F1 scores of UIUC1
with UIUC2

we applied different combination of techniques detailed
above, for each run. They have been summarized in Ta-
ble 1.

Techniques UIUC1 UIUC2 UIUC3
Polarity Coherence Baseline

Filter Off On On
non-opinionated sentences
Filter sentences having On Off Off
same polarity as questions
Paragraphs divided On Off Off
on question
Paragraphs divided On Off On
on polarity (pos/neg/mixed)
Statistical Off On Off
coherence optimization

Table 1: Techniques enabled in the submitted runs. On
indicates active and Off indicates inactive features.

6.2 Evaluation results and Discussion
6.2.1 Official evaluation results

Among the submissions, two runs, UIUC1 and UIUC2,
were evaluated in the official TAC 2008 evaluation phase.
The official results are summarized in Table 2.

Recall Precision F, with β = 1

UIUC1 0.309181818 0.125090909 0.165045455
UIUC2 0.390136364 0.124818182 0.180545455

Table 2: Recall, Precision, and F with β = 1



F-Score Grammaticality Non-redundancy Structure/Coherence Fluency/Readability Responsiveness
UIUC1 18 31 30 12 17 21
UIUC2 15 20 19 30 33 14

Table 3: Rank among all runs (Total: 36 runs)

F-Score Grammaticality Non-redundancy Structure/Coherence Fluency/Readability Responsiveness
UIUC1 6 15 15 5 6 8
UIUC2 3 9 10 15 16 4

Table 4: Rank among runs that did not use answer-snippet (Total: 19 runs)

Table 2 shows the average scores over 22 summaries
based on the pyramid nugget method. Among the two
evaluated runs, UIUC2 showed better recall, and both
runs had similar precision. The F-score showed UIUC2
had better performance. Fig. 2 shows a scatter-plot of
the F1 score for all queries over the two runs.

The pyramid score based evaluation is mainly per-
formed over the contents. On the issue of content selec-
tion alone, more sophisticated techniques were applied
to UIUC1, such as different weighting for named entities
and noun phrases and sentence filtering using polarity
matching. However, the performance evaluation result
showed that methods of UIUC1 were not as effective as
those of UIUC2.

We hypothesize that two factors could contribute to
degraded retrieval performance in UIUC1: (1) using high
weights for named entity/noun phrases might add noise
and harm the retrieval performance, or (2) if the polar-
ity decision module made a wrong decision, it could de-
grade the overall performance. Since there can be many
implicitly opinionated expressions in a blog document,
we feel that the polarity decision module did not work
as well as it worked with other better-formatted text cor-
pora.

Table 3 and Table 4 show the average score rankings
for our runs in six evaluation subcategories. The ranks
mentioned in Table 3 are among all the evaluated runs
and the ranks in Table 4 are among the submitted runs
that did not use the answer-snippets. Since we did not
use the provided answer-snippets, we analyze our per-
formance based on the ranks given in Table 4.

Our F-score ranking was about average among all
the submitted runs. However, among the runs without
using answer-snippet, our runs showed pretty good per-
formance especially on content retrieval. As mentioned
above, the F-score measure from pyramid nuggets com-
putes the performance based on content selection. Since
the answer-snippet information provides significant clues
for relevant information, it is more appropriate to com-
pare content selection performance among runs that did

not use answer snippet. The run, UIUC2, was ranked 3rd

in F-score among runs that do not use answer-snippets.
Therefore, we can say that the content retrieval module
in our system has pretty good performance.

In both runs, the non-redundancy scores are low. This
is because we applied redundancy removal procedure to
sentence list based on each question individually. We
extracted sentences for each question separately and did
not merge them all for one target until the final summary
creation stage. This led to presence of duplicate sen-
tences in one target topic summary which was generated
by merging relevant sentences of all the questions in the
target. To remove duplicates which came from different
question’s relevant sentence list, we need to apply redun-
dancy removal again after merging sentences from each
question.

UIUC1 obtained high score in the structure/coherence
criterion. Among runs without using answer-snippet,
UIUC1 was ranked 5th. UIUC1 adopted both question
and polarity paragraph division techniques. Moreover,
guiding text snippets for each paragraph were also added
in UIUC1. Compared to UIUC1, UIUC2 had low struc-
ture/coherence score. This suggests that our statistical
coherence optimization technique did not work as well
as the heuristic polarity ordering with guiding phrases.
Using a greedy algorithm that looks at only the next
sentence, limits the algorithm from obtaining clues from
non-neighboring sentences, and this could harm the co-
herence score considerably.

Finally, UIUC2 had a better overall responsiveness
score than UIUC1. In terms of ranking, UIUC1 showed
average performance and UIUC2 showed fairly good per-
formance. Among the runs that did not use answer-
snippets, UIUC2 was ranked 4th.

6.2.2 Additional experiments on entity feature weight-
ing

To examine the relationship between content retrieval
performance and weighting on entity features such as



named entities and noun phrases, we performed some
additional experiments. There has been previous work
on trying differential weighting for named entities. Has-
sel’s experiment on Swedish text [2] showed the impor-
tance of careful usage of named entity feature in auto-
matic summarization. He pointed out that high weight-
ing on named entities can degrade information retrieval
performance because it can cause reference errors and
prioritize elaborate sentences over sentences having gen-
eral information.

In our experiments, we evaluated the effect of weight-
ing named entities by computing how well the system
retrieved relevant nuggets. We calculated precision, re-
call, and F-scores based on the pyramid nuggets on the
intermediate sentence extraction results before applying
the polarity module so as to exclude the effect of the
polarity module. Instead of applying our redundancy
check, we eliminated obviously redundant sentences by
removing adjacent duplicates. For each sentence in the
ranked sentence list, we checked for presence of any of
the nuggets. Since the nugget text given as part of pyra-
mid nuggets’ data is a description rather than the exact
nugget, it does not exactly match with the string in the
extracted sentences. We approximated the presence of
nuggets by calculating similarity between the sentence
and provided nugget text. After stemming and remov-
ing stopwords from the target sentence and nugget text,
we used the Text Similarity tool6 to count the overlap
of words. If the similarity score between the extracted
sentence and nuggets in the same target was above the
certain threshold, we believed that the sentence matched
the corresponding nugget.

The similarity score threshold was tuned with the
evaluation results of our TAC submission that listed which
nuggets were found in our submission result. Based on
the preliminary experiment with the first two target re-
sults, we tuned the similarity threshold in increments of
0.05 and decided the threshold to be 0.35.

We experimented with 2 sample settings of weights:
in Fig. 3 and Fig. 4, “1-1-1” indicates equal weights to
all components and “10-2-1” indicates that the named
entities were weighted 5 times higher than noun phrases,
which were weighted twice as much as other words in
the query. Fig. 3 shows the scatter plot comparing the
F1 scores of retrieval runs with 1-1-1 and 10-2-1 weight-
ing schemes. We see that for many queries, the F-scores
are higher when the named entities and noun phrases are
weighted higher. However, the improvement is not uni-
form across queries and does not result in any signif-
icant improvement. Further, for very few queries, the
performance degrades when named entities are weighted
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Figure 3: Scatter-plot comparing F1 scores of retrieval
runs with 1-1-1 and 10-2-1 weighting schemes

higher. Fig. 4 shows the F-scores of nuggets found in
two sample queries, 1022 and 1027. For these queries,
the non-uniform weighting scheme performed better than
the uniform scheme. The plots show that more sentences
with relevant nuggets are retrieved when the named en-
tities are given higher weights. Typical summary lengths
are 4000 characters. The summaries were truncated based
on the maximum allowable length in TAC (i.e. 7000×
number of questions in a target). Based on these ex-
periments, it seems that weighting named entities higher
than other words improves performance to some extent,
but the overall improvement is not very significant.

6.2.3 Additional experiments on polarity module

To check the performance of our polarity module, we
performed additional experiments on the tagged data set
used in Minqing Hu and Bing Liu’s previous work [3, 4].
They used 14 product review from Amazon7, and the
sentences in the data set have manually generated tags
indicating features and sentiments (positive and nega-
tive). We collected all the positive and negative sen-
tences, without segregating product and feature-specific
reviews, and checked if our polarity module can classify
those sentences correctly. Because Amazon reviews are
free-format text posted by web users, we can assume that
they have similar characteristics to blog posts. Table 5
shows the classification results. The true classification
rate is 38% and the exact opposite misclassification rate
is 16%. These results show that the performance of po-

7http://www.amazon.com
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Figure 4: Variation of F-scores with length

larity module was low and may have caused some useful
sentences to be filtered out in our final summary.

Classification result Positive Negative
NonOpinionated 1063 598
Positive 1363 371
Negative 383 412
Mixed 296 210
Total 3105 1591
Exact Match 1363/3105=0.44 412/1591=0.26

(1363+412)/(3105+1591)=0.38
Exact Opposite 383/3105=0.12 371/1591=0.23

(383+371)/(3105+1591)=0.16

Table 5: Polarity module performance (# sentences)

6.2.4 Additional experiments on coherence optimiza-
tion

We conducted additional experiments on coherence op-
timization module to check its performance. We mea-
sured the performance of coherence module by compar-
ing the order of sentences given by the coherence mod-
ule with “ideally-ordered” sentences. Since there is no
“ideal” order in a summary, we assumed that the sen-
tence ordering in the original blog document is ideal.
Table 6 shows the split of the sentences from relevant
blog documents into training set (used to train the coher-
ence module) and the test set.

In addition to the basic optimization that we applied
to the submitted run, we tried different coherence func-
tions. Instead of using pointwise mutual information,

Number of sentences
Given data set 52383
Training set 38561 (73.6%)
Test set 13822 (26.4%)

Table 6: Coherence optimization experiment data set

ppmi(u, v) (Eq. 1), we first tried to use strict joint prob-
ability, psjp, defined as

psjp(u, v) =
cnt(u, v) + 1∑

u,v cnt(u, v) + |dictionary|2
(2)

Secondly, we suspected that the bias of pointwise
mutual information caused the low performance of the
original algorithm, we tried to use general mutual infor-
mation, pgmi, defined as

pgmi(u, v) = p(u, v) log
p(u, v)
p(u)p(v)

+ p(¬u, v) log
p(¬u, v)
p(¬u)p(v)

+ p(u,¬v) log
p(u,¬v)
p(u)p(¬v)

+ p(¬u,¬v) log
p(¬u,¬v)
p(¬u)p(¬v)

(3)

where (¬u, v) means “u does not exist in sentence i
and v exists in sentence i + 1” (similarly (u,¬v) and
(¬u,¬v)), and

p(u, v) =
cnt(u, v) + 0.25

N + 1

p(¬u, v) =
cnt(¬u, v) + 0.25

N + 1

p(u,¬v) =
cnt(u,¬v) + 0.25

N + 1



Selection of training words Coherence score
Strict Joint Probability Mutual Information Pointwise Mutual Information

No omission 0.022259 0.041651 0.056063
Omitted 5% most frequent words (counts > 33) 0.031314 0.049498 0.051460
Omitted 10% most frequent words (counts > 11) 0.028899 0.046103 0.045725
Omitted 20% most frequent words (counts > 6) 0.020373 0.034785 0.032219
Omitted 40% most frequent words (counts > 2) 0.019845 0.021882 0.022259
Omitted 50% most frequent words (counts > 1) 0.018486 0.020599 0.019694
Omitted 95% least frequent words (counts < 33) 0.022108 0.032898 0.044065
Omitted 90% least frequent words (counts < 14) 0.022108 0.032823 0.049045
Omitted 80% least frequent words (counts < 6) 0.020599 0.037048 0.054931
Omitted 60% least frequent words (counts < 2) 0.022410 0.041802 0.056591
Omitted stopwordsa 0.036746 0.054554 0.057119
Omitted non-stopwords 0.017958 0.022863 0.020750

Omitted connecting wordsb 0.022108 0.043235 0.057421
Omitted non-connecting words 0.017958 0.019241 0.017958
Omitted transitive wordsc 0.020599 0.042405 0.056968
Omitted non-transitive words 0.018939 0.017279 0.019694

ahttp://www.lextek.com/manuals/onix/stopwords1.html
bhttp://www.rscc.cc.tn.us/owl&writingcenter/OWL/Connect.html
chttp://www.virtualsalt.com/transits.htm

Table 7: Coherence optimization result. The coherence score of the baseline random ordering was 0.01586.

p(¬u,¬v) =
cnt(¬u,¬v) + 0.25

N + 1

N = cnt(u, v)+cnt(¬u, v)+cnt(u,¬v)+cnt(¬u,¬v)

For unseen pairs,

pgmi(u, v) = 0.5×min(pairs seen in training)

We also ran the optimization experiments after first
excluding frequent words, then excluding rare words.
Words having high frequency tend to be stopwords and
are not related to sentence ordering, so they can be re-
moved. Some rare signal words, such as “first” or “sec-
ond”, may be significant clues for deciding sentence co-
herence. Therefore, ignoring such rare clues can affect
the performance. Based on this hypothesis, we excluded
frequent and rare words when we train our coherence
model.

To evaluate the model, we used a very-conservative
strict pair matching formulation. We set the evaluation
score to be the ratio of number of correct adjacent sen-
tence pair to the number of total adjacent sentence pair.
The range of the used measurement is 0 to 1, and 1
means exactly same ordering as the ideal document.

Table 7 shows the experiment results. For the ba-
sic setup, we obtained the coherence score of 0.056063,
which is 3.5 times larger than that of random ordering,
0.01586. However, it is still a low score as the range of
measure is [0, 1]. This result shows that the performance
of current probabilistic coherence optimization module

is poor. This corresponds with the low coherence score
results of the UIUC2 run.

Among different coherence functions, pointwise mu-
tual information showed the best performance. Exclud-
ing some words in sentence ordering also showed some
positive results. By omitting frequent words, we could
obtain a higher score in strict joint probability and mu-
tual information functions. After omitting stopwords,
we could obtain performance increase in all three func-
tions. Similar to stopwords, eliminating connecting words
and transitive words also helped to improve performance
generally. However, because connecting words and tran-
sitive words contain key words for sentence ordering,
such as “first”, “second” or “next”, performance improve-
ment was lower than that when eliminating stopwords.
The performance even decreased in strict joint probabil-
ity when eliminating transitive words.

We can infer that the superiority of pointwise mu-
tual information came from its effective handling on fre-
quent words. When u and v are frequent, the denomi-
nator in Eq. 1 increases, and it penalizes the pointwise
mutual information, ppmi(u, v). However, the denomi-
nator in Eq. 2 for strict joint probability, psjp(u, v), is
fixed regardless of frequency of u and v. Similarly, mu-
tual information, pgmi(u, v), is also unaffected by the
frequency of u and v, since N (in Eq. 3) sums up all
cases of u and v being present. Therefore, when elim-
inating frequent words, we could see performance im-
provement in strict joint probability and mutual informa-
tion, while we could not see it in pointwise mutual infor-



u v psjp(u, v)

the the 4.40E-006
to the 3.07E-006
the to 3.06E-006
the of 2.87E-006
the and 2.87E-006
of the 2.85E-006

and the 2.83E-006
a the 2.68E-006

the a 2.67E-006
... ... ...

Table 8: Top ranked pairs using strict joint probability

mation which already penalized frequent words. When
eliminating stopwords, performance improved in all func-
tions including pointwise mutual information. This is
because stopwords list contains not-meaningful words
which were not frequent in the training set. The per-
formance improvements of strict joint probability and
mutual information when eliminating stopwords are still
larger than that of pointwise mutual information. Ta-
ble 8 confirms our intuition that the top ranked psjp(u, v)
pairs are indeed stopword pairs.

7 Conclusion
Our submission to the opinion summarization pilot task
at TAC 2008 gave us a great opportunity to try out vari-
ous techniques and ideas to tackle the problem. Contrary
to our initial expectation, the run having higher weight-
ing on named entities and noun phrases, UIUC1, showed
lower retrieval performance. Our experiments showed
that differential weighting of named entities and noun
phrases helped retrieve more relevant sentences and im-
prove the nugget score in some cases. By evaluating
our polarity module, we showed the possibility that us-
ing imperfect polarity decision model is the reason that
UIUC1 had a degraded performance in content selection.
The run that adopted statistics coherence optimization
module showed low coherence evaluation. The experi-
ment results on the performance of statistical optimiza-
tion also showed that sentence ordering based on only
pointwise mutual information between words is not ef-
fective. However, by comparing coherence ordering re-
sults using strict joint probability and mutual informa-
tion, we could learn that using pointwise mutual infor-
mation was the better choice. Moreover, additional ex-
periments with selected words based on frequency of
words showed the possibility of better performance by
tuning characteristics of training set.

As part of future analysis, we can consider using less

strict coherence measures and different ordering meth-
ods. We also need to examine more factors affecting
retrieval and sentence ordering performance. It will also
be instructive to analyze what weighting scheme would
perform well based on the query.

Our result analysis showed that we can improve fur-
ther by using summary structuring methods and content
selection methods from UIUC2 with additional redun-
dancy removal after merging sentences from each ques-
tion. We also need to improve the precision of the po-
larity decision module by preparing better-selected pos-
itive/negative word lists or applying different decision
methods.
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