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Abstract

In  this  paper,  we use  simple  techniques  de-
rived  from  on  Latent  Semantic  Analysis 
(LSA) to provide a simple and robust way of 
generating  extractive  summaries  for  TAC 
2008 Update Summarization task.  

1 Introduction

TAC  2008  Update  Summarization  task  is  to 
write  a  short  (~  100-word)  summary  of  a set  of 
newswire  articles,  under  the  assumption  that  the 
user has already read a given set of earlier articles.

The summaries are to be generated over a num-
ber of batches of independent news articles, each-
batch related to a particular topic. The summaries 
are intended to be in response to a specific query, 
which is available in both short and narrative form. 
For example:
[short form]:

Arctic and Antarctic ice melt
[narrative form form]:

"Describe  the  developments  and 
impact  of  the  continuing  Arctic 
and Antarctic ice melts.”

There  are  a  total  of  48  such  query/document 
batches. Each document batch is farther partitioned 
into two sets. Both sets are to be summarized inde-
pendently  using information  related  to  the  query 
corresponding to the document batch. The second 
of the two sets is to be summarized under the as-
sumption that the user has read the first set, i.e. the 
second summary should contain information that is 
new in relation to the first set.

2 CU System Overview

Our system is a simple extractive summariza-
tion system, meaning that it simply extracts repres-
entative  sentences  from  the  source  documents, 
without attempting to modify them. 

The core of the system is on Latent Semantic 
Analysis (LSA). We give a brief overview of LSA 
in the next  section,  the  reader is  also advised to 
consult [1] for more information.

2.1 Latent Semantic Analysis (LSA)

Latent  Semantic Analysis  ([1]) is  an unsuper-
vised methods  of  deriving vector space semantic 
representation from a large corpus of  texts.  LSA 
starts by representing a collection of documents by 
a term by document (T x D) matrix A, which in es-
sence  represents  each  word  by  a  D-dimensional 
vector. It then performs singular value decomposi-
tion (SVD) on the matrix:

A=U V T
(1)

Subsequently, all but the first (largest)  k values in 
the diagonal singular matrix Σ, are set to zero, res-
ulting in a kind of  principal component  analysis. 
This effectively reduces the dimensionality of each 
word vector to k. (For more details, please consult 
[2]).  The number of dimensions (k) is determined 
empirically. The dimensions have no intuitive in-
terpretation;  they  simply  serve  to  position  word 
vectors in the high-dimensional space.

The  measure  of  semantic  similarity  between 
two words in this model is typically1 the cosine of 

1Other metrics like Eucledian distance and dot product are less 
commonly used



the angle between their  corresponding word vec-
tors :

S w1 ,w2=cosvw1 ,vw2 =
vw1⋅vw2

∥vw1∥∥vw2∥    (2)
The simulated meaning of a new document 

(sometimes referred to as pseudo-document) can 
be represented in LSA using the following method:

v d=qT U k k
−1 (3)

where  q  represents the array containing type fre-
quencies for words in the document (weighted by 
tf-idf-derived  entropy  weights).  Note  that  this  is 
equivalent  to  (weighted)  geometric  addition  of 
constituent word vectors corresponding to words in 
a  document..  As  a  result,  both  words  and  docu-
ments are represented as vectors in  k-dimensional 
space2,  allowing  for  straightforward  word-word, 
word-document, and document-document compar-
isons.,  which reflect  their  semantic similarity ac-
cording to the model:
S w ,d =cos vw

1 /2 ,v d 
1/2              (4)

S d 1, d 2=cosvd1 , vd2                 (5)
The absolute values of cosines (which may range 

between -1 and 1 with larger values indicating 
greater similarity) have no strict interpretation; 
only comparisons of cosine values (e.g. between 
pairs of words) are meaningful.

2.2 Implementation Details

We built a new LSA space using a corpus con-
sisting of news articles (from sources New York 
Times)  using the documents in the ACQUAINT-2 
corpus.  The  corpus  consisted  of   439,947  docu-
ments. The resulting LSA space used 327 dimen-
sions. 

We compute the document vectors for each sen-
tence  in  the  source document  as  well  as  for  the 
queries in the short form. 

We experimented with all combinations of 
(1) sentences vs paragraphs as units of extrac-

tion
(2) short vs narrative form of queries

using DUC 2007 data for the same task, and ob-
tained slightly better  results  with sentence-length 
units and short-form queries.

2Depending on the type of comparison, operands  need to be 
multiplied by the singular matrix Σ (word-word) or its square 
root (word-doc). Please see LSA literature for more details.

3 Extracting Sentences with LSA

In selecting sentences for the summary, our sys-
tem attempts to fulfill the following desiderata:

1. Sentences should be related to the query
2. Sentences should cover different topics
3. Sentences should contain as much inform-

ation as possible 
4. (for  update  summaries)  sentences  should 

be  cover  different  topics  from  sentences 
already  selected  for  the  summary  of  the 
first set

We now discuss in more detail how our system 
accomplishes each of these criteria.

3.1 Sentences Related to Query

To measure how much a sentence is related to 
the  query,  we  compute  the  cosine  between  the 
query vector and the sentence vector, and select a 
number (10) of sentences with the highest cosine 
values. 

3.2 Maximizing Topic Coverage

To find  a  set  of  sentences  that  cover  a  wide 
range of topics,  we use a clustering algorithm to 
partition the set of candidate sentences into a num-
ber of clusters. The clusters will ideally represent 
distinct semantic themes. We use k-means cluster-
ing on the LSA vectors of the candidate sentences. 
We use the cosine measure as the distance metric 
for the k-means algorithm. The number of clusters 
(k) is chosen to be the number of sentences that we 
ultimately wish to return.  The k-means algorithm 
returns the assignment of each sentence to a partic-
ular cluster, as well as the centroid of each cluster, 
in the units of the LSA coordinate space used.

We then select a sentence that is most repres-
entative  of  each  cluster,  by  finding  sentences 
which are closest to each cluster's centroid, using 
the cosine metric.

3.3 Maximizing  Amount  of  Information  per 
Sentence

Due to 100-word size restriction of summaries, 
we wish to generate summaries that are as informa-
tion-dense as possible.  Consequently,  we wish to 
find sentences that contain as much information as 
per word as possible.



We can approximate this quantity using a word 
concreteness  measure  derived  from  LSA.  One 
characteristic of LSA word vectors is their vector 
length, which differs significantly among different 
words. Roughly speaking, it is a function of two 
factors:

(1) Number of occurrences in training corpus
(2) Concreteness, or specificity, or words

For example, Kintsch ([2]), writes:
“Intuitively, the vector length tells us how much in-

formation  LSA has about  this  vector.   [...]  Words that 
LSA knows a lot about (because they appear frequently in 
the  training  corpus,  in  many  different  contexts)  have 
greater  vector  lengths  than  words  LSA does  not  know 
well.  Function words  that  are  used frequently  in  many 
different contexts have low vector lengths -- LSA knows 
nothing about them and cannot tell them apart since they 
appear in all contexts.”

To illustrate,  below are  examples  of  different 
words and their corresponding vector lengths:

High Frequency Low Frequency

High Specificity dog 
father 
box 

1.31
1.01
0.68

proton
sheriff
triangle

0.43
0.14
0.14

Low Specificity the
how
since

0.01
0.39
0.27

haphaz-
ard
clumsy

0.03
0.06

Therefore,  we can isolate  the  effects  of  these 
two factors  and  compute  word  specificity  in  the 
following way:

specificity = { vector length } / { frequency }
As a result, we can obtain an approximation of 

word specificity.  The amount of information in a 
sentence  can  the  be  approximated  by computing 
the mean of specificity values of each constituent 
word (we use the sum of logarithms to dampen the 
large fluctuations in specificity values).

Below is an example of a high-specificity and a 
low-specificity  sentence,  and  their  corresponding 
specificity scores.
Specificity 
score

Sentence

8.9  We found there was too much mass,  Schoepf said. 
We had to work pretty hard to  get back to the spe-
cifications we'd committed ourselves to with our 
clients.   

69.3 By using chromate-free paint, engineers got the out-
er paintwork down to about  350 kilograms (770 
pounds), Schoepf said.  That's compared to 550 
kilograms  (1,210 pounds) for a plane of this size 
using other paints.  

3.4 Finding Non-Redundant Sentences 

To ensure that selected sentences for the second 
(update) set are sufficiently non-redundant with re-
spect to the sentences selected for the first set, we 
compute pairwise cosine distances between all sen-
tences selected for the first  set  and all  candidate 
sentences for the second set. The system selects the 
sentences with the smallest such cosines. 

3.5 Putting it Together

The following is the pseudo-code for the overall 
algorithm:

foreach (b in batches):
Qb = query(b)

Sb1 = get_sentences(batch=b, set=1)

# compute score for each sentence, based on
# 1) similarity to query
# 2) specificity
foreach (s in Sb1):
sim_s = cos (vector(Qb), vector(Sb))
spec_s = avg (log (specificity (w)), w  Sb1∈
score_s = spec_s * sim_s

# pick 10 best sentences with highest scores
Sb1' = max(score_s, 10) 

# cluster them using k-means into 5 clusters
cluster_centers = kmeans(vector(Sb1'), 5)

# pick the representative sentence for 
# each cluster center
foreach (cc in cluster_centers):
add (Rb1, max(cos(cc, vector(Sb1'), 5))

# Report sentences for batch b, set 1
print Rb1

Sb2 = get_sentences(batch=b, set=2)

# compute score for each sentence, based on
# 1) similarity to query
# 2) specificity
# 3) dis-similarity to sentences in set 1
foreach (s in Sb2):
sim_s = cos (vector(Qb), vector(Sb))
spec_s = avg (log (specificity (w)), w  Sb1∈
d_s = 1-max(cos(vector(Sb2), vector(sb1))
score_s = spec_s * sim_s * d_s

# pick 10 best sentences
Sb2' = max(score_s, 10) 

# cluster them using k-means
cluster_centers = kmeans(vector(Sb2'), 5)

# pick the representative sentence for 
# each cluster center
foreach (cc in cluster_centers):
add (Rb2, max(cos(cc, vector(Sb1'), 5))

# Report sentences for batch b, set 2
print Rb2



4 Results

At TAC 2008, the system ranked 37th out 
of 58 for the average modified pyramid score, 20th 

out 58 for linguistic quality, and 35th out of 58 for 
overall  responsiveness.  It  should  be  noted  that 
these results were obtained with fairly simple, but 
robust  techniques;  no  sophisticated  syntactic/se-
mantic analysis or natural language generation was 
involved. We believe that our methods can be used 
in  conjunction  with  these  techniques  to  obtain 
much better results.
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