
THU QUANTA at TAC 2009 KBP and RTE Track

Fangtao Li, Zhicheng Zheng, Fan Bu, Yang Tang, Xiaoyan Zhu, Minlie Huang

State Key Laboratory on Intelligent Technology and Systems,

Tsinghua National Laboratory of Intelligent Technology and Systems (LITS),

Department of Computer Science and Technology,

Tsinghua University, Beijing, 100084, China
Fangtao06@gmail.com; zxy-dcs@tsinghua.edu.cn;

Abstract

This paper describes the systems of THU

QUANTA in Text Analysis Conference (TAC)

2009. We participated in the Knowledge Base

Population (KBP) track, and the Recognizing

Textual Entailment (RTE) track. For the KBP

track, we investigate two ranking strategies for

Entity Linking task. We employ a Listwise

“Learning to Rank” model and Augmenting

Naïve Bayes model to rank the candidate. We

try to use learned patterns to solve the Slot

Filling task. For the RTE track, we propose an

interesting method, SEGraph (Semantic Ele-

ments based Graph). This method divides the

Hypothesis and Text into two types of seman-

tic elements: Entity Semantic Element and Re-

lation Semantic Element. The SEGraph is then

constructed, with Entity Elements as nodes,

and Relation Elements as edges for both Text

and Hypothesis. Finally we recognize the tex-

tual entailment based on the SEGraph of Text

and SEGraph of Hypothesis. The evaluation

results show that our proposed two frame-

works are very effective for KBP and RTE

tasks, respectively.

1 Introduction

In this year’s Text Analysis Conference, we par-

ticipated in two tracks: the Knowledge Base

Population (KBP) track and the Recognizing

Textual Entailment (RTE) track. This paper re-

ports on our developed systems for the two

tracks.

This is the first year for KBP track. It is designed

to discover information about named entity and

to incorporate this information in a knowledge

source. It contains two subtasks: Entity Linking

task that links names to entities in the Know-

ledge Base, and Slot Filling task that extracts

related attributes about entities from text. Most

of previous studies focus on using similarity or

classification based strategies to solve Entity

Linking task. In this paper, we investigate two

types of “Learning to Rank” strategies. We em-

ploy a Listwise learning to rank model and

Augmenting Naïve Bayes model to rank the enti-

ty candidates. For Slot Filling task, we try to use

learned patterns to extract the attributes. We also

employ Knowledge Base information and Wiki-

pedia to improve the performance. From the

evaluation results, we can see that our proposed

methods are effective for these two tasks.

In this year’s RTE task, we propose an interest-

ing method, called SEGraph (Semantic Elements

based Graph), for recognizing textual entailment.

This method divides the Hypothesis and Text

into two types of semantic elements: Entity Se-

mantic Element and Relation Semantic Element,

where Entity Semantic Element describes the

entity referred in the text, and Relation Semantic

Element describes the relations between the Enti-

ty Semantic Elements. We then construct SE-

Graph, with Entity Elements as nodes, and Rela-

tion Elements as edges for both Text and Hypo-

thesis. We recognize the textual entailment based

on the SEGraph of Text and SEGraph of Hypo-

thesis. Due to different degree of variations for

entity and relation, we employ different strate-

gies to detect the Entity Element Entailment and

Relation Element Entailment. The Entity Ele-

ment Entailment is recognized with knowledge

based method, and Relation Element Entailment

is determined by supervised classification me-

thod. In this year’s RTE track, the best result we

achieved is 67.0% in accuracy and 70.1% in av-

erage precision.

2 KBP Track

The aim of KBP Track is to automatically in-

crease the existed Knowledge Base, such as Wi-

kipedia. To achieve the purpose, there are 2 re-

lated tasks in the Track: Entity Linking, where

names must be aligned to entities in the KB, and

Knowledge

Base

Source

Corpus

Indexing Indexing

Query

Query

Correction

Preprocessing

Query Expansion
Candidate

Generation

Candidates Ranking & Validation

Final

Answer

Fig. 1, Framework for Entity Linking task

Slot Filling, which involves mining information

about entities from text.

2.1 KBP Entity Linking

In the task, we need to process a list of queries.

Each query contains an entity’s name string and

a reference to disambiguating text from news

document set. We should return the correspond-

ing Entity ID which represents an Entity in the

Knowledge Base if the Entity is in the Know-

ledge Base or return NIL if the Entity isn’t in the

Knowledge Base. We dealt with the task as the

framework shown in Figure 1.

2.1.1 Preprocessing

 In the first modules, we have to preprocess

the corpus data and the query data.

 We get two corpus from the KBP Track: The

Knowledge Base Corpus (formed by some se-

lected articles from Wikipedia), and The Source

Corpus (formed by news articles, used in disam-

biguation).

 To deal with the task, we index the 2 corpus.

For the KB Corpus, we build indexes on 2 fields:

the title of the article and the text of the article.

For the Source Corpus, we simply build index on

the text of the news articles.

 Although most of the queries’ name strings

are well formed, there are still some spelling er-

rors. So we try to correct the spelling errors. We

used the query correction function supplied by

search engines like Google, AltaVista etc. We

input the query’s name string in the search en-

gine, and then the search engine will return a cor-

rected spelling of the name string if the original

one was wrong.

2.1.2 Query expansion

 It’s obviously that is not sufficient if we only

use the query’s name string as our query to

search in Knowledge Base. Some query strings

like “MND” (short for Ministry of National De-

fense or others), it’s quite hard to retrieve the

correct entity from Knowledge Base without any

expansion. Therefore, we use 3 ways to expand

the query.

(a) Expand the query from the source text giv-

en in the query. This is used for expanding those

query strings which are abbreviations. If the

query contains only one word which starts and

ends with both capital letters, we would look for

its expansion form in the source text. We define

the expansion form of the original name string is:

there are continuous k words; all words start with

capital letters or are stop words; if we concate-

nate the k words’ first letter (with or without the

stop word), it will form the original word. Some-

times we may find the expansion form of the

name string in the source text. If the expansion

form was found, then we use this to replace the

original name string. In order to express easily

and clearly, we use Q to represent a query need

to be dealt with, Q.nameString represents the

name string of Q, Q.sourceText represents the

source text of Q, and Q.querySet represents the

queries used to retrieve entity in Knowledge

Base. Q.querySet at least contains one query:

Q.nameString.

 (b) Only a name string is not sufficient even

if we process the step (a). Sometimes we can’t

get the expansion form of an abbreviated name

string in the source text because of the abbre-

viated form is well known, or sometimes the

query is a nick name such as “Gus Dur” (nick

name for Abdurrahman Wahid). Wikipedia use

the redirect link to avoid same entity occurring

many times due to different queries. So we col-

lected the redirect links of English Wikipedia

(All the articles before May, 2009), and use these

to form additional query. For a given

Q.nameString, if there is a redirect link that redi-

rects Q.nameString to target article of Wikipedia,

we add the target article’s title string to the query

set of Q.

 (c) The articles in Wikipedia contain a lot of

cross-over links. The anchor text of the links

supply us some more information. For a given

Q.nameString, if there is an anchor text of cross-

over link equals with Q.nameString, then we add

the target article’s title string to the query set of

Q. To filter out the noises, we select those anchor

text and cross-over link pairs occur at least twice

and only add the top 5.

 The mainly function of the module is to gen-

erate the Q.querySet.

2.1.3 Candidates Generation

 In the module, we have got an expanded

query set. To generate candidates from the

Knowledge Base, we search the Knowledge Base

with these queries.

 For each query string in the query set

Q.querySet, we treat all these words in the string

as “or”-relationship, and then retrieve top N (N

set to be 20 in practice) in Knowledge Base Cor-

pus on the field of title. Now we get a candidate

set called CSet.

 We also use the Q.nameString to retrieve

entities in the Knowledge Base on the field of

text, we treat the words in the string as “and”-

relationship, and restrict them to occur together

with a gap no more than k (k set to be 2 in prac-

tice) words. We also add the top N entities to the

CSet, and define Q.textRetrievalSet as the all

entities retrieved here.

 The mainly function of the module is to gen-

erate the CSet.

2.1.4 Ranking Candidates & Final Answer

Selection

 All of our three submits are the same in the

first two modules, but they differ in this module.

We tried two different methods to rank the can-

didates and validate the final answer.

 We use the sample corpus (version 2) given

by TAC committee and the training set supplied

by Paul McNamee.

2.1.4.1 List wise Learning to rank & 2-class

SVM

 After generating CSet, we need to output the

final answer. An intuitive method is to train a

classifier to classify each candidate into 2-class

(whether is the target entity of the query). If

more than one candidate is classified as target

entity, then pick the one with highest probability

as final answer. But here it would meet a prob-

lem that is how to balance the 2-class training

samples’ proportion in the training set. For each

query Q, we may get a CSet contains a lot of

candidates, most of which are negative samples

and at most one will be positive sample. So we

change the strategy: we first rank the candidates

in the CSet, and then use a 2-class classifier to

judge whether the top 1 entity is target entity of

the query Q.

2.1.4.1.1 List wise Learning to rank —— ListNet

Obviously, we can extract a lot of features from

the candidates in CSet, but how we can combine

all the features to rank the candidates. We adopt

ListNet, an algorism of learning to rank posted

by Zhe Cao etc in [1].

 There are totally 416 (119 + 297) queries in the

training set, and 285(75+210) of them have the

target entity in the Knowledge Base. We use

these 285 queries as training set to train a rank

model to rank the CSet. We adopt the ListNet

with k = 1(same as stated in [1], and it fit our

problem quite well) and also use the linear Neur-

al Network model in the ListNet.

 The features used for ranking are list in Table 1.

Table 1. Features used in our ranking mode

Name of Feature Value
Type

Feature
Type

Definition for Feature

StrSimSurface Double Surface Maxs∈C.titleExpand Similarity s, Q. nameString

ExactEqualSurface {0,1} Surface Whether there is a string s in C.titleExpand, and s equals with
Q.nameString.

ContainsQuery {0,1} Surface Whether there is a string s in C.titleExpand and s contains
Q.nameString.

SubstringInQuery {0,1} Surface Whether there is a string s in C.titleExpand and s was a sub-
string of Q.nameString.

EqualWordNumSurface Int Surface For each string s in C.titleExpand, calculate how many words
are the same between s and Q.nameString, and the maximum
value would be the value of this feature.

MissWordNumSurface Int Surface For each string s in C.titleExpand, calculate how many words
are the different between s and Q.nameString, and the mini-
mum value would be the value of this feature.

TFSimContext Double Context Calculate the TF-IDF similarity between the C.article and
Q.sourceText (In practice, we just treat all words’ IDF value as
1).

TFSimRankContext Double Context 1

Rank of C. TFsimRankContext in CSet

AllWordsInSource {0,1} Context Whether all words in C.title exist in Q.sourceText
QueryInArticle {0,1} Context Whether Q.textRetrievalSet contains C
NENumMatch Int Context Calculate the number of same name entity between

C.nameEntitySet and Q.nameEntitySet
NENumMissed Int Context Calculate the number of the missing name entities in

Q.nameEntitySet compared to C.nameEntitySet.
CountryInTextMatchPer double Context num c exist in Q.sourceText c∈ Q .countrySet ∩C .countrySet

 𝑛𝑢𝑚 𝑐 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛 𝑄.𝑠𝑜𝑢𝑟𝑐𝑒𝑇𝑒𝑥𝑡 𝑐∈𝑄 .𝑐𝑜𝑢𝑛𝑡𝑟𝑦𝑆𝑒𝑡

TypeMatch {0,1} Other Whether the C.type equals to Q.type, if C.type is UNK, then the
value is also 1, same as the situation of equal.

Here, C represents a candidate in CSet. C.title

represents the title of corresponding Wikipedia

article of C. C.titleExpand represents the union

set of the redirect set of C and the anchor text set

of C. C.article represents the Wikipedia article of

C. C.nameEntitySet represents the set of all

name entity in C.article labeled by Stanford NER.

C.type would be one in set {PER, ORG, GPE,

UNK}, and is labeled already in the Knowledge

Base. Q.type should be labeled by us. To label it,

we simply use Stanford NER to label

Q.nameString and Q.nameString in Q.sourceText,

and then combine the result with linear weight

sum method.

 All the features list in the table can be di-

vided into 3 groups: Surface, Context and Other.

 The features in Surface group are used to

measure the similarity between query string and

candidate entity’s name string.

 The features in Context group are used to

measure the context relativity between query and

the candidate entity. TF-IDF is a raw way to

measure this. The name entity co-occurrence also

can reflect the relativity. By analysis of the text,

we find that country is a quit significant entity

typ, so we add it to the feature set.

 The KBP Track already defines 3 types of

queries, so we design TypeMatch feature to

make use of the information.

We trained 3 ranking models for different

Q.type, in order to reflect different importance of

features in different type queries.

We normalized the features into [0, 1] before

training the ranking models to avoid noise

caused by large Integer value or small double

value.

2.1.4.1.2、Using 2-class SVM to validate the

final answer

 To train a 2-class SVM to validate the final

answer, we select training samples to construct a

training set as following:

a) For all the 416 queries, use the ranking

models trained as previous section to select top 1

entity from their corresponding CSet. This would

be training samples in the training set.

b) Due to whether the entity is the target

entity of the query, label the sample as positive

(for yes) or negative.

Same as the ranking step, we trained 3 SVM

classifiers due to Q.type for the same purpose.

We adopt features almost like features used in

ranking step, but do not normalize the feature

values.

2.1.4.2 Bayes Method

We also tried Bayes method to rank candidate

and select the final answer. All surface features

together with TFSimContext, TFSimRankCon-

text, QueryInArticle and TypeMatch are used as

attributes in Bayes model. All features having

continuous value are discretized. Assuming

thatA1,A2, … ,An are n attributes, a candidate d

is represented by a vector a1, a2 ,… , an where

ai is the value of Ai. Let C = {“linking”, “unlink-

ing”} represent the class variable and c represent

the value that C takes. Our problem is defined as

follows:

g d = arg maxc p c|a1 , a2 ,… , an . (1)

According to Bayes’ theorem,

p c|a1 , a2 ,… , an ~p c p a1, a2 ,… , an|c (2)

Thus,

 g d = arg maxc p c p a1, a2, … , an|c (3)

There are a variety of methods to

imate p a1 , a2 ,… , an|c . For example, in naïve

Bayes, all attributes are assumed independent

given the class; that is,

 p a1, a2,… , an|c = p ai c
n
i=1 (4)

Naïve Bayes is easy to estimate, but the as-

sumption of independency is too strong for most

of the real-world applications. To address this

problem, paper [2] proposed a Hidden Naïve

Bayes (HNB) model which to some extents cap-

tures the dependency among attributes. Formally,

the conditional distribution can be represented as

follows.

 P A1, A2, … , An C = P Ai pai , C n
i=1 (5)

Where pai denotes the parents of Ai from

attribute nodes.

If every pai is empty, then (5) becomes Naïve

Bayes. For HNB, the distribution P Ai pai , C is

approximated using the weighted one-

dependence estimators as follows.

 P Ai pai , C ≈ Wij × P Ai Aj , C n
j=1,j≠i (6)

Where Wij is set as follows.

 Wij =
Ip A i ;A j |C

 Ip A i ,A j |C n
j=1,j≠i

 (7)

Ip X; Y Z is conditional mutual information

defined as

 Ip X; Y Z = p x, y, z log
p x,y z

p x z p y z
 x,y,z (8)

Given a candidates set D, we sort all candi-

dates by their posterior probability given by

HNB. If g top1 =”linking”, then the top1 candi-

date is returned, otherwise NULL is returned.

2. 1.5 Results

Table 2. Entity Linking Task Evaluation Results

Submits P P(Non-

NIL)

P (NIL)

QUANTA1

(ListNet + SVM)

0.8033 0.7725 0.8264

QUANTA2

(ListNet + SVM)

(no country fea-

ture)

0.8012 0.7707 0.8241

QUANTA3 0.7871 0.6478 0.8919

Although we didn’t get the highest precision for

all queries, QUANTA1 got the highest precision

for Non-NIL queries. This shows that the learn-

ing to rank method can achieve quite good per-

formance for ranking candidates. It also shows

that the training set for 2-Class classifier has dif-

ferent distributions from the real test queries (In

training set, there are more positive values than

negative values; the portion is about 2: 1. But the

portion is about 1: 1.5 in real test queries). So

QUANTA1 performs not well at NIL value que-

ries. When the training set for QUANTA3 con-

tains too many negative samples, it achieves the

highest precision of NIL queries, but failed to

recognize the correct answers.

2.2 KBP Slot Filling Task

2.2.1 Preprocess

In preprocessing phase, we collect training sen-

tences for each slot. For all the slots which have

value, we use the slot value together with the

corresponding entity name as a query. For each

sentence in each document returned, if it contains

both entity name and slot value, the sentence is

collected into training set. Finally, the entity

name is replaced by “<target>” and the slot value

is replaced by “<value>” in each training sen-

tence.

2.2.2 Pattern Generation

In this phase, we first generate candidate patterns

from training sentences and then filter the ones

of low quality.

 Candidate Patterns are generated as follows.

For each training sentence, we only retain words

between “<target>” and “<value>”. Then, a

Stanford POS tagger is used to tag the sentence

and all nouns, verbs, adjectives, adverbs and

numerals are replaced by their POS tags.

 In order to remove the patterns of low quality,

we filter all the candidate patterns which do not

contain verb, preposition, colon, parenthesis,

quote mark and “’s”. Then, the top n (n depends

on slots) most frequent patterns are selected as

patterns for each slots.

2.2.3 Answer Extraction & Remove Redun-

dant Answers

This module is divided into two phases: extract

candidate answers by patterns from documents

and validate each candidate by knowledge base

or redundancy-based method.

In Candidate Extraction phase, we first use the

expanded entity name as query and collect the

top 700 most relevant documents returned by

local search engine. Then each document is seg-

mented into sentences and tagged. For each sen-

tence, a regular-expression matcher built from

corresponding patterns is used to extract candi-

dates. As mentioned in 2.2.2, each pattern is a

sequence of words and POS tags which starts

(ends) with “<target>” or ”<value>”. A word can

match with the same word with any POS tags

and a POS tag can match any words with the

same POS tag. The “<target>” mark is replaced

by the corresponding entity name. For those slot

expecting noun phrase, we replace “<value>” by

proper noun sequence of any length. For those

concerned with time or number “<value>” is re-

placed by corresponding regular-expression. Due

to sparseness, patterns are not used to extract

websites. We collect website candidate as long as

it appears in sentence containing entity name.

In Answer Validation phase, we employ different

strategies for different slots. For single-valued

slots, we select the most frequent candidate as

the final answer. For alternate_name slot, we use

wiki redirection page to find more candidate an-

swer to candidate set. For slots concerned with

person or organization, a Stanford NER is em-

ployed to tag candidates. If all words in a candi-

date are tagged with right name entity type, then

it is retained. For slots expecting location names

such as org:headquaters, all candidates are fil-

tered by city list and country list. Only the candi-

dates appeared in one of the lists are retained.

For the rest, we only remove lexically duplicate

candidates.

2.2.4 Additional Answers From Knowledge

Base and Wikipedia

If the queries have target entities in Wikipedia,

we also try to extract answers from Wikipedia.

First, we search the query’s corresponding entity

in the Knowledge Base or latest Wikipedia; if we

can get the right entity from Knowledge Base or

Wikipedia, then we just extract answers from

these articles and find support document in news

corpus (We deal with all the PER and GPE que-

ries).

Second, we use some pattern to extract answers

from Wikipedia articles. The articles are better

formed than news text, so the pattern is clear and

the answer extraction is much easier.

Third, we find supporting document for these

answers, based on co-occurrence and words oc-

curring between the answers and query’s entity

name string. If we can’t find the supporting doc-

ument for the answer, we just drop the answer.

Finally, same as we do in Answer Validation

phase, we remove the duplicate answers.

2.2.5、Results

Table 3. Slot Filling Task Evaluation Results

 F-Score Recall Precision

All 0.748

Single Slots 0.784(Accuracy)

List Slots 0.712

Single Slots(Non-

NIL)

 0.436 0.279

Single Slots(NIL) 0.847 0.943

List Slots(Non-

NIL)

0.251

List Slots(NIL) 0.873 0.878

Since no submissions are better than the All NIL

Baseline at SF-Score values as shown in Table 3,

we consider that as following reasons:

a) There is little information about those

entities mentioned in news corpus but not ex-

tracted as entities’ facts. So it’s hard to retrieve

more useful information.

b) The evaluation methods assign equally

to both NIL value slots and Non-NIL value slots,

so if the system tried to get high SF-Score, it

need to submit Non-NIL value only if it had high

confidence about the value. But most submitted

teams didn’t pay attention to this.

Table 4. Question Taxonomy from UIUC
(Note: the categories with underline are selected as factoid question taxonomies to identify entity)

Coarse Fine

ABBR abbreviation, expression

DESC definition, description, manner, reason

ENTY animal, body, color, creation, currency, disease/medicine,
event, food, instrument, language, letter, other, plant, prod-
uct, religion, sport, substance, symbol, technique, term, ve-
hicle, word

HUM description, group, individual, title
LOC city, country, mountain, other, state
NUM code, count, date, distance, money, order, other, percent, pe-

riod, speed, temperature, size, weight

Although we didn’t achieve high SF-Score, we

got a relatively good F-Score at List Slots (Non-

Nil). The pattern based system is useful for re-

trieving list value type information.

3 RTE Track

Given two text fragments 'Text' and 'Hypothesis',

Textual Entailment Recognition is the task of

determining whether the meaning of the Hypo-

thesis is entailed (can be inferred) from the Text.

This year we focus on investigating the textual

representation in the RTE task. We believe that

the text can be divided into two types of seman-

tic units: One is what objects the text referred;

the other is the description to the object: such as

the characteristic of object and relation with oth-

er objects. In this year’s paper, we use Semantic

Element to represent this semantic unit. Two

types of semantic elements are defined: Entity

Semantic Element refers to the object, and Rela-

tion Semantic Element describes the relations

among these objects. In the following sections,

we will introduce how to construct SEGraph

based on Entity Element (short for Entity Seman-

tic Element) and Relation Element (short for Re-

lation Semantic Element), and we also discuss

how to recognize textual entailment based on

SEGraph.

3.1 SEGraph Construction

The SEGraph is constructed with Entity Ele-

ment as node and Relation Element as edge. We

first show you how to identify the Entity Ele-

ments from text and then describe how to identi-

fy Relation Elements and construct SEGraph

based on the dependency parser tree.

3.1.1 Entity Element Identification

We consider Entity Element as the object de-

scribed in the text. In this section, we will show

you how to identify Entity Element. The most

intuitive way is to use Named Entity Recognition

tools, such as Stanford NER. However, the Stan-

ford NER methods only identify three or four

types of entities. It is not enough in the SEGraph

construction.

We propose to employ factoid question tax-

onomy to identify Entity Elements. The factoid

questions seek simple entities as answers, like

“What is Hawaii's state flower?” and “What is

the length of the coastline of the state of Alaska?”

We define Entity Semantic Element as the entity,

which can be used as an answer for factoid ques-

tion. We use question taxonomy to recognize

these entities. Question taxonomy defines the

expected semantic categories of answers to the

questions. The following table shows general

question classification taxonomy developed by

UIUC [4]. It contains 6 coarse types and 50 fine

types. We select about thirty factoid categories,

denoted with underline as shown in the following

table. The answers to these questions can be rec-

ognized as Entity Elements.

We then propose four methods to detect if an

entity belongs to these taxonomies:

1) WordNet based Identification

For some categories, we can find a corres-

ponding node in WordNet, which can represent

the semantic meaning of this category. For ex-

ample, “animal” in WordNet is the correspond-

ing node for category “animal”, “monetary unit”

is the corresponding node for category “money”.

For a new word, if its hypernyms contain the

category corresponding node, this word belongs

to the corresponding category, and can be deter-

mined as an Entity Element. This WordNet based

method is suitable for most categories of ENTI-

TY and LOCATION.

2) Wikipedia based Identification

For some entities, especially for new concept,

it may be not contained in WordNet, such as

entity “MV Princess of the Stars”. Wikipedia is a

good expansion for WordNet. Similar as Word-

Net based method, we also find some corres-

ponding node for factoid category in Wikipedia.

We find ships, car associated category nodes in

Wikipedia for “vehicle” category.

3) Pattern based Identification

For number and date categories, we construct

patterns for entity identification. We use regular

expressions to extract the number and date Entity

Element.

4) NER based Identification

We also use Named Entity Recognition Tools

to identify Entity Element. We employ Stanford

NER tools to extract named entities. It can rec-

ognize four categories: Location, Organization,

Person and Misc.

Besides above four methods, we also assume

that if the noun word appears in both Text and

Hypothesis, we also recognize this noun word as

Entity Element. We also use the Entity Element

integration strategies to reduce the number of

entities, such as if several successive Entity Ele-

ments appear in both Text and Hypothesis, we

recognize their combination as one Entity Ele-

ment.

3.1.2 Relation Element Identification

After identifying Entity Elements, we employ

dependency tree to identify Relation Element.

We extract the shortest path between two Entity

Elements in the dependency tree as Relation

Element.

3.1.3 SEGraph Construction

After Recognizing both Entity Element and

Relation Element, we set Entity Element as node

and Relation Element as edge to construct SE-

Graph. For example, given the T-H pair 998 in

RTE 4 test set, the Text is “Preem Palver is a

fictional character, part of the Foundation Series

by the sci-fi writer Isaac Asimov.” And Hypo-

thesis is “Isaac Asimov invented Preem Palver.”

Its corresponding SEGraph is shown in Figure 2.

Fig. 2 SEGraph Example

We need to note that here we just consider

Entity Element and Relation Element. However,

there is still some Hypothesis, which may con-

tain only one Entity Element, or contain Entity

Element and Relation Element, but encounter

characteristic mismatch problem. We analyze the

“No Entailment” T-H pairs for RTE4 test set. We

find that about 60% “No Entailment” comes

from relation mismatch, and 20% for entity mis-

match, 10% for characteristic mismatch, 10% for

other mismatch. In this year, we only focus on

handling the major problem: entity mismatch and

relation mismatch, and for simplicity, we just

consider the major special relation, which con-

tains verb in its path. For other types, we use our

baseline and post-check processing to deal with,

which will be discussed in the framework section.

3.2 Textual Entailment Recognition

with SEGraph

After constructing SEGraph for Text and Hypo-

thesis, we will recognize textual entailment with

these two SEGraphs. By analysis of the text, we

find that the degree of variation is different for

Entity Element and Relation Element. The enti-

ties have few variations, and these variations can

be easily recognized by lexicons. For example, if

we want to describe “computer”, limited number

of expressions can be used, such as “computing

device”, “computing machine”, and these ex-

pressions can be found with WordNet. However,

the relations may be described in many ways. If I

want to express “I like you”, various expressions

can be used. Therefore, we employ two different

strategies to detect the Entity Element Entailment,

and Relation Element Entailment.

3.2.1 Entity Entailment Recognition

We use knowledge based methods to detect

entity entailment. The knowledge resource con-

tains WordNet, Wikipedia and other knowledge

base. For all Entity Element in Hypothesis, sev-

eral strategies are used to detect entailment:

1) Determine if all the original entity words

appear in Text

2) The edit distance is used to determine

entity presence in Text. If the edit distance is

lower than a threshold, we say the entities match

each other.

3) Wordnet relations, such as synonym,

hypernym, hyponym, are used to expand the

entity to determine entity entailment.

4) Wikipedia is also employed to detect the

entity entailment. Wikipedia redirection set con-

tains all the redirection information. Since the

synonymous entities are redirected into one enti-

ty. This set can be used as a synonymous entity

set.

Besides the above four strategies, we also use

the entity category information. When we identi-

fy entities based on factoid taxonomy, each enti-

ty is assigned a category. We also compare the

category match, especially for date and other

number.

If there is one Entity Element mismatch in

Hypothesis, we take this T-H pair as “Entity Not

Entailment”.

3.2.2 Relation Entailment Recognition

For Relation Entailment detection, most of

previous studies use unsupervised methods, such

as DIRT and TEASE. While here we try to in-

vestigate supervised methods to detect relation

entailment. We first show you the constructed

training set, and then describe the employed fea-

tures and machine learning methods.

We use RTE 3 training set, RTE 3 test set and

RTE 4 test set as our training set. There are total-

ly 2600 pairs, where RTE 3 contains 1600 pairs

with 800 for training and test set, and RTE 4

contains 1000 pairs. For false entailment T-H

pairs, we manually label the false relation en-

tailment: we first determine whether this entail-

ment is caused by relation mismatch; if so, we

also denote which two entities cause the false

entailment. For example, for the following false

entailment pair, we label the relation between

entity “Annan” and entity “IECI” as false rela-

tion entailment.

For true entailment T-H pairs, we define all the

relation entailment is true. That is to say, every

relation between two entities in Hypothesis can

be entailed by the corresponding relation in Text.

We use the extracted true entailment relations

and manually labeled false entailment relations

to construct training set. Since the number of true

entailment relation is much larger than the num-

ber of false entailment relation, we use all the

false relation entailment from RTE3 and RTE4

as false relation entailment set, and just use the

true relation entailment from RTE4 as true en-

tailment set. This can solve the imbalance prob-

lem. For simplicity, we only consider the relation

with verb in its path.

We then design our framework for relation en-

tailment classification. We employ a lot of fea-

tures, not only use T-H relation intra similarity,

but also investigate the impact of the cross simi-

larity among T-H relation pairs. For T-H intra-

similarity features, they are divided into two

types: sentence-level features and path-level fea-

tures. Sentence-level features denote the similari-

ty feature from the two sentences, which contain

T, H Relation Elements. The path-level features

denote the shortest path similarity from depen-

dency tree. Both are shown in Table 5.

Table 5. Features used in relation entailment detection

 Feature type Feature Description

Sentence-Level Features

LLM-similarity double Lexical similarity [3]

Entity-similarity double Named Entity similarity [3]

Path-Level Features

Path-LLM-similarity double Lexical similarity in the path

Path-Relation-similarity double The path similarity

Verb-synonym {0,1} Contain synonym for verb?

Verb-antonym {0,1} Containing antonym for verb?

V-N-derivation {0,1} Containing Noun-Verb derivation rela-

tionship using WordNet?

Fig. 3 SEGraph based RTE Framework

We use Weka tool [5] as our classifier. We al-

so test the cross-pair similarity features, but it

didn’t achieve a better result. This year only fo-

cuses on intra-pair similarity. We plan to design

more elaborate features for relation entailment as

our future works.

If there is one false Entity Element entailment,

or one false Relation Element entailment, we will

consider this T-H pair as false entailment.

3.3 SEGraph based RTE Framework

Based on our proposed SEGraph method, we

design our RTE framework, as shown in the Fig-

ure 3. We first preprocess all test T-H pairs. It

contains dependency parsing, Named Entity

Recognition, co-reference Resolution, and

WordNet Sense Disambiguation. Then the fol-

lowing three models with dark green color are

related with our SEGraph framework: the “Entity

& Relation Element Extraction” module identi-

fies two types of our defined Semantic Elements

with the methods proposed in Section 3.1; the

“Entity Entailment Detection” module detect

entity entailment with the knowledge based me-

thods proposed in Section 3.2.1; the “Relation

Entailment Detection” module detects relation

entailment with the methods proposed in Section

3.2.2. For simplicity, in this year, we only con-

sider the relation with verb in its path. For the T-

H pair without this path, we use our baseline me-

thod to process it. The baseline mainly use Weka

classifier with lexical similarity features and Ent-

ity similarity features to classify T-H pair as en-

tailment or no entailment, which has been de-

scribed in our last year’s notepaper[3]. Finally,

we also use post-check processing methods to

improve the performance. The post-check

processing use some patterns to detect mismatch.

In this year task, we use Negation rules, Subjunc-

tive rules, Quantifier Modification rules, which

can be found in our last year’s notepaper[3]. We

also collect some verb, which contains negative

meaning, like “reject”, “refuse”, and use these

verb to construct mismatch rules.

3.4 Submissions and Evaluations

We submit two results. The first submission

QUANTA1 employs the whole procedure de-

scribed in the previous section. QUANTA2 re-

moves the “Relation Entailment Detection”

module. We just submit results for two-way task.

The evaluations are shown on Table 6.

From the table, we can see that our proposed me-

thods are very effective. But we also find it is a

very challenging task to recognize relation en-

tailment. In the future work, we will focus on

improving the relation entailment detection.

4 Conclusions

In this paper, we describe our systems for the

KBP and RTE tracks. For the KBP track, we

propose to use a Listwise learning to rank model

and Augmenting Naïve Bayes model for Entity

Linking task, and use learned patterns to solve

Slot Filling task. For RTE track, we propose to

use SEGraph method. The idea of SEGraph is

that we should use different strategies to recog-

nize entity entailment and relation entailment.

From evaluation results, we can see that both

KBP and RTE systems achieve competitive re-

sults. We find that “Learning to Rank” strategy is

really effective for Entity Linking task, and rela-

tion entailment recognition is really a challeng-

ing problem for RTE task.

Table 6. RTE Task Evaluation Results

 QUANTA1 QUANTA2 Best Median Worst

Accuracy 0.67 0.6633 0.7350 0.6117 0.5000

Avg. precision 0.7011 0.6755

Acknowledgments

The work was supported by NSFC under grant

No.60803075, the National Basic Research Pro-

gram (973 project in China) under grant

No.2007CB311003. The work was also sup-

ported by an IRCI project from the International

Development Research Center, Canada.

References

[1] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H.

Li. Learning to rank: From pairwise approach to

listwise approach. In ICML, 2007.

[2] H. Zhang, L. Jiang, and J. Su. Augmenting

naive bayes for ranking. In ICML ’05: Proceedings

of the 22nd international conference on Machine

learning, pages 1020–1027, New York, NY,

USA,2005.ACM Press.

[3] Fangtao Li, Zhicheng Zheng, Yang Tang,

Fan Bu, Rong Ge, Xian Zhang, Xiaoyan Zhu and

Minlie Huang. THU QUANTA at TAC 2008 QA

and RTE track. Text Analysis Conference (TAC

2008), Gaithersburg, Maryland USA, November

2008

[4] Li, X. and Roth, D. Learning question clas-

sifiers. In Proceedings of the 19th international

Conference on Computational Linguistics pages

1~7, 2002.

[5] Mark Hall, Eibe Frank, Geoffrey Holmes,

Bernhard Pfahringer, Peter Reutemann, Ian H. Wit-

ten (2009); The WEKA Data Mining Software: An

Update; SIGKDD Explorations, Volume 11, Issue

1

