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1 Introduction

This year the CLASSY team participated in the update summary task and made four
submissions to summarization evaluation (AESOP). Our AESOP submissions used com-
binations of ROUGE scores along with an update (or newness) score. We also use these
new metrics, which we call Nouveau ROUGE, to help train our system and evaluate new
ideas on computing update summaries.

CLASSY (Clustering, Linguistics, and Statistics for Summarization Yield) is the sum-
marization system developed mainly1 by IDA/Center for Computing Sciences. Before de-
scribing the Nouveau ROUGE update metrics, we describe improvements made to CLASSY
in data preparation, redundancy removal, and sentence selection.

2 CLASSY 2009

CLASSY 2009 retains a similar structure of previous versions, consisting of the following
seven steps:

1. Data preparation and sentence trimming.

2. Query term selection from the topic descriptions.

3. Signature term computation for each of the document sets.

4. Sentence scoring using the approximate oracle.

5. (For update summaries) Projection of term-sentence matrices against the base sum-
mary to reduce redundancy.

6. Redundancy removal and sentence selection.

(a) Via LSI/L1-QR algorithm followed by an Integer Linear Program (ILP) or
1Over the years we’ve collaborated with several colleagues from the DoD and the University of Maryland.
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(b) ILP for redundancy removal and sentence selection.

7. Sentence ordering based on an approximate Traveling Salesperson (TSP) algorithm.

Improvements made to CLASSY this year centered on data preparation, redundancy re-
moval, and sentence selection.

2.1 Data Preparation

We made a significant change to the data preparation step for TAC 2009. Specifically, we
made the painful decision to develop a new sentence splitter due to dissatisfaction with
those we had tried, including one that was “home-grown”. This dissatisfaction was due to
speed concerns, for sentence splitters that were POS- or parse-based; and accuracy concerns
since mis-split sentences (either run-ons or fragments) affect grammaticality, readability,
and even responsiveness. Some splitters exhibited both of these defects to some extent.

Many errors were identified while using previous splitters. Our tokenization routine was
adapted to find and correct many of these errors. Unfortunately, this added a complexity
to the tokenizer that we would have preferred to avoid. This knowledge, though, was
extremely useful while developing our new sentence splitter, F-SPLIT.

F-SPLIT is fast, achieving speeds of between 1000–1100 sentences/second for the entire
AQUAINT2 data base. The new sentence splitter is also very accurate with error rates of
less than 1% of all identified sentences.

We designed F-SPLIT as a two-pass routine. The nature of F-SPLIT is to split too
much, causing sentence fragments, rather than too little, causing run-ons. When the first
pass on a long document results in a small number of sentences, a second pass is performed,
looking for common causes of errors. This second pass avoids costly, complex evaluation
of a file when it most likely is not problematic.

The two-pass approach also turned out to be a boon for making the splitter as accurate
as possible. When the initial set of sentences is being read and written to generate the
final file, sentences are examined for sentence fragments and run-on sentences. Run-on
sentences may be the result of several list items occurring in one sentence or a footnote
embedded within a sentence. Sentence fragments are the result of errors such as splits on
abbreviations, splits after quotes, spacing errors, and confusion on ellipsis.

A runtime file is generated, identifying every situation where F-SPLIT made a guess
while doing the initial split and then each time two sentences were joined or a run-on
sentence was split. This file can be used to partially assess the accuracy of the splitter
although, of course, there is no way of knowing, other than by painful examination of the
input and output, what other errors have been missed.

One example of a correction made by the second pass is to join a quote to the text that
indicates the identity of the speaker. In one set of over 423,000 sentences, 282 such joins
were made (0.07% of all found sentences). Of those, 279 were correctly joined (98.94%)
while 3 were in error (1.06%), for an actual error rate of 0.0007%. For another set of nearly
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390,000 sentences, 203 joins were made (0.05% of all sentences) with 198 correctly joined
(97.54%) and 5 being in error (2.46%) for an actual error rate of 0.001%.

2.2 Redundancy Removal and Sentence Selection

For the last several years a non-negative (or L1-norm) QR factorization has been at the
heart of the CLASSY redundancy removal ([2], [6]). Sentence selection has been done either
allowing for truncation or using a simple greedy strategy for finding a subset of sentences
that are likely to have a high concentration of terms chosen by humans and that meet the
word limit requirement, which is 100 for TAC 2009 [3].

Based on the success of ICSI system [5] at TAC 2008 we decided to experiment with
integer linear programming (ILP) methods for redundancy removal and sentence selection.
To this end two procedures were evaluated:

• Follow the non-negative QR factorization, which reduces redundancy, with a simple
binary linear program to solve a knapsack problem to choose sentences.

• Adapt ICSI’s ILP, using an approximate oracle weighting of the terms.

For the first, we use the non-negative QR factorization to select s non-redundant sentences
containing at least 120 words. Let nj denote the number of words in th j-th sentence
and ω̂j be the approximate oracle score for the j-th sentence, i.e. the term average of the
probability that a term will be included in a human-generated summary. We seek to find
a subset of the sentences to maximize the total approximate oracle score and contain at
most 100 words. If we denote membership in this subset via a binary vector x, then we
seek x∗ such that

x∗ = argmaxx

∑
j

xjω̂j (1)

subject to (2)∑
j

xjnj ≤ 100 (3)

xj ∈ {0, 1} (4)

We solve this problem using Matlab’s bintprog().
The ICSI ILP addresses the redundancy problem and sentence selection problem si-

multaneously [5]. We adapt their approach to make use of the approximate oracle score.
Experimenting with the TAC 2008 data, we found that passing top-scoring sentences total-
ing at least 200 words performed the best. We let A be the term-sentence incidence matrix
(0’s and 1’s) of size m by s corresponding to these sentences and nj the number of words
in the j-th sentence. The objective function of the ICSI ILP gives credit for each unique
term a sentence contributes to the summary. The inequality constraints ensure that if term
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i is included (yi = 1) there is at least one sentence j, that includes it, is included in the
summary (xi = 1). Conversely, if a sentence is included in a summary all of its terms are
included. We adapt this to the CLASSY scoring by using the estimated probability that
a term t for the topic τ will be included in a human summary; this estimate is denoted
P̂r(t|τ).

y∗ = argmaxy

∑
j

yjP̂r(j|τ) (5)

subject to (6)∑
j

xjnj ≤ 100 (7)

yi −
∑

j

aijxj ≤ 0 (8)

aijxj − yi ≤ 0 (9)
yj ∈ {0, 1} (10)
xj ∈ {0, 1} (11)

This ILP is larger and more difficult than our first one, but it too can be solved using Mat-
lab’s bintprog(). In practice, this ILP tends to produce summaries whose average sentence
length is shorter and total length is closer to the target length.

3 CLASSY Evaluation Metrics

The CLASSY team developed several methods for evaluating summaries as part of the
AESOP task at TAC 2009. For base summaries (subset A), variations of ROUGE were
combined via either robust linear regression as studied in [1] or using a linear classifier. For
update summaries, we used new ROUGE-based scores which compare the peer summaries
for subset B with the model summaries of subset A. We call this newness score “Nouveau
ROUGE” [4]. The Nouveau scores can then be combined with ROUGE scores to provide
sharper estimates for overall responsiveness or pyramid scores.

3.1 Metrics Based on Robust Linear Regression

Our family of robust linear regression metrics are based upon using average system ROUGE
scores to predict either pyramid scoring or overall responsiveness. The features we employed
for TAC only include content metrics, so we expect that the induced metrics will only
capture the “content responsiveness” of the summaries, since no linguistic information is
included. In the future we hope to include linguistic metrics as well.

Formally, the regression problem is given a set of numeric features and the corresponding
content responsiveness or pyramid scores. We let aij , for i = 1, ...,m and j = 1, .., n, be the
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value of the jth feature for the summarizer i, and let bi be the human content evaluation
metric (e.g., pyramid scoring or overall responsiveness). Canonical correlation finds an
n−long vector x such that

x = argmax ρ(
n∑

j=1

aijxj , bi), (12)

where ρ denotes the Pearson correlation between two values.
To be robust to outliers we use a robust least squares algorithm (Matlab’s robustfit())

to minimize ||Ax− b||, where the norm ||.|| appropriately weights outliers.
Given a robust linear fit, base on training data, a score for a peer summary to be

evaluated is computed by computing the given features for the summary and then applying
the linear model x. Thus, resulting score will be estimate the human evaluation metric as
function of the computed features.

3.2 Metrics Based on a Linear Classifier

Given class labels (e.g., human responsiveness judgements) for individual summaries and
automatically generated features computed for these summaries, a classifier can be built to
predict these class labels. We choose to use a classifier for which we can readily compute
a posterior probability for the class label. For TAC 2009 we simply used a linear classifier;
however, the method generalizes to any classifier for which posterior probabilities can be
computed. The posterior probabilities returned by the classifier are then used to compute
an expected responsiveness score.

More formally, suppose have a collection of feature matrices Ai where each row corre-
sponds to a summary that was given a categorical human judgement of i and the columns
are automatically-computed features. We used TAC 2008 data to train the model, resulting
in 5 classes, corresponding to the 5 scores in overall responsiveness.

To train the model we used Matlab’s classify() function with the default settings,
which assumes a multi-variant normal model for each class and a common covariance
matrix. When the model is used to score a summary, it estimates a posterior probability pi,
which is the probability that the summary will have responsiveness score i. The estimated
responsiveness score s is simply the expected value, computed as

s =
5∑

i=1

ipi.

4 Results

We now present a synopsis of the CLASSY summarization submission results as well as
the AESOP results.
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4.1 TAC 2009: Update Summaries

The two CLASSY submissions for TAC 2009 both had the advantage of improved sentence
splitting. They differed in their approaches to redundancy removal and sentence selection:
submission ID 6 used the non-negative QR factorization for redundancy removal and the
simple ILP for sentence selection, while submission ID 54 used an ILP for both redundancy
removal and sentence selection.

Unfortunately, it is not possible to do a direct comparison of results from 2008 (or
earlier years) to 2009 based on the human linguistic quality scores as the linguistic scoring
was changed in 2009 from a 1-5 scale to a 1-10 scale, but reducing the error rates on the
training data most likely gave rise to a smaller number of sentence splitting errors.

Figure 1 gives the result of a Tukey honestly significant difference test of the top
performing systems as evaluated by overall responsiveness. In subset A, we see that only
the human summaries score significantly higher than the CLASSY submission. We note
that even the human scrambled summaries (baseline 2, the uber-baseline) and the human
extracts, baseline 3, overlap the CLASSY interval. For the update task, subset B, the 8
human summarizers outperform all but those two baselines, and baseline 1, the lead of the
most recent article, does about as well as all of the submissions.

On linguistic quality, the picture is a bit different. Here we combined both subsets A
and B since linguistic quality should not be significantly affected by which task is being
performed. We are not surprised to see that the lead, baseline 1, performs well, since
it is a human-written summary. We do note that our submission 6 is among the top
group of machine systems and is not significantly worse than baseline 1. On the other
hand, submission 54 is significantly worse than the baseline. Recall that system 54 tended
to choose shorter sentences. We hypothesize that the drop in linguistic quality for this
submission is a result of loss of focus, since arranging a larger number of short sentences
is more error prone than arranging a smaller number of longer sentences. Furthermore,
a sign test comparing the linguistic scores of the two submissions does indeed show that
system 6 has significantly higher linguistic scores.

4.2 TAC 2009: AESOP Submissions

For the AESOP task the CLASSY team submitted three runs based on the robust linear
regression models and one linear classifier model. All submissions were trained on the
TAC 2008 data using the machine-generated summaries only. In each case, the update
summaries were scored based on the ROUGE features computed not only for the B subset
But also comparing to the A models. Thus, all the models incorporate “nouveau” features.
Table 1 gives the labels and characteristics of the submissions.

AESOP had two subtasks. In the first subtask, dubbed “allpeers”, systems were re-
quired to predict the performance of human systems as well as the machine summaries.
Human summaries were compared with the three other models, and for machine summaries

6



Figure 1: Tukey Honestly Significant Different Test:Overall Responsiveness for Subsets A
and B
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Figure 2: Tukey Honestly Significant Different Test:Linguistic Quality Subsets A and B

Table 1: Four AESOP Submissions by the CLASSY team

System ID Model Type ROUGE Features Target Human Metric
25 Regression 1, 2, 3, L, SU4 Responsiveness
6 Regression 2 Responsiveness
23 Regression 1, 2, 3, L, SU4 Pyramid
26 Classifier 2, 3 Responsiveness
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a jackknifing procedure was used to estimate a score. We report Pearson correlation that
differs from that computed by NIST; our correlations do not include the uber-baseline or
the human summaries. The former is excluded because the scores for it are skewed since
it is always compared with a scrambled version of itself. Human summaries were excluded
since the CLASSY metrics were trained simply on machine summaries and are intended to
distinguish among this group. To adequately score human summaries, linguistic measures
would need to be added to the feature sets.

Tables 2 and 3 give the Pearson correlation for the top performing metrics for the subsets
A and B. We note submission 6, which for subset A is simply ROUGE-2, gives the best
prediction for the pyramid scores. System 26, the linear classifier trained on responsiveness,
performs just slightly worse on this sub-task. Conversely, the ROSE submissions 25 and 15
are the top two predictors for overall responsiveness. For the update summaries, submission
15 is the best predictor for overall responsiveness.

The second sub-task for AESOP focused simply on prediction of machine system per-
formance. This task is labeled “nomodels.” Here all 4 human models can be used at once
to compute the metrics. Tables 4 and 5 give the Pearson correlation results for the top
performing metrics. The CLASSY submissions f=or this sub-task performed comparably,
with the same ranking as with the “allpeers” sub-task. (We illustrate the importance of
removing the uber-baseline from the results and note that if it were not removed system
15 drops from best predicator in the subset B to 23rd best for pyramid and 28th best for
responsiveness! Systems 11 and our “beloved” system 26 are the best predictors for pyra-
mid and responsiveness. One outlier greatly changes the results of Table 5. The update
task data appears to be more sensitive to this outlier as the best)

5 Conclusion

The two CLASSY summarization entries performed within the top group of machine-
generated summaries. However, while even the top machine-generated summaries score
near human performance in the classic ROUGE metrics, they are far from human per-
formance in overall responsiveness. Sadly, no system beat the baseline for the update
task.

The three of the four our submissions for AESOP were the best predictors for base
summaries. These new metrics as well as more research in linguistics features should help
developers continue to make advances in automatic text summarization.
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