
Concordia University at the TAC-2008 QA Track

Majid Razmara∗ and Leila Kosseim
CLaC Laboratory

Department of Computer Science and Software Engineering
Concordia University

1455 de Maisonneuve Blvd. West
Montréal, Québec, Canada, H3G 1M8

mra44@sfu.ca; kosseim@cse.concordia.ca

Abstract

In this paper, we describe the system we used for the Tac-2008 Question Answer-
ing track. Our Rigid question answerer uses a classification method to group candidate
answers into relevant and irrelevant classes based on the co-occurrence information of
each pair of candidate answers. To answer Squishy types of questions, our system extracts
from Wikipedia articles a list of interest-marking terms and uses them to extract and score
sentences from the Blog06 document collections using various interest-marking triggers.

1 Introduction

This year, NIST introduced a novelty to the TREC QA track named TAC QA track. It
brought question-answering researchers two new challenging types of questions; Rigid as a
successor to List questions with addition of opinion information and Squishy as a successor
to Other questions with specification of the interest of the question.

Since we achieved relatively good results at TREC-2007 with our List and Other question
answering subsystems [1], we decided to exploit our subsystems from last year and to add
on top of them new features to deal with answering Rigid and Squishy questions specifically.
We had planned to use sentiment information to filter out candidate answers that do not
come from sentiment-bearing sentences. We started to use terms from the General Inquirer1

and the results of the Opinion Retrieval Task of the TREC 2006 Blog Track [2] to learn to
classify sentences as opinion-bearing or not. By using last year’s subsystems for List and
Other questions, we would produce a list of candidate answers, and then filter out those
candidates that do not come from an opinion-bearing sentence. Unfortunately, due to time
constraints and technical difficulties, we were unable to submit this run, and therefore only
relied on last year’s system with very minor modifications.

In the following sections, we briefly describe our approaches to answering Rigid and Squishy
questions, and the results of our system using these approaches.

∗now at: School of Computing Science, Simon Fraser University
1http://www.wjh.harvard.edu/~inquirer/

1

http://www.wjh.harvard.edu/~inquirer/


2 Answering Rigid Questions

Since Rigid questions can be seen as opinion-based List questions, we decided to keep the
existing List question answering system as the foundation of our system. In this section, we
will explain our approach to answering List questions, which is also used for Rigid questions.
The description of this module can be found in more detail in [3] and [4].

Our List module is based on the observations that:

1. The instances of the answer to a List question have the same semantic entity class;

2. The instances of the answer tend to co-occur within the sentences of the documents
related to the target and the question;

3. The sentences containing the answers share similar context.

We use the target and the question keywords as the representatives of context. In other
words, we hypothesize that the instances of an answer to a List question tend to co-occur
together and also tend to co-occur with the target and the question keywords within the
sentences of the relevant documents. Co-occurrence can be an indicator of semantic similarity;
generally, terms that co-occur more frequently tend to be related. The overall architecture of
our List answerer subsystem is illustrated in Figure 1.

2.1 Candidate Answers Extraction

The first step to creating a list of candidate answers is answer type recognition. In addition
to the nine classes defined for List questions: Person, Country, Organization, Job,
Movie, Nationality, City, State, Other, two more classes are defined to deal with
Rigid questions:

• Blog that refer to the name of the blog or its address to answer questions such as What
bloggers’ sites contain negative opinions of Sean Hannity? (sample question 9904.3)

• Blogger that refer to the author of the blog (appearing in patterns such as “posted
by ”) to answer questions such as Who has expressed a negative opinion about the
association of members of the FDA advisory committees? (sample question 9906.2).

Each question is associated to one of the specified entity classes. This is done by using
lexical and syntactic patterns. Once the type of answer is predicted, a number of documents
are retrieved from Blog06 using a query generated from the target and the question. These
documents constitute a collection from which candidate terms are extracted. All terms that
conform to the answer type are extracted from this collection. Depending on the answer type,
the candidate terms are extracted using NE taggers (in case of Person, Organization and
Job), using gazetteers (in case of Country, Nationality, State and partially City), by
applying lexical patterns on the text of Blog06 documents (in case of Blog and Blogger),
and finally by extracting all capitalized terms and terms in quotations and validating them
using web frequency (in case of Movie and Other).

2



Answer Type 

Recognition

Candidate

Extraction

Candidates 

Set

Document

Retrieval

Co-Occurrence

Extraction

Candidate 

Selection

Co-

Occurrence 

Info

Evaluation

Candidate

Answers

WWWWWWWWWWWW

Results

HAC

Clustering

BLOG06

Candidate

Answers

Cumulative

Classification

Documents

1

2

Figure 1: List Answering Subsystem Architecture as used for Squishy questions

2.2 Relation Extraction

The relation between two candidate terms is a normalized value denoting how often they
co-occur within documents about the target. For this purpose, using the query generated in
the previous section, a list of relevant documents from Blog06 and the web are retrieved.
This constitutes the domain collection from which sentences will be extracted to compute
co-occurrence information. For each pair of candidates, a 2×2 contingency table is created:

Where O11 refers to the number of sentences termi and termj appeared together and
O12 refers to the number of sentences in which termi appeared but termj did not appear.
Similarly O21 is the number of sentences containing termj but not termi and O22 is the
number of sentences containing neither termi nor termj . N denotes the total number of
sentences in the domain collection.

The similarity between each pair of terms is computed using a modified version of weighted

3



termi ¬ termi Total

termj O11 O21 O11 + O21

¬ termj O12 O22 O12 + O22

[gray]0.7Total O11 + O12 O21 + O22 N

Table 1: 2× 2 Contingency Table Containing Co-Occurrence Information of Two Terms

Mutual Information. For more details about the modified weighted Mutual Information that
we used, refer to [4].

WMI (termi, termj) =



−2× F1 × F2

N
× log2 e

e
if O11 = 0

−2× F1 × F2

N
× log2 e

e
+ O11 × log2

N ×O11

F1 × F2
if O11 <

F1 × F2

N × e

O11 × log2

N ×O11

F1 × F2
if O11 ≥

F1 × F2

N × e

2.3 Candidate Answer Selection

In this section, we present and investigate two different approaches to returning a subset of
candidate answers based on the co-occurrence information extracted in the previous stage.
First, a clustering method is used to group closely related terms. Candidates in the most
appropriate cluster are returned as the final candidates. Second, we use a simple classifica-
tion method to classify the candidates into two classes: Relevant and Irrelevant. Then, the
candidates in the class Relevant are returned.

2.3.1 Hierarchical Agglomerative Clustering

Since we do not have information regarding the coordinates of the candidate terms and the
only information we have is the similarity between candidate terms, many clustering methods
can not be applied. We use a Hierarchical Agglomerative clustering method which can be
used in similar situations. The algorithm is as follows:

1. Remove terms that appear less than a certain threshold.

2. Sort the candidate answers based on their frequency in the domain collection.

3. Put each candidate term ti in a separate cluster Ci.

4



4. Compute the similarity between each pair of clusters.

5. Merge two clusters that have the highest similarity between them.

6. Goto step 3 until there are only N clusters left or the highest similarity is less than a
threshold.

After the clustering is finished, the main concern is how to select the right cluster. For this
purpose, before clustering, we stem the target and question keywords and add them to our
candidate terms to be clustered. Their responsibility is to spy on candidate terms. These spies
are treated exactly like candidate terms; hence their co-occurrences with candidate terms and
also other spies are extracted, their relations are evaluated and finally they are clustered along
with candidate terms. When clustering is finished, these spies are used to pinpoint the cluster
with the highest probability of being the correct cluster. This is according to our hypothesis
that the answers to a List (or Rigid) question tend to co-occur with one another and with
the target and question keywords as well.

2.3.2 Cumulative Classification

We also experimented with a different method: Cumulative Classification. The classification
is based on the same co-occurrence information used in clustering. The idea is that candidate
terms that generally co-occur more often with other candidate answers, hence with a relatively
higher similarity value, are more likely to be the answer. Therefore, we use the sum of the
similarities of each term to other terms as an indicator of how often each term co-occurs with
all other terms. Candidates with a cumulative similarity greater than a certain threshold
are labelled as Relevant and the rest are Irrelevant. Table 2 illustrates how the cumulative
similarity of each term to other terms is computed.

1. For each term in the candidate list, compute the sum of its similarities to all other
candidate terms;

2. Sort the candidate terms based on their cumulative similarities;

3. Compute the threshold based on the above formula;

4. Retain only candidates whose cumulative scores are equal to or higher than the thresh-
old;

5. Return the candidate terms as the final candidate terms.

2.4 Answer Projection

To support the final answers with documents from Blog06, a simple method is used. The
corpus is searched using the query generated before and the final candidate term and simply
the first document is returned as the supporting document. Several different approaches were
examined that all caused a lower score than this method.

5



term1 term2 . . . termn

term1 0 Sim2,1 . . . Simn,1

term2 Sim1,2 0 . . . Simn,2

...
...

... 0
...

termn Sim1,n Sim2,n . . . 0

Score
∑

1≤i≤n

Sim1,i

∑
1≤i≤n

Sim2,i . . .
∑

1≤i≤n

Simn,i

Table 2: Cumulative Similarity Table

3 Answering Squishy Questions

Since Squishy questions share similar characteristics with Other questions, we decided to
exploit our existing Other question answering system as the underlying system for answering
Squishy questions. However, the conventional Other questions ask for any other important
and interesting piece of information about the target, while the new Squishy type of questions
provides exactly what is considered interesting.

This section will present a brief summary on the approach we had used to answer Other
questions, which we used with minor modifications to answer Squishy questions. For more
details about how Other questions are answered, refer to [5] and [4].

Fundamentally, we hypothesized that interesting nuggets can be extracted using two types
of interest markers:

Target-specific interest markers: terms that are important within the documents related
to the target. For example, sinking is an interesting term in the target “Titanic” or
assassination contains a valuable data about “Kennedy”.

Universal interest markers: terms that are important regardless of the target. For exam-
ple, in the sentence “first man on the moon”, first conveys an interesting concept or in
the sentence “15000 people died in the yesterday’s earthquake disaster”, 15000 contains
a unique meaning.

To identify target-specific interest marking terms, we used the Wikipedia2 online dictio-
nary. The first stage to answering Squishy questions is to find the proper Wikipedia article.

2http://en.wikipedia.org

6

http://en.wikipedia.org


We use the Google API to search in the Wikipedia domain using the target and the question
as query. The first Wikipedia article that satisfies the query is taken. We extract named
entities as interesting terms for each target, and we search Blog06 for the N most relevant
documents. For this purpose, the title of the Wikipage is added to the query.

Within the documents chosen as the domain, the frequency of each interest marking term
is then computed. For each term, we compute a weight as the logarithm of its frequency.

Weight(Ti) = Log(Frequency(Ti))

All sentences from the domain documents are then scored according to how many target-
specific interesting terms it contains. This is computed as the sum of the weight of the
interesting terms it contains.

Score(Si) =
∑

Tj∈Si

Weight(Tj)

Then similar sentences that either are almost equivalent to one other at the string level
or share similar words but not the same syntax are dropped.

Once the sentences are ranked based on target-specific interesting terms, we boost the
score of sentences that contain terms that generally mark interesting information regardless
of the topic. Such markers were determined empirically by analyzing the previous trec data.
These markers consists of superlatives, numeral and target-type specific keywords. This last
type of marker is essentially a list of terms that do not fit any specific grammatical category,
but just happen to be more frequent in interesting nuggets. Finally, the top N sentences
making up 7000 non-white-space characters are returned as our nuggets.

4 Results

As mentionned in Section 1, due to technical problems and time constraints, we were unable
to submit our main run in which we planned to use sentiment classification to answer opinion
questions. Our results, therefore, only reflect the use of last year’s system for List and Other
questions used (almost) as is for the Rigid and Squishy questions. Our results turned out to
be much lower than we had expected.

For the Rigid part, we used Cumulative Classification with modified weighted mutual
information discussed in 2.3. Precision, recall and F-score of the answers are 0.104, 0.020
and 0.025 respectively. For the Squishy questions, our system got 0.028, 0.109 and 0.073 for
precision, recall and F-score respectively.

5 Conclusion

In this paper, we described our approach to answering two new types of questions, Rigid
and Squishy. Since we could not submit our main run which was supposed to reflect the
modifications regarding these new question types, the results received are not representative of
our approach. However, using the correct answers which will be published by TAC organizers,
we can compare our sentiment approach to the approaches used by other participants. This
needs to be done before any other future work.

7



References

[1] A. Fee M. Razmara and L. Kosseim. Concordia University at the TREC-2007 QA Track.
In Proceedings of the 16th Text Retrieval Conference (TREC-16), Gaithersburg, Maryland
(USA), November 2007. TREC-2007.

[2] I. Ounis, M. de Rijke, C. Macdonald, G. A. Mishne, and I. Soboroff. Overview of the
trec-2006 blog track. In TREC 2006 Working Notes, pages 15–27, November 2006.

[3] Majid Razmara and Leila Kosseim. Answering list questions using co-occurrence and
clustering. In European Language Resources Association (ELRA), editor, Proceedings
of the Sixth International Language Resources and Evaluation (LREC’08), Marrakech,
Morocco, May 2008.

[4] Majid Razmara. Answering List and Other questions. Master’s thesis, Department of
Computer Science and Software Engineering, Concordia University, Montreal, Canada,
August 2008.

[5] M. Razmara and L. Kosseim. A little known fact is . . . Answering Other questions using
interest-markers. In Proceedings of the 8th International Conference on Intelligent Text
Processing and Computational Linguistics (CICLing-2007), pages 518-529, Mexico, 2007.

8


	Introduction
	Answering Rigid Questions
	Candidate Answers Extraction
	Relation Extraction
	Candidate Answer Selection
	Hierarchical Agglomerative Clustering
	Cumulative Classification

	Answer Projection

	Answering Squishy Questions
	Results
	Conclusion

