
UCD IIRG at TAC 2010 KBP Slot Filling Task

Lorna Byrne
School of Computer Science

& Informatics
University College Dublin

Ireland
lorna.byrne@ucd.ie

John Dunnion
School of Computer Science

& Informatics
University College Dublin

Ireland
john.dunnion@ucd.ie

Abstract

This paper describes the IIRG’s first implementation
of a system for automatic Knowledge Base Popu-
lation (KBP). The Text Analysis Conference (TAC),
first organised by NIST in 2008, promotes further re-
search in Natural Language Technologies. In 2009,
NIST added a Knowledge Base Population Track to
TAC, the goal of this track was to promote research
in to the automatic population of knowledge bases.

1 Introduction

This is the first year that the IIRG (Intelligent Information
Retrieval Group) has participated in TAC’s Knowledge
Base Population Track. The 2010 Knowledge Base Pop-
ulation Track is composed of 2 related tasks Entity Link-
ing (EL) and Slot Filling (SF). Entity Linking is the task
of linking entity mentions in unstructured texts to entities
in the knowledge base. Slot Filling involves the acqui-
sition of novel values for the predefined attributes of the
entities in the knowledge base. We focused on the Regu-
lar Slot Filling and Surprise Tasks in this year’s track.
Participants are given a list of target entities to process.
There are 2 generic entity types included in the Slot Fill-
ing task: PER (person) and ORG (organisation). Each
Slot Fill query contains a name-string (target-entity), a
docid which refers to the context document associated
with the entity, an entity type (PER or ORG), a node id
which refers to a representation of the entity in the knowl-
edge base if one exists and an optional ignore field con-
taining a list of slots to ignore. For example, (Babysham-
bles, eng-WL-11-174595-12968292, ORG, E0805901,
org:founded)1 is a slot query for the band Babyshambles.
For each entity type there is a pre-defined set of attributes
or “slots” to be populated with slot values. KBP 2010 de-
fined 16 slots for organisations and 26 slots for persons.
A system should harvest information from the document

1SF215 from TAC 2010 Regular Slot Filling Task

collection in order to populate these slots. Systems are
expected to return novel slot-values, a slot can either be
single-valued (e.g. per:dateof birth) or list-valued (e.g.
per:parents). A system should return NIL as the slot-
value for a slot for which no novel information has been
extracted for that slot.
The Slot Filling task is quite similar to the task of Ques-
tion Answering. QA systems aim to return an answer to
the user in response to a natural language question, SF
systems aim to return a slot-value (exact answer) to the
user in response to a slot query. Each slot query could
easily be transformed into an equivalent question or set
of questions for use in a QA system. The Surprise Slot
Filling Task, akin to the regular task, tests the adaptability
of a slot filling system under time constraints. The task of
Slot Filling could be viewed as a modified QA task where
the questions remain the same and only the target or focus
of the question changes. Given the similarities between
Slot Filling and Question Answering and that we are also
currently investigating QA techniques, we decided to ap-
proach the SF tasks from a QA perspective.

2 Question Answering System
Architecture

The goal of a Question Answering (QA) system is to im-
prove on the output of traditional Information Retrieval
systems by returning an answer rather than a ranked list
of potentially relevant documents in response to a natural
language question.

While research into QA systems continues to refine the
approaches taken and improve the outputs by returning
more exact answers, they are generally based on a proto-
typical architecture (Voorhees, 2003). This architecture,
described by Pasca (Pasca, 2003) and used by many QA
systems (Isozaki, 2004), (Cui et al., 2004), consists of
three main modules: Question Processing, Passage Re-
trieval and Answer Selection. A question is firstly anal-
ysed syntactically and semantically to determine what the



question is asking about, eg a person, a date, a location,
etc. A query is also constructed from selected question
terms and is given to the Passage Retrieval module, which
identifies passages of text that are likely to contain an an-
swer. The Answer Selection module processes the candi-
date answer-bearing passages and selects the phrase that
is most likely to be a correct answer. It should be noted
that processing of a question in this classic QA architec-
ture is normally serial and thus the overall performance
of a system is bound by its weakest link.

2.1 Question Processing

The Question Processing module of a QA system iden-
tifies the type of information the question is looking for
and determines any information needed for subsequent
modules. Most QA systems perform some form of Ques-
tion Classification. Classification of a question usually
identifies the semantic type of the entity being sought,
thereby identifying the Question Type. Determining the
Question Type allows a system to determine any addi-
tional constraints on the expected answer and derive an
Expected Answer Type. A query is also constructed from
the question terms; this query will later be presented to
the Passage Retrieval component.

It is known that a high number of errors in question-
answering can be attributed to errors in question analysis
(Moldovan et al., 2002). Most of the work performed
by the QA system is based upon identifying the correct
Question Type, as a failure to do so practically disables
the entire system: if a question is incorrectly classified,
the Passage Retrieval module will retrieve passages con-
taining the wrong type of phrases and the Answer Se-
lection module will extract answer phrases of the wrong
type. High quality Question Processing is thus crucial for
the overall performance of a QA system.

2.2 Passage Retrieval

Irrespective of the way in which the classic architecture
is implemented by a QA system, the QA pipeline almost
always involves searching for and retrieving documents
as a means of narrowing down the potential documents to
be searched (Voorhees, 2003). Given that a typical QA
system deals with as much text as a Document Retrieval
system, and given that the user will require an answer in a
reasonable amount of time, most QA systems include an
IR search component which treats the question as a query
and returns a list of relevant documents or segments of
documents (Burger et al., 2001), (Na et al., 2002). In the
context of a QA system, this IR module is usually referred
to as the Passage Retrieval or Document Retrieval mod-
ule. The function of this module is not to find the actual
answers to the questions but to identify those passages
or documents that are most likely to contain an answer.
Passages can be segments of text or entire documents.

The performance of the Passage Retrieval compo-
nent, especially in terms of passage recall, is critical for
the overall success of the entire QA system. Collins-
Thompson et al have identified that there is a consis-
tent relationship between the quality of initial docu-
ment retrieval and overall system performance (Collins-
Thompson et al., 2004). If the Passage Retrieval phase
fails to identify any of the answer-bearing segments then
the Answer Selection module will inevitably fail, as even
the most linguistically rich answer selection methods
cannot find an answer phrase that does not exist. In a
comparison (Roberts, 2002) of passage retrieval and doc-
ument retrieval using the University of Sheffield’s QA
System (Scott and Gaizauskas, 2000), document retrieval
was found to be less effective at producing a greater num-
ber of answer-bearing passages. In general, passage re-
trieval methods based on NLP techniques produce results
that are more accurate.

2.3 Answer Selection

The final phase of the QA pipeline selects and extracts
the phrase that is most likely to contain an answer. The
Answer Selection module searches the candidate answer-
bearing passages returned by the PR module and selects
phrases that are of the Expected Answer Type. The an-
swer set identified is usually ranked according to the like-
lihood that a given phrase contains an answer. The mod-
ule will then select the best answer from the candidate
answer set. An answer may be an exact answer or a short
snippet of text containing the answer.

3 Slot Filling Approach

We have adapted the classical QA architecture for use in
the Regular Slot Filling task (Figure 1). The SF pipeline
consists of three main modules: Query Processing, Pas-
sage Retrieval and Slot-Value Selection.

3.1 Pre-Processing

In the pre-processing phase we index all the documents
of the document collection using Terrier (Ounis et al.,
2006). Terrier is a highly flexible, efficient, and effec-
tive open source search engine, readily deployable on
large-scale collections of documents. Terrier implements
state-of-the-art indexing and retrieval functionalities, and
provides an ideal platform for the rapid development and
evaluation of large-scale retrieval applications.2 During
this pre-processing phase we inspected the available data
from the previous TAC Slot Filling task. We extracted
training passages from the document collection, these
passages consisted of sentences which contained a men-
tion of the target-entity and/or a given slot-value, as well

2http://www.terrier.org



Figure 1: SF System Architecture

as sentences in close proximity to these sentences. A set
of initial candidate patterns are then generated around the
slot value using a combination of the Stanford POS tag-
ger and Stanford NER tools3. A final set of candidate
patterns is then created manually from the initial set, to
be used later in the selection process. An example of one
of the candidate patterns created for the slot per:spouse:

<person> VB:marry <target-entity>

the verb encountered is reduced to its base form. We
also identified any equivalent questions within our own
question repository, for example per:age was found to be
equivalent to a number of questions including:

When was <target-entity> born
How old is <target-entity>
What age is <target-entity>

This process allowed us to augment candidate patterns
with previously learned patterns and useful query terms
discovered whilst processing questions from previous QA
Tracks such as those in TREC(Voorhees, 1999).

3.2 Query Processing

The slot-name lends itself to classifying the type type of
information we are looking for so we bypass any equiv-
alent non-trivial question classification phase. For each
of the slot queries we built a query template as input for
the Passage Retrieval module and mapped each of the slot

3http://nlp.stanford.edu/software

names to an Expected Value Type (EVT), e.g. the EVT
of slots per:spouse and per:siblings is PERSON.

The template contains the PR input queries, additional
query terms and relevant phrases extracted from the con-
text document. It is not always sufficient to just use the
target-entity as the initial query, in some cases the target-
entity might be an abbreviation which may need to be ex-
panded in order to provide relevant search results. Con-
versely, the target entity may be known more frequently
in an abbreviated form. This template will aid us in dis-
ambiguating a given target-entity from similar entities in
the document collection. Assuming that the target-entity
was the focus of the context document, we relied on this
text to create the query template.

3.3 Passage Retrieval

The Passage Retrieval module locates passages which
are likely to contain a slot-value. The slot-value selec-
tion module will apply potentially computationally costly
NLP techniques to identify candidate slot-values, it is im-
portant to ensure that the search space that this process is
applied to is as narrow as possible. Terrier retrieves a set
of documents likely to contain a slot-value in response to
a query template. Once a list of candidate documents has
been generated in response to a query, segments of text
are extracted at a sentence level. Sentences containing a
mention of the entity and also sentences in close prox-
imity to the entity are input to the Slot-Value Selection
module as candidate slot-bearing passages.

3.4 Slot-Value Selection

The final phase of the pipeline selects and extracts the
segment of text that is most likely the relevant slot-value.
Each returned slot-value must also contain the docid of
the supporting document from which the slot was ex-
tracted. The Slot-Value Selection module processes the
candidate slot-bearing passages returned by the PR mod-
ule and filters out passages that are of the Expected Value
Type. If the passage conforms to the set of candidate
patterns associated with the slot name then the EVT is
extracted and added to the candidate answer set. The
answer set identified is ranked using the ranking factor
“frequency-of-occurrence”, with the most frequently oc-
curring answer extracted as the slot value. For some slots
e.g. per:spouse and per:age it is not sufficient to rank the
potential answer set based on frequency-of-occurrence.
The most frequently occurring value might not necessar-
ily indicate the most recent or novel for these slots, for
example per:spouse may have multiple occurrences of
previously temporally viable values. For such slots, the
candidate answer set was ranked using the ranking fac-
tor “most-recent-occurrence”, and the top answer i.e. the
answer which occurred in the most recent news article is
returned as the slot-value.



Regular Slot Filling
Recall 0.18665378
Precision 0.6655173
F1 Score 0.29154077

Table 1: Results of Run Submitted to Regular Slot Filling Task

Surprise Slot Filling
Recall 0.043564357
Precision 0.47826087
F1 Score 0.07985481

Table 2: Results of Run Submitted to Surprise Slot Filling Task

There is no threshold set to limit the number of answers
generated in response to a slot-value. For list-slot-values,
the system identifies and removes duplicate values from
the candidate answer set, there is no ranking factor ap-
plied to this answer set and the system returns all of the
answers in the candidate answer set. The system also tries
to identify slot-values that already exist in the Knowledge
Base, such redundant values should not be returned as
slot-values.

NIL is returned as the slot-value when no slot-value is
found, that is, when the PR module fails to return any can-
didate slot-bearing passages or when the Expected Value
Type and candidate patterns are not identified.

3.5 Surprise Slot Filling

We also participated in the Surprise Slot Filling Task us-
ing the SF pipeline described above. This is a new task
for KBP2010 requiring participants to return slot values
for new and previously unseen slots within a short time
period. This task added 4 new slots, 3 PERSON slots
(“diseases’, “awards-won”, “charity-supported”) and 1
ORGANIZATION slot (“product”) and allowed a max-
imum of 4 days for training the system and running the
task. This task was scheduled directly after the Regular
Slot Filling task and as such we had less than a day to de-
vote to this task. The strict time constraints meant that we
had limited time to generate a reasonable set of candidate
patterns for these new slots. The poor results obtained in
this task (Table 2) are not surprising given the time con-
straints and limited training data available.

4 Results

Table 1 describes the final scores obtained in the Regular
Slot Filling KBP Task. Our SF system was the second
best performing system in the Regular SF task. 66.5%
of the slot-values that we acquired from the document
collection were judged to be non-redundant values, al-
though our system achieves very low coverage of slot-
values across the entire document collection, acquiring

only 18% of the novel slot-values. The system also re-
turned a NIL value in response to a high percentage of
slots. Although there are a significant number of cor-
rect NIL values in this task, analysing the NIL responses
is also a meaningful evaluation. There are a number of
reasons why NIL is returned as a slot-value. For exam-
ple, the Passage Retrieval module may not be returning
enough slot-bearing passages for the selection process,
the expected answer type may not have been discovered
in the candidate sentences, there may be no slot-values
available for a given attribute in the document collection
e.t.c. It is important to ensure that the system is returning
a NIL value only when there are no learnable slot-values
for a given attribute. In general, this is also an inter-
esting challenge from a QA perspective: rather than ag-
gressively searching candidate passages for any answer,
should systems return no answer where no “exact” an-
swer exists? The density of NIL values in the dataset
makes this a very labour-intensive analysis, and while we
have not yet completed this process we have discovered
various examples of the aforementioned reasons why the
system returned NIL as a value. Table 2 describes the fi-
nal scores obtained in the Surprise Slot Filling KBP Task.
While we had very limited time to devote to this task, the
poor results achieved here especially in terms of recall,
highlight again the need to improve the coverage of our
system.

4.1 Slot Filling Error Analysis

We have noted that our system was not aggressive enough
when removing some redundant slot-values, that is, those
values which already exist in the KB. While eliminating
such values now has no effect on recall, it has a marginal
effect on precision.
Furthermore, we now realise that we should have en-
sured in a more rigorous fashion that the slot-values re-
turned conformed with the track guidelines. There are
some occurrences of slot-values embedded in additional
text e.g. “70-year-old” rather than “70” returned for the
slot per:age. Conversely, there are examples of incom-
plete slot-values e.g. “security chief” should have been
“national security chief” in response to the slot per:title
according to the supporting document returned. Altering
these slot-values marginally improves precision, but has
no effect on recall.
Finally, the assumption that the focus of the supplied
context document was the target-entity was not well-
founded. For some slots, this resulted in less effective
query expansion, low passage recall with too few candi-
date slot-bearing passages available for the selection pro-
cess.



Score LDC4 Top-1 Top-2
Recall 0.54061896 0.64796907 0.18665378
Precision 0.7013802 0.667996 0.6655173
F1 0.6105953 0.6578301 0.29154077

Table 3: Results for the KBP Slot-filling task at TAC 2010

5 Conclusions and Future Work

We have presented our first implementation of a Slot Fill-
ing system for automatic Knowledge Base Population.
Given the similarities between Slot Filling and Ques-
tion Answering, we chose to approach this task from a
QA perspective, adapting a typical QA pipeline to handle
slot-values. 66.5% of the slot-values that we did acquire
were judged to be non-redundant values, though the sys-
tem was found to have low coverage across the document
collection. There is huge scope for improvement with re-
spect to system recall, as the system only acquired only
18% of the non-redundant slot-values across the docu-
ment collection. The low coverage of the system is also
reflected in the recall scores achieved in the Surprise Task
(Table 2).

Eventhough our system achieved a poor recall score for
the Regular SF Task, it was awarded the second highest
F1 score in this task (Table 3). It is certainly a non-trivial
task to achieve reasonable performance in the slot filling
task and regular slot-filling remains a very challenging
task. We suspect that the poor coverage of the system
is surely related to the performance of the Passage Re-
trieval module. Future work on the system will involve
implementing more effective query expansion techniques
without relying on the context document and improving
the coverage of our system, especially in terms of passage
recall.

References

J. Burger, C. Cardie, V. Chaudhri, R. Gaizauskas, S. Harabagiu,
D. Israel, C. Jacquemin, C. Lin, S. Maiorano, G. Miller,
D. Moldovan, B. Ogden, J. Prager, E. Riloff, A. Singhal,
R. Shrihari, T. Strzalkowski, E. Voorhees, and R. Weishede.
2001. Issues, Tasks, and Program Structures to Roadmap
Research in Question Answering.

Kevyn Collins-Thompson, Jamie Callan, and Egidio Terra.
2004. The Effect of Document Retrieval Quality on Factoid
Question Answering Performance. InACM SIGIR Confer-
ence on Research and development in Information Retrieval,
pages 574–575. Poster.

H. Cui, K. Li, R. Sun, T.-S. Chua, and M.-Y. Kan (National Uni-
versity of Singapore). 2004. National University of Sin-
gapore at the TREC 13 Question Answering Main Task.
In E.M. Voorhees and L.P. Buckland, editors,Proceedings

4LDC produced a manual run for evaluation

of the Thirteenth Text REtrieval Conference (TREC-2004),
pages –. NIST publication.

H. Isozaki. 2004. NTT’s Question Answering System for NT-
CIR QAC2. InProceedings of NTCIR-4.

D. Moldovan, M. Pasca, S. Harabagiu, and M. Surdeanu. 2002.
Performance Issues and Error Analysis in an Open-Domain
Question Answering System. InProceedings of ACL 2002.
ACM.

S.H. Na, I.S. Kang, S.Y. Lee, and J.H. Lee. 2002. Using Gram-
matical Relations, Answer Frequencies and the World Wide
Web for TREC Question Answering. InProceedings of the
Eleventh Text REtrieval Conference (TREC-2002). Nist pub-
lication.

I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and
C. Lioma. 2006. Terrier - A High Performance and Scalable
Information Retrieval Platform. InACM SIGIR06 Workshop
on Open Source Information Retrieval (OSIR 2006).

Marius Pasca. 2003.Open Domain Question Answering from
Large Text Collections. Center for the Study of Language
and Information.

Ian Roberts. 2002. Information Retrieval for Question Answer-
ing. Master’s thesis, University of Sheffield.

Sam Scott and Robert Gaizauskas. 2000. University of
Sheffield TREC-9 Q & A System. In E.M. Voorhees and
D.K. Harman, editors,Proceedings of the Ninth Text RE-
trieval Conference (TREC-9). NIST publication.

Ellen M. Voorhees. 1999. The TREC-8 Question Answering
Track Report. InProceedings of the Eight Text REtrieval
Conference (TREC, pages 77–82.

Ellen M. Voorhees. 2003. Overview of the TREC 2003 Ques-
tion Answering Track. InProceedings of the Thirteenth Text
REtrieval Conference (TREC), pages 54–68.


