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Abstract 

This paper describes the systems of THU 

QUANTA in Text Analysis Conference (TAC) 

2009. We participated in the Knowledge Base 

Population (KBP) track, and the Recognizing 

Textual Entailment (RTE) track. For the KBP 

track, we investigate two ranking strategies for 

Entity Linking task. We employ a Listwise 

“Learning to Rank” model and Augmenting 

Naïve Bayes model to rank the candidate. We 

try to use learned patterns to solve the Slot 

Filling task. For the RTE track, we propose an 

interesting method, SEGraph (Semantic Ele-

ments based Graph). This method divides the 

Hypothesis and Text into two types of seman-

tic elements: Entity Semantic Element and Re-

lation Semantic Element. The SEGraph is then 

constructed, with Entity Elements as nodes, 

and Relation Elements as edges for both Text 

and Hypothesis. Finally we recognize the tex-

tual entailment based on the SEGraph of Text 

and SEGraph of Hypothesis. The evaluation 

results show that our proposed two frame-

works are very effective for KBP and RTE 

tasks, respectively. 

1 Introduction 

In this year’s Text Analysis Conference, we par-

ticipated in two tracks: the Knowledge Base 

Population (KBP) track and the Recognizing 

Textual Entailment (RTE) track. This paper re-

ports on our developed systems for the two 

tracks. 

This is the first year for KBP track. It is designed 

to discover information about named entity and 

to incorporate this information in a knowledge 

source. It contains two subtasks: Entity Linking 

task that links names to entities in the Know-

ledge Base, and Slot Filling task that extracts 

related attributes about entities from text. Most 

of previous studies focus on using similarity or 

classification based strategies to solve Entity 

Linking task. In this paper, we investigate two 

types of “Learning to Rank” strategies. We em-

ploy a Listwise learning to rank model and 

Augmenting Naïve Bayes model to rank the enti-

ty candidates. For Slot Filling task, we try to use 

learned patterns to extract the attributes. We also 

employ Knowledge Base information and Wiki-

pedia to improve the performance. From the 

evaluation results, we can see that our proposed 

methods are effective for these two tasks. 

In this year’s RTE task, we propose an interest-

ing method, called SEGraph (Semantic Elements 

based Graph), for recognizing textual entailment. 

This method divides the Hypothesis and Text 

into two types of semantic elements: Entity Se-

mantic Element and Relation Semantic Element, 

where Entity Semantic Element describes the 

entity referred in the text, and Relation Semantic 

Element describes the relations between the Enti-

ty Semantic Elements. We then construct SE-

Graph, with Entity Elements as nodes, and Rela-

tion Elements as edges for both Text and Hypo-

thesis. We recognize the textual entailment based 

on the SEGraph of Text and SEGraph of Hypo-

thesis. Due to different degree of variations for 

entity and relation, we employ different strate-

gies to detect the Entity Element Entailment and 

Relation Element Entailment. The Entity Ele-

ment Entailment is recognized with knowledge 

based method, and Relation Element Entailment 

is determined by supervised classification me-

thod. In this year’s RTE track, the best result we 

achieved is 67.0% in accuracy and 70.1% in av-

erage precision. 

2 KBP Track  

The aim of KBP Track is to automatically in-

crease the existed Knowledge Base, such as Wi-

kipedia. To achieve the purpose, there are 2 re-

lated tasks in the Track: Entity Linking, where 

names must be aligned to entities in the KB, and   
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Fig. 1, Framework for Entity Linking task 

 

Slot Filling, which involves mining information 

about entities from text. 

2.1  KBP Entity Linking 

In the task, we need to process a list of queries. 

Each query contains an entity’s name string and 

a reference to disambiguating text from news 

document set. We should return the correspond-

ing Entity ID which represents an Entity in the 

Knowledge Base if the Entity is in the Know-

ledge Base or return NIL if the Entity isn’t in the 

Knowledge Base. We dealt with the task as the 

framework shown in Figure 1. 

2.1.1 Preprocessing 

   In the first modules, we have to preprocess 

the corpus data and the query data. 

   We get two corpus from the KBP Track: The 

Knowledge Base Corpus (formed by some se-

lected articles from Wikipedia), and The Source 

Corpus (formed by news articles, used in disam-

biguation). 

   To deal with the task, we index the 2 corpus. 

For the KB Corpus, we build indexes on 2 fields: 

the title of the article and the text of the article. 

For the Source Corpus, we simply build index on 

the text of the news articles. 

   Although most of the queries’ name strings 

are well formed, there are still some spelling er-

rors. So we try to correct the spelling errors. We 

used the query correction function supplied by 

search engines like Google, AltaVista etc. We 

input the query’s name string in the search en-

gine, and then the search engine will return a cor-

rected spelling of the name string if the original 

one was wrong. 

2.1.2 Query expansion 

   It’s obviously that is not sufficient if we only 

use the query’s name string as our query to 

search in Knowledge Base. Some query strings 

like “MND” (short for Ministry of National De-

fense or others), it’s quite hard to retrieve the 

correct entity from Knowledge Base without any 

expansion. Therefore, we use 3 ways to expand 

the query. 

(a) Expand the query from the source text giv-

en in the query. This is used for expanding those 

query strings which are abbreviations. If the 

query contains only one word which starts and 

ends with both capital letters, we would look for 

its expansion form in the source text. We define 

the expansion form of the original name string is: 

there are continuous k words; all words start with 

capital letters or are stop words; if we concate-



nate the k words’ first letter (with or without the 

stop word), it will form the original word. Some-

times we may find the expansion form of the 

name string in the source text. If the expansion 

form was found, then we use this to replace the 

original name string. In order to express easily 

and clearly, we use Q to represent a query need 

to be dealt with, Q.nameString represents the 

name string of Q, Q.sourceText represents the 

source text of Q, and Q.querySet represents the 

queries used to retrieve entity in Knowledge 

Base. Q.querySet at least contains one query: 

Q.nameString. 

   (b) Only a name string is not sufficient even 

if we process the step (a). Sometimes we can’t 

get the expansion form of an abbreviated name 

string in the source text because of the abbre-

viated form is well known, or sometimes the 

query is a nick name such as “Gus Dur” (nick 

name for Abdurrahman Wahid). Wikipedia use 

the redirect link to avoid same entity occurring 

many times due to different queries. So we col-

lected the redirect links of English Wikipedia 

(All the articles before May, 2009), and use these 

to form additional query. For a given 

Q.nameString, if there is a redirect link that redi-

rects Q.nameString to target article of Wikipedia, 

we add the target article’s title string to the query 

set of Q. 

   (c) The articles in Wikipedia contain a lot of 

cross-over links. The anchor text of the links 

supply us some more information. For a given 

Q.nameString, if there is an anchor text of cross-

over link equals with Q.nameString, then we add 

the target article’s title string to the query set of 

Q. To filter out the noises, we select those anchor 

text and cross-over link pairs occur at least twice 

and only add the top 5. 

   The mainly function of the module is to gen-

erate the Q.querySet. 

2.1.3 Candidates Generation 

   In the module, we have got an expanded 

query set. To generate candidates from the 

Knowledge Base, we search the Knowledge Base 

with these queries. 

   For each query string in the query set 

Q.querySet, we treat all these words in the string 

as “or”-relationship, and then retrieve top N (N 

set to be 20 in practice) in Knowledge Base Cor-

pus on the field of title. Now we get a candidate 

set called CSet.  

   We also use the Q.nameString to retrieve 

entities in the Knowledge Base on the field of 

text, we treat the words in the string as “and”-

relationship, and restrict them to occur together 

with a gap no more than k (k set to be 2 in prac-

tice) words. We also add the top N entities to the 

CSet, and define Q.textRetrievalSet as the all 

entities retrieved here. 

   The mainly function of the module is to gen-

erate the CSet. 

2.1.4 Ranking Candidates & Final Answer 

Selection 

   All of our three submits are the same in the 

first two modules, but they differ in this module. 

We tried two different methods to rank the can-

didates and validate the final answer. 

   We use the sample corpus (version 2) given 

by TAC committee and the training set supplied 

by Paul McNamee. 

 

2.1.4.1 List wise Learning to rank & 2-class 

SVM 

   After generating CSet, we need to output the 

final answer. An intuitive method is to train a 

classifier to classify each candidate into 2-class 

(whether is the target entity of the query). If 

more than one candidate is classified as target 

entity, then pick the one with highest probability 

as final answer. But here it would meet a prob-

lem that is how to balance the 2-class training 

samples’ proportion in the training set. For each 

query Q, we may get a CSet contains a lot of 

candidates, most of which are negative samples 

and at most one will be positive sample. So we 

change the strategy: we first rank the candidates 

in the CSet, and then use a 2-class classifier to 

judge whether the top 1 entity is target entity of 

the query Q. 

 

2.1.4.1.1 List wise Learning to rank —— ListNet 

Obviously, we can extract a lot of features from 

the candidates in CSet, but how we can combine 

all the features to rank the candidates. We adopt 

ListNet, an algorism of learning to rank posted 

by Zhe Cao etc in [1]. 

   There are totally 416 (119 + 297) queries in the 

training set, and 285(75+210) of them have the 

target entity in the Knowledge Base. We use 

these 285 queries as training set to train a rank 

model to rank the CSet. We adopt the ListNet 

with k = 1(same as stated in [1], and it fit our 

problem quite well) and also use the linear Neur-

al Network model in the ListNet.  

   The features used for ranking are list in Table 1. 

 



Table 1. Features used in our ranking mode 

Name of Feature Value 
Type 

Feature 
Type 

Definition for Feature 

StrSimSurface Double Surface Maxs∈C.titleExpand  Similarity s, Q. nameString   

ExactEqualSurface {0,1} Surface Whether there is a string s in C.titleExpand, and s equals with 
Q.nameString. 

ContainsQuery {0,1} Surface Whether there is a string s in C.titleExpand and s contains 
Q.nameString. 

SubstringInQuery {0,1} Surface Whether there is a string s in C.titleExpand and s was a sub-
string of Q.nameString. 

EqualWordNumSurface Int Surface For each string s in C.titleExpand, calculate how many words 
are the same between s and Q.nameString, and the maximum 
value would be the value of this feature. 

MissWordNumSurface Int Surface For each string s in C.titleExpand, calculate how many words 
are the different between s and Q.nameString, and the mini-
mum value would be the value of this feature. 

TFSimContext Double Context Calculate the TF-IDF similarity between the C.article and 
Q.sourceText (In practice, we just treat all words’ IDF value as 
1). 

TFSimRankContext Double Context 1

Rank of C. TFsimRankContext in CSet
 

AllWordsInSource {0,1} Context Whether all words in C.title exist in Q.sourceText 
QueryInArticle {0,1} Context Whether Q.textRetrievalSet contains C 
NENumMatch Int Context Calculate the number of same name entity between 

C.nameEntitySet and Q.nameEntitySet 
NENumMissed Int Context Calculate the number of the missing name entities in 

Q.nameEntitySet compared to C.nameEntitySet. 
CountryInTextMatchPer double Context  num  c exist  in  Q.sourceText   c∈ Q .countrySet ∩C .countrySet  

 𝑛𝑢𝑚  𝑐  𝑒𝑥𝑖𝑠𝑡  𝑖𝑛  𝑄.𝑠𝑜𝑢𝑟𝑐𝑒𝑇𝑒𝑥𝑡  𝑐∈𝑄 .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑆𝑒𝑡
  

TypeMatch {0,1} Other Whether the C.type equals to Q.type, if C.type is UNK, then the 
value is also 1, same as the situation of equal. 

 

Here, C represents a candidate in CSet. C.title 

represents the title of corresponding Wikipedia 

article of C. C.titleExpand represents the union 

set of the redirect set of C and the anchor text set 

of C. C.article represents the Wikipedia article of 

C. C.nameEntitySet represents the set of all 

name entity in C.article labeled by Stanford NER. 

C.type would be one in set {PER, ORG, GPE, 

UNK}, and is labeled already in the Knowledge 

Base. Q.type should be labeled by us. To label it, 

we simply use Stanford NER to label 

Q.nameString and Q.nameString in Q.sourceText, 

and then combine the result with linear weight 

sum method.  

   All the features list in the table can be di-

vided into 3 groups: Surface, Context and Other. 

   The features in Surface group are used to 

measure the similarity between query string and 

candidate entity’s name string.  

   The features in Context group are used to 

measure the context relativity between query and 

the candidate entity. TF-IDF is a raw way to 

measure this. The name entity co-occurrence also 

can reflect the relativity. By analysis of the text, 

we find that country is a quit significant entity 

typ, so we add it to the feature set. 

  The KBP Track already defines 3 types of 

queries, so we design TypeMatch feature to 

make use of the information.  

We trained 3 ranking models for different 

Q.type, in order to reflect different importance of 

features in different type queries. 

 

We normalized the features into [0, 1] before 

training the ranking models to avoid noise 

caused by large Integer value or small double 

value. 
 

2.1.4.1.2、Using 2-class SVM to validate the 

final answer 

   To train a 2-class SVM to validate the final 

answer, we select training samples to construct a 

training set as following: 

a) For all the 416 queries, use the ranking 

models trained as previous section to select top 1 

entity from their corresponding CSet. This would 

be training samples in the training set. 



b) Due to whether the entity is the target 

entity of the query, label the sample as positive 

(for yes) or negative. 

Same as the ranking step, we trained 3 SVM 

classifiers due to Q.type for the same purpose. 

We adopt features almost like features used in 

ranking step, but do not normalize the feature 

values. 

 

2.1.4.2 Bayes Method 

We also tried Bayes method to rank candidate 

and select the final answer. All surface features 

together with TFSimContext, TFSimRankCon-

text, QueryInArticle and TypeMatch are used as 

attributes in Bayes model. All features having 

continuous value are discretized. Assuming 

thatA1,A2, … ,An  are n attributes, a candidate d 

is represented by a vector  a1, a2 ,… , an  where 

ai is the value of Ai. Let C = {“linking”, “unlink-

ing”} represent the class variable and c represent 

the value that C takes. Our problem is defined as 

follows: 

g d = arg maxc p c|a1 , a2 ,… , an .             (1) 

 

According to Bayes’ theorem,  

p c|a1 , a2 ,… , an ~p c p a1, a2 ,… , an|c   (2) 

 

Thus, 

   g d = arg maxc p c p a1, a2, … , an|c       (3) 

 

There are a variety of methods to 

imate  p a1 , a2 ,… , an|c . For example, in naïve 

Bayes, all attributes are assumed independent 

given the class; that is, 

   p a1, a2,… , an|c =  p ai c 
n
i=1         (4) 

 

Naïve Bayes is easy to estimate, but the as-

sumption of independency is too strong for most 

of the real-world applications. To address this 

problem, paper [2] proposed a Hidden Naïve 

Bayes (HNB) model which to some extents cap-

tures the dependency among attributes. Formally, 

the conditional distribution can be represented as 

follows. 

   P A1, A2, … , An C =   P Ai pai , C n
i=1      (5) 

Where pai  denotes the parents of Ai  from 

attribute nodes.  

If every pai is empty, then (5) becomes Naïve 

Bayes. For HNB, the distribution P Ai pai , C  is 

approximated using the weighted one-

dependence estimators as follows. 

   P Ai pai , C  ≈   Wij × P Ai Aj , C n
j=1,j≠i   (6) 

Where Wij  is set as follows. 

   Wij =
Ip  A i ;A j |C  

 Ip  A i ,A j |C n
j=1,j≠i

                  (7) 

Ip X; Y Z  is conditional mutual information 

defined as  

   Ip X; Y Z =  p x, y, z log
p x,y z 

p x z p y z 
 x,y,z (8) 

Given a candidates set D, we sort all candi-

dates by their posterior probability given by 

HNB. If g top1 =”linking”, then the top1 candi-

date is returned, otherwise NULL is returned. 

2. 1.5 Results 

 

Table 2. Entity Linking Task Evaluation Results 

Submits P P(Non-

NIL) 

P (NIL) 

QUANTA1 

(ListNet + SVM) 

0.8033 0.7725 0.8264 

QUANTA2 

(ListNet + SVM) 

(no country fea-

ture) 

0.8012 0.7707 0.8241 

QUANTA3 0.7871 0.6478 0.8919 

 

Although we didn’t get the highest precision for 

all queries, QUANTA1 got the highest precision 

for Non-NIL queries. This shows that the learn-

ing to rank method can achieve quite good per-

formance for ranking candidates. It also shows 

that the training set for 2-Class classifier has dif-

ferent distributions from the real test queries (In 

training set, there are more positive values than 

negative values; the portion is about 2: 1. But the 

portion is about 1: 1.5 in real test queries). So 

QUANTA1 performs not well at NIL value que-

ries. When the training set for QUANTA3 con-

tains too many negative samples, it achieves the 

highest precision of NIL queries, but failed to 

recognize the correct answers. 

2.2 KBP Slot Filling Task 

2.2.1 Preprocess 

In preprocessing phase, we collect training sen-

tences for each slot. For all the slots which have 

value, we use the slot value together with the 

corresponding entity name as a query. For each 

sentence in each document returned, if it contains 

both entity name and slot value, the sentence is 

collected into training set. Finally, the entity 

name is replaced by “<target>” and the slot value 

is replaced by “<value>” in each training sen-

tence. 

2.2.2 Pattern Generation 



In this phase, we first generate candidate patterns 

from training sentences and then filter the ones 

of low quality. 

   Candidate Patterns are generated as follows. 

For each training sentence, we only retain words 

between “<target>” and “<value>”. Then, a 

Stanford POS tagger is used to tag the sentence 

and all nouns, verbs, adjectives, adverbs and 

numerals are replaced by their POS tags. 

   In order to remove the patterns of low quality, 

we filter all the candidate patterns which do not 

contain verb, preposition, colon, parenthesis, 

quote mark and “’s”. Then, the top n (n depends 

on slots) most frequent patterns are selected as 

patterns for each slots.  

2.2.3 Answer Extraction & Remove Redun-

dant Answers 

This module is divided into two phases: extract 

candidate answers by patterns from documents 

and validate each candidate by knowledge base 

or redundancy-based method. 

In Candidate Extraction phase, we first use the 

expanded entity name as query and collect the 

top 700 most relevant documents returned by 

local search engine. Then each document is seg-

mented into sentences and tagged. For each sen-

tence, a regular-expression matcher built from 

corresponding patterns is used to extract candi-

dates. As mentioned in 2.2.2, each pattern is a 

sequence of words and POS tags which starts 

(ends) with “<target>” or ”<value>”. A word can 

match with the same word with any POS tags 

and a POS tag can match any words with the 

same POS tag. The “<target>” mark is replaced 

by the corresponding entity name. For those slot 

expecting noun phrase, we replace “<value>” by 

proper noun sequence of any length. For those 

concerned with time or number “<value>” is re-

placed by corresponding regular-expression. Due 

to sparseness, patterns are not used to extract 

websites. We collect website candidate as long as 

it appears in sentence containing entity name. 

In Answer Validation phase, we employ different 

strategies for different slots. For single-valued 

slots, we select the most frequent candidate as 

the final answer. For alternate_name slot, we use 

wiki redirection page to find more candidate an-

swer to candidate set. For slots concerned with 

person or organization, a Stanford NER is em-

ployed to tag candidates. If all words in a candi-

date are tagged with right name entity type, then 

it is retained. For slots expecting location names 

such as org:headquaters, all candidates are fil-

tered by city list and country list. Only the candi-

dates appeared in one of the lists are retained. 

For the rest, we only remove lexically duplicate 

candidates. 

2.2.4 Additional Answers From Knowledge 

Base and Wikipedia 

If the queries have target entities in Wikipedia, 

we also try to extract answers from Wikipedia.  

First, we search the query’s corresponding entity 

in the Knowledge Base or latest Wikipedia; if we 

can get the right entity from Knowledge Base or 

Wikipedia, then we just extract answers from 

these articles and find support document in news 

corpus (We deal with all the PER and GPE que-

ries).  

Second, we use some pattern to extract answers 

from Wikipedia articles. The articles are better 

formed than news text, so the pattern is clear and 

the answer extraction is much easier. 

Third, we find supporting document for these 

answers, based on co-occurrence and words oc-

curring between the answers and query’s entity 

name string. If we can’t find the supporting doc-

ument for the answer, we just drop the answer. 

Finally, same as we do in Answer Validation 

phase, we remove the duplicate answers. 

2.2.5、Results  

Table 3. Slot Filling Task Evaluation Results 

 F-Score Recall Precision 

All 0.748   

Single Slots 0.784(Accuracy) 

List Slots 0.712   

Single Slots(Non-

NIL) 

 0.436 0.279 

Single Slots(NIL)  0.847 0.943 

List Slots(Non-

NIL) 

0.251   

List Slots(NIL)  0.873 0.878 

 

Since no submissions are better than the All NIL 

Baseline at SF-Score values as shown in Table 3, 

we consider that as following reasons: 

a) There is little information about those 

entities mentioned in news corpus but not ex-

tracted as entities’ facts. So it’s hard to retrieve 

more useful information. 

b) The evaluation methods assign equally 

to both NIL value slots and Non-NIL value slots, 

so if the system tried to get high SF-Score, it 

need to submit Non-NIL value only if it had high 

confidence about the value. But most submitted 

teams didn’t pay attention to this. 

 



Table 4. Question Taxonomy from UIUC 
(Note: the categories with underline are selected as factoid question taxonomies to identify entity) 

Coarse Fine 

ABBR abbreviation, expression 

DESC definition, description, manner, reason 

ENTY animal, body, color, creation, currency, disease/medicine, 
event, food, instrument, language, letter, other, plant, prod-
uct, religion, sport, substance, symbol, technique, term, ve-
hicle, word 

HUM description, group, individual, title 
LOC city, country, mountain, other, state 
NUM code, count, date, distance, money, order, other, percent, pe-

riod, speed, temperature, size, weight 
 

Although we didn’t achieve high SF-Score, we 

got a relatively good F-Score at List Slots (Non-

Nil). The pattern based system is useful for re-

trieving list value type information. 

3 RTE Track  

Given two text fragments 'Text' and 'Hypothesis', 

Textual Entailment Recognition is the task of 

determining whether the meaning of the Hypo-

thesis is entailed (can be inferred) from the Text. 

This year we focus on investigating the textual 

representation in the RTE task. We believe that 

the text can be divided into two types of seman-

tic units: One is what objects the text referred; 

the other is the description to the object: such as 

the characteristic of object and relation with oth-

er objects. In this year’s paper, we use Semantic 

Element to represent this semantic unit. Two 

types of semantic elements are defined: Entity 

Semantic Element refers to the object, and Rela-

tion Semantic Element describes the relations 

among these objects. In the following sections, 

we will introduce how to construct SEGraph 

based on Entity Element (short for Entity Seman-

tic Element) and Relation Element (short for Re-

lation Semantic Element), and we also discuss 

how to recognize textual entailment based on 

SEGraph. 

3.1 SEGraph Construction 

The SEGraph is constructed with Entity Ele-

ment as node and Relation Element as edge. We 

first show you how to identify the Entity Ele-

ments from text and then describe how to identi-

fy Relation Elements and construct SEGraph 

based on the dependency parser tree. 

 

3.1.1 Entity Element Identification 

We consider Entity Element as the object de-

scribed in the text. In this section, we will show 

you how to identify Entity Element. The most 

intuitive way is to use Named Entity Recognition 

tools, such as Stanford NER. However, the Stan-

ford NER methods only identify three or four 

types of entities. It is not enough in the SEGraph 

construction.  

We propose to employ factoid question tax-

onomy to identify Entity Elements. The factoid 

questions seek simple entities as answers, like 

“What is Hawaii's state flower?” and “What is 

the length of the coastline of the state of Alaska?” 

We define Entity Semantic Element as the entity, 

which can be used as an answer for factoid ques-

tion. We use question taxonomy to recognize 

these entities. Question taxonomy defines the 

expected semantic categories of answers to the 

questions. The following table shows general 

question classification taxonomy developed by 

UIUC [4]. It contains 6 coarse types and 50 fine 

types. We select about thirty factoid categories, 

denoted with underline as shown in the following 

table. The answers to these questions can be rec-

ognized as Entity Elements. 

We then propose four methods to detect if an 

entity belongs to these taxonomies: 

 

1) WordNet based Identification 

For some categories, we can find a corres-

ponding node in WordNet, which can represent 

the semantic meaning of this category. For ex-

ample, “animal” in WordNet is the correspond-

ing node for category “animal”, “monetary unit” 

is the corresponding node for category “money”. 

For a new word, if its hypernyms contain the 

category corresponding node, this word belongs 

to the corresponding category, and can be deter-

mined as an Entity Element. This WordNet based 



method is suitable for most categories of ENTI-

TY and LOCATION. 

 

2) Wikipedia based Identification 

For some entities, especially for new concept, 

it may be not contained in WordNet, such as 

entity “MV Princess of the Stars”. Wikipedia is a 

good expansion for WordNet. Similar as Word-

Net based method, we also find some corres-

ponding node for factoid category in Wikipedia. 

We find ships, car associated category nodes in 

Wikipedia for “vehicle” category. 

 

3) Pattern based Identification 

For number and date categories, we construct 

patterns for entity identification. We use regular 

expressions to extract the number and date Entity 

Element. 

 

4) NER based Identification 

We also use Named Entity Recognition Tools 

to identify Entity Element. We employ Stanford 

NER tools to extract named entities. It can rec-

ognize four categories: Location, Organization, 

Person and Misc. 

 

Besides above four methods, we also assume 

that if the noun word appears in both Text and 

Hypothesis, we also recognize this noun word as 

Entity Element. We also use the Entity Element 

integration strategies to reduce the number of 

entities, such as if several successive Entity Ele-

ments appear in both Text and Hypothesis, we 

recognize their combination as one Entity Ele-

ment. 

3.1.2 Relation Element Identification 

After identifying Entity Elements, we employ 

dependency tree to identify Relation Element. 

We extract the shortest path between two Entity 

Elements in the dependency tree as Relation 

Element. 

3.1.3 SEGraph Construction 

After Recognizing both Entity Element and 

Relation Element, we set Entity Element as node 

and Relation Element as edge to construct SE-

Graph. For example, given the T-H pair 998 in 

RTE 4 test set, the Text is “Preem Palver is a 

fictional character, part of the Foundation Series 

by the sci-fi writer Isaac Asimov.” And Hypo-

thesis is “Isaac Asimov invented Preem Palver.” 

Its corresponding SEGraph is shown in Figure 2. 

 

 
Fig. 2 SEGraph Example 

 

We need to note that here we just consider 

Entity Element and Relation Element. However, 

there is still some Hypothesis, which may con-

tain only one Entity Element, or contain Entity 

Element and Relation Element, but encounter 

characteristic mismatch problem. We analyze the 

“No Entailment” T-H pairs for RTE4 test set. We 

find that about 60% “No Entailment” comes 

from relation mismatch, and 20% for entity mis-

match, 10% for characteristic mismatch, 10% for 

other mismatch. In this year, we only focus on 

handling the major problem: entity mismatch and 

relation mismatch, and for simplicity, we just 

consider the major special relation, which con-

tains verb in its path. For other types, we use our 

baseline and post-check processing to deal with, 

which will be discussed in the framework section. 

3.2 Textual Entailment Recognition 

with SEGraph  

After constructing SEGraph for Text and Hypo-

thesis, we will recognize textual entailment with 

these two SEGraphs. By analysis of the text, we 

find that the degree of variation is different for 

Entity Element and Relation Element. The enti-

ties have few variations, and these variations can 

be easily recognized by lexicons. For example, if 

we want to describe “computer”, limited number 

of expressions can be used, such as “computing 

device”, “computing machine”, and these ex-

pressions can be found with WordNet. However, 

the relations may be described in many ways. If I 

want to express “I like you”, various expressions 

can be used. Therefore, we employ two different 

strategies to detect the Entity Element Entailment, 

and Relation Element Entailment. 

3.2.1 Entity Entailment Recognition 

We use knowledge based methods to detect 

entity entailment. The knowledge resource con-

tains WordNet, Wikipedia and other knowledge 



base. For all Entity Element in Hypothesis, sev-

eral strategies are used to detect entailment:  

1) Determine if all the original entity words 

appear in Text 

2) The edit distance is used to determine 

entity presence in Text. If the edit distance is 

lower than a threshold, we say the entities match 

each other. 

3) Wordnet relations, such as synonym, 

hypernym, hyponym, are used to expand the 

entity to determine entity entailment. 

4) Wikipedia is also employed to detect the 

entity entailment.  Wikipedia redirection set con-

tains all the redirection information. Since the 

synonymous entities are redirected into one enti-

ty. This set can be used as a synonymous entity 

set. 

Besides the above four strategies, we also use 

the entity category information.  When we identi-

fy entities based on factoid taxonomy, each enti-

ty is assigned a category. We also compare the 

category match, especially for date and other 

number. 

If there is one Entity Element mismatch in 

Hypothesis, we take this T-H pair as “Entity Not 

Entailment”. 

3.2.2 Relation Entailment Recognition 

For Relation Entailment detection, most of 

previous studies use unsupervised methods, such 

as DIRT and TEASE. While here we try to in-

vestigate supervised methods to detect relation 

entailment. We first show you the constructed 

training set, and then describe the employed fea-

tures and machine learning methods. 

We use RTE 3 training set, RTE 3 test set and 

RTE 4 test set as our training set. There are total-

ly 2600 pairs, where RTE 3 contains 1600 pairs 

with 800 for training and test set, and RTE 4 

contains 1000 pairs. For false entailment T-H 

pairs, we manually label the false relation en-

tailment: we first determine whether this entail-

ment is caused by relation mismatch; if so, we 

also denote which two entities cause the false 

entailment. For example, for the following false 

entailment pair, we label the relation between 

entity “Annan” and entity “IECI” as false rela-

tion entailment. 

 
For true entailment T-H pairs, we define all the 

relation entailment is true. That is to say, every 

relation between two entities in Hypothesis can 

be entailed by the corresponding relation in Text. 

We use the extracted true entailment relations 

and manually labeled false entailment relations 

to construct training set. Since the number of true 

entailment relation is much larger than the num-

ber of false entailment relation, we use all the 

false relation entailment from RTE3 and RTE4 

as false relation entailment set, and just use the 

true relation entailment from RTE4 as true en-

tailment set. This can solve the imbalance prob-

lem. For simplicity, we only consider the relation 

with verb in its path. 

We then design our framework for relation en-

tailment classification. We employ a lot of fea-

tures, not only use T-H relation intra similarity, 

but also investigate the impact of the cross simi-

larity among T-H relation pairs. For T-H intra-

similarity features, they are divided into two 

types: sentence-level features and path-level fea-

tures. Sentence-level features denote the similari-

ty feature from the two sentences, which contain 

T, H Relation Elements. The path-level features 

denote the shortest path similarity from depen-

dency tree. Both are shown in Table 5. 

Table 5. Features used in relation entailment detection 

 Feature type Feature Description 

Sentence-Level Features 

LLM-similarity double Lexical similarity [3] 

Entity-similarity double  Named Entity similarity [3] 

Path-Level Features 

Path-LLM-similarity double Lexical similarity in the path 

Path-Relation-similarity double The path similarity 

Verb-synonym {0,1} Contain synonym for verb? 

Verb-antonym {0,1} Containing antonym for verb? 

V-N-derivation {0,1} Containing Noun-Verb derivation rela-

tionship using WordNet? 



 

 
Fig. 3 SEGraph based RTE Framework 

 
We use Weka tool [5] as our classifier. We al-

so test the cross-pair similarity features, but it 

didn’t achieve a better result. This year only fo-

cuses on intra-pair similarity. We plan to design 

more elaborate features for relation entailment as 

our future works. 

If there is one false Entity Element entailment, 

or one false Relation Element entailment, we will 

consider this T-H pair as false entailment. 

3.3 SEGraph based RTE Framework 

Based on our proposed SEGraph method, we 

design our RTE framework, as shown in the Fig-

ure 3. We first preprocess all test T-H pairs. It 

contains dependency parsing, Named Entity 

Recognition, co-reference Resolution, and 

WordNet Sense Disambiguation. Then the fol-

lowing three models with dark green color are 

related with our SEGraph framework: the “Entity 

& Relation Element Extraction” module identi-

fies two types of our defined Semantic Elements 

with the methods proposed in Section 3.1; the 

“Entity Entailment Detection” module detect 

entity entailment with the knowledge based me-

thods proposed in Section 3.2.1; the “Relation 

Entailment Detection” module detects relation 

entailment with the methods proposed in Section 

3.2.2.  For simplicity, in this year, we only con-

sider the relation with verb in its path. For the T-

H pair without this path, we use our baseline me-

thod to process it. The baseline mainly use Weka 

classifier with lexical similarity features and Ent-

ity similarity features to classify T-H pair as en-

tailment or no entailment, which has been de-

scribed in our last year’s notepaper[3]. Finally, 

we also use post-check processing methods to 

improve the performance. The post-check 

processing use some patterns to detect mismatch. 

In this year task, we use Negation rules, Subjunc-

tive rules, Quantifier Modification rules, which 

can be found in our last year’s notepaper[3]. We 

also collect some verb, which contains negative 

meaning, like “reject”, “refuse”, and use these 

verb to construct mismatch rules. 

3.4 Submissions and Evaluations 

We submit two results. The first submission 

QUANTA1 employs the whole procedure de-

scribed in the previous section. QUANTA2 re-

moves the “Relation Entailment Detection” 

module. We just submit results for two-way task. 

The evaluations are shown on Table 6. 

From the table, we can see that our proposed me-

thods are very effective. But we also find it is a 

very challenging task to recognize relation en-

tailment. In the future work, we will focus on 

improving the relation entailment detection. 

4 Conclusions 

In this paper, we describe our systems for the 

KBP and RTE tracks. For the KBP track, we 

propose to use a Listwise learning to rank model 

and Augmenting Naïve Bayes model for Entity 

Linking task, and use learned patterns to solve 

Slot Filling task.  For RTE track, we propose to 

use SEGraph method. The idea of SEGraph is 

that we should use different strategies to recog-

nize entity entailment and relation entailment. 

From evaluation results, we can see that both 

KBP and RTE systems achieve competitive re-

sults. We find that “Learning to Rank” strategy is 

really effective for Entity Linking task, and rela-

tion entailment recognition is really a challeng-

ing problem for RTE task. 



 

Table 6. RTE Task Evaluation Results 

 QUANTA1 QUANTA2 Best Median Worst 

Accuracy 0.67 0.6633 0.7350 0.6117 0.5000 

Avg. precision 0.7011 0.6755    
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