
LCC Approaches to Knowledge Base Population at TAC 2010

John Lehmann, Sean Monahan, Luke Nezda, Arnold Jung, and Ying Shi

Language Computer Corporation

1701 N. Collins Blvd.

Richardson, TX, USA

john@languagecomputer.com

Abstract

The Knowledge Base Population (KBP) track

at the Text Analysis Conference 2010 marks

the second year of this important information

extraction evaluation. This paper describes the

design and implementation of LCC’s systems

which participated in the tasks of Entity Link-

ing, Slot Filling, and the new task of Surprise

Slot Filling. For the entity linking task, our top

score was achieved through a robust context

modeling approach which incorporates topi-

cal evidence. For slot filling, we used the

output of the entity linking system together

with a combination of different types of re-

lation extractors. For surprise slot filling, our

customizable extraction system was extremely

useful due to the time sensitive nature of the

task.

1 Introduction

Language Computer Corporation (LCC) partici-

pated in the Entity Linking, Slot Filling and Surprise

Slot Filling tasks at TAC 2010. This paper describes

the systems we built for each of these tasks, our re-

sults, and comments on our approaches.

The remainder of the paper is organized as fol-

lows. Section 2 details our Entity Linking approach.

In Section 3, we describe our Slot Filling system,

and in Section 4 we discuss how the Slot Filling sys-

tem was rapidly customized to four new slots in the

Surprise task. Section 5 states the conclusions.

2 Entity Linking

The task of entity linking involves resolving an input

query of an entity mention to its corresponding en-

try, or sense, in the Knowledge Base (KB). A query

is specified by its entity mention string and source

document identifier. The KB is derived from a sub-

set of roughly 800K entries from Wikipedia.1 When

no KB entry represents the entity mention in ques-

tion, the correct system response is NIL. Entity link-

ing was a task in both TAC 2009 and 2010, and the

primary change was the expansion of the source doc-

ument collection to include blog and USENET genre

documents in addition to newswire.

To solve this problem, we developed the ELITE

(Entity Linking Informed by Topical Evidence) sys-

tem which employs a three step process. First, the

system generates all possible candidate senses for

the mention string. Next, it incorporates a variety

of evidence to rank the candidates and identify the

most likely sense. Finally, ELITE detects if the top-

ranked candidate is the correct one, or if the actual

sense is unknown and NIL should be returned. We

describe our implementation of these steps in the

following sections.

2.1 Sense Generation

In sense generation, we attempt to identify every po-

tentially correct sense of the query mention string.

We prefer to err on the side of generating too many

candidates, since a recall error at this stage would

likely be irreparable.2 To a lesser degree, we attempt

to avoid the excessive inclusion of spurious senses.

The candidate senses to be returned are ultimately

referenced by their KB node id. Since the KB entries

are a subset of Wikipedia articles, in intermediate

1October 2008 snapshot.
2A correct answer could still be possible if NIL is correct.



processing we represent candidates in the space of

Wikipedia article names. We then treat mapping the

names into the KB as a special case which is handled

during NIL sense detection, described in 2.3.

To generate senses, we utilize several different re-

sources, or sources, which each map entity strings

to candidate senses based on different Wikipedia-

specific features.

Normalized Articles and Redirects (NAR). This

source maps the normalized forms of each arti-

cle’s name and redirect page names to the original

page name. A normalized name is lowercased and

stripped of whitespace and disambiguation labels.

Surface Text to Entity Map (STEM). This

source maps all hyperlink anchor texts to their target

pages. It is particularly useful because popular tar-

gets are more frequently referenced, and can yield a

wide variety of aliases.

Disambiguation Page (DP). This source maps

every disambiguation page name to each of the hy-

pertext anchors on that page which are superstrings

of that page name. A relaxed form of this source

(DPR) requires no such string overlap. The DPR

contains more noise, but occasionally contains a tar-

get not in the DP.

Each of these mappings are stored in a custom

read-only in-memory data structure that facilitate ef-

ficient storage and retrieval of candidate senses for

entity queries. This representation leverages binary

search, parallel arrays of Java primitives, and sorted

ordinal offsets into them to provide fast access and

reasonable space efficiency to millions of relations.3

In addition to these context independent map-

pings, we use several approaches that leverage

source document context.

LongerMentions (LM). We identify senses from

STEM associated with longer mentions of the entity

string in the source document (e.g., query:“Black

Panthers” → text/sense:“New Black Panthers”).

Soft Mentions (SM). To account for near but in-

exact string overlap with the mention, we add soft

mentions as well, which have a high Dice coefficient

with known entity senses (e.g., mention:“Moss”

→ text:“Carrie Ann Moss” → sense:“Carrie-Ann

Moss”).

3In total these resources contain 28 million terms and 56

million relations, but can still be used on standard hardware

(e.g., 2 GB of RAM).

Expanded Acronym Bootstrap (EAB). The sys-

tem also utilizes document context if it identifies the

mention to be an acronym which is defined in its

expanded form (e.g., “in the Democratic Republic

of Congo (DCR)”). Instead of generating additional

senses from this expansion, however, we bootstrap

with this information by updating the query men-

tion string to the expansion and restarting the linking

system. In this way, sense generation is performed

again on this new and more informative text.

Search Engine (SE). Finally, the Google search

engine is very effective at identifying some of the

more difficult mappings between strings and senses.

In our web-allowed runs, we perform queries using

the Google API limited to the English Wikipedia

site. The queries are run offline, and the results are

stored. Online, we filter results by requiring signifi-

cant Dice or acronym-based similarity to the query,

and utilize the top three results as sense candidates.

Using the 2009 entity linking data, we bench-

marked sense recall at 97% when using all of these

sources in combination.

2.2 Sense Ranking

In sense ranking, the system orders the candidates

to identify the most likely sense. To achieve this,

we extract a battery of features representing con-

textual, semantic, and surface evidence. Context

features rely on a Wikipedia link-based similarity

model using low ambiguity context terms. Candi-

dates are ranked with both heuristic and machine

learning methods.

2.2.1 Context Modeling

The importance of context in disambiguation can-

not be understated. In particular we are interested

in comparing the source document context and can-

didate sense context. The sense context is derived

from KB elements, especially the backing text, or

article. A typical approach to measuring similarity

between these documents is the comparison of their

weighted term vectors. This approach was used by

top performing systems in 2009 (Li et al., 2009; Mc-

Namee et al., 2009). Terms however, suffer from

several problems including ambiguity and sparsity.

Sparsity refers to the low likelihood of a direct match

of a literal term or phrase in two documents, even

when the same concept exists in both documents.



Name Size Type Description

Surface

LINK PROB 1 D percent of mention string links in STEM which target the candidate sense

DICE TEST 2 B true if a Dice coefficient score passes the threshold

ACRO TEST 2 B true if passes an acronym test

SUBSTR TEST 1 B true if candidate or mention is a substring of the other

WEAK ALIAS 1 B true if all three surface tests fail

Contextual

CTX SIM 1 D candidate’s average LLS score to context terms

CTX WT 1 B sum of all context term scores

CTX CT 1 I number of context terms

ALIAS HIT 1 B true if high precision alias of this candidate is found

FACT HIT PTS 1 D points awarded if a candidate’s fact phrase is found

Semantic

QUERY TYPE 1 E semantic type of the query string according to NER system

CAND TYPE 1 E semantic type of the candidate according to KB, DBpedia and WRATS

SEM CON 1 B true if query and candidate type are not inconsistent

Sources

SOURCE 7 B true for each source which generates the candidate

SOURCE CT 1 I total number of sources that generates the candidate

Other

LINK COMBO 1 D weighted average between CTX SIM and LINK PROB

WEAK ALIAS SRC 2 B joint feature between WEAK ALIAS and SE or DPR sources

LOG LINK CT 1 I log of total link count to the candidate sense page

SENSE CT 1 I number of candidate senses generated

IS BLOG 1 B true if source document is detected to be a blog

Table 1: Entity Linking Feature Groups.

We address these challenges using an approach

from (Milne and Witten, 2008) which models con-

text terms as Wikipedia page concepts. This no-

tion of a concept term differs in that 1) the term is

disambiguated, and 2) the term is represented by

references from other terms. This approach was

originally used for cross-linking documents with

Wikipedia articles, where disambiguation is per-

formed at the document level. By comparison, our

focus is on correctly linking specific spans of text,

which are individual entities.

Context term candidates are first identified from

low ambiguity spans of text.4 These concepts are

then used to disambiguate less clear terms, namely

the entities requiring linking. Context terms and en-

tity senses are modeled using their corresponding

Wikipedia page, which affords comparison by the

extensive hyperlink graph. Sense and term link sim-

ilarity is computed with the Google Normalized Dis-

tance (Cilibrasi and Vitanyi, 2007) using inbound

4Measured in terms of link probability and observed fre-

quency. In our experiments we found best performance for the

first iteration with respective values of 0.01 and 4.

Wikipedia links as features. This extra step of in-

direction from the original terms provides a rich set

of topical features, which achieves much higher hit

rates than using direct terms.

To select the final set of context terms, each term

is given a score from the average of its linkability

and relatedness. Linkability is the percentage of

times this span is linked in Wikipedia. Relatedness

is the average link similarity to all other candidate

context terms. We also prefer close proximity terms

by selecting the nearest 2*N context terms to the en-

tity mention, reranking them by score, and retain-

ing the top N.5 Finally, where N context terms do

not meet this criterion, we iterate by relaxing the

maximum ambiguity conditions and resampling the

terms.

2.2.2 Features

In the sense ranking step, we use a total of 20 fea-

ture groups which are divided into five categories. A

5We experimented with different values of N and used 8 in

the evaluation.



summary of the features and their types6 is listed in

Table 1.

Surface Features. The first category of fea-

tures focuses on the entity mention independent of

context. LINK PROB indicates the link probabil-

ity based on the percent of mention string links in

STEM which target the candidate sense.

Three groups of binary features each test the sim-

ilarity between the mention string and the candidate

sense’s name. DICE TEST indicates if the maxi-

mum of two cases of the Dice coefficient exceeds

a threshold. One case compares both full length

strings, and the other case takes the maximum of the

left and right aligned scores.7

For all-uppercase mention strings, the

ACRO TEST features indicate whether the mention

might be an acronym of the candidate sense name.

The first variant tests whether these letters in any

order form the uppercase sequence of the words of

the candidate’s name. The other merely requires

that they begin with the same letter (allowing

“TSEC” to match “Taiwan Stock Exchange”).

A third feature, SUBSTR TEST, indicates if the

candidate or mention is a substring of the other. Fi-

nally, a joint feature indicates whether all three of

these surface tests have failed.

Contextual Features. This feature category uti-

lizes portions of the source document outside of the

entity mention. The contextual similarity feature

CTX SIM stores a candidate sense’s average link

similarity to each of its context terms. Additional

features, CTX CT and CTX WT, encode the num-

ber of context terms and the sum of their scores.

Two other features represent contextual clues in

the source document with high correlation to the

candidate sense. ALIAS HIT identifies the presence

of an alternative alias of the sense. Aliases are gen-

erated from the STEM source, and are carefully fil-

tered to retain more specific forms to avoid inciden-

tal hits.8 The goal is to add confidence to a candi-

date sense if one of its aliases – which is different

and more specific than the query string – is found

elsewhere in the document. For example, the query

6Type indicates the feature’s value type, which can be

(B)oolean, (I)nteger, (D)ouble, or (E)numeration.
7Left and right alignment methods truncate the longer string

so that they have equal length.
8This filtering shares logic with the surface test features.

“Secret Service” in a document with the text “US

Secret Service” would fire this feature for the sense

“United States Secret Service” because the presence

of “US” has added additional evidence.

The other contextual clue, FACT HIT, tests the

presence of a related entity, or fact, known through

a relation contained in DBpedia (Auer et al., 2007).

This feature’s weight is inversely proportional with

the frequency of that fact phrase in an independent

corpus.

Semantic Features. Surface and contextual ev-

idence is combined to provide the entity types for

the mention and candidate, along with their com-

patibility. The semantic type for the entity mention

is determined using LCC’s CiceroLite NER system

(Lehmann et al., 2007). The highest scoring type is

identified by averaging the type confidences across

all matching mention strings in the document. If

the greatest confidence is below a threshold, it is set

to NIL.9 This approach yields 65% recall with 96%

precision. The mention type feature QUERY TYPE

allows the classifier to adjust for type-specific differ-

ences, such as a reduced expectation for contextual

evidence.

The candidate sense’s entity type feature

CAND TYPE is set using a cascade of resources

beginning with the KB. If the type is unknown in the

KB, DBpedia is consulted. As a last resort, LCC’s

WRATS ontology10 resource is consulted. Using

this cascaded approach, we observe 97% precision

with 95% recall.

Entity types from CiceroLite, DBpedia, and

WRATS are all reduced to the types in the KB: per-

son, organization, geopolitical and unknown. Hav-

ing identified the types for the mention and candi-

date, a consistency feature SEM CON is set to true

if the types are consistent.11 While this feature fired

to indicate inconsistency in only 10% of queries, it

did so with 96% precision.

Generation Features. One binary SOURCE fea-

ture is created for each source which generated the

candidate sense. This allows the classifier to hedge

9A confidence of 50% was used.
10WRATS contains Wikipedia page names with one of

twelve semantic types and classification confidence, with state-

of-the-art 93% accuracy.
11Types are consistent if they are equal, or if either is un-

known.



depending on the origin of the sense. Another joint

feature SOURCE CT provides the number of gener-

ators which recommend the sense.

Other Features. Several additional features are

used which do not fall cleanly into the above cat-

egories. A joint feature LINK COMBO provides

the weighted average between the link similarity

and link probability. The WEAK ALIAS SRC fea-

tures combine surface feature tests with genera-

tion sources. Two other features, SENSE CT and

LOG LINK CT, provide information about the pol-

ysemy and popularity of the candidate sense. Fi-

nally, a genre feature, IS BLOG, indicates whether

the source context is believed to be a blog.

2.2.3 Ranking Methods

Having these features, we use one of two ap-

proaches to rank the candidate senses. Our heuristic

approach combines contextual, surface, and seman-

tic features into a numeric score. It initializes the

score to the joint feature LINK COMBO, which is

the average of context similarity and link probabil-

ity. It adds a bonus if a high precision alias is en-

countered.12 Finally, it eliminates candidates which

are identified to be semantically inconsistent with

the mention.

Our machine learning approach applies the NIL

Sense Detection classifier described in Section 2.3.

This classifier’s outcome label confidence is used to

re-rank the top N candidates, which have been iden-

tified and initially ranked with the heuristic.13

2.3 NIL Sense Detection

After selecting the preferred sense candidate by

ranking, the final step is to determine if it is believed

to be the correct link for the entity mention. In or-

der for the system to output a non-NIL response, it

must be sufficiently confident that the top candidate

is the correct one, and that the sense is contained in

the KB.

To determine the likelihood of a correct link be-

tween the query entity and the top sense candidate,

we employ a binary logistic classifier. To train this

model, we utilize all senses which our system ranked

to position N or higher, which also had non-NIL

12We selected a weight of 0.2.
13We experimented with N values of 1 and 3.

keys.14 For development we mixed 2009 and 2010

data evenly into a 60/40 train-test split. For the fi-

nal system we trained on all available data. In the

heuristic ranking mode of our system, we utilize a

threshold that was empirically determined over the

development data. If the classifier rejects the candi-

date, the linked entity target is considered to be an

unknown NIL.

Since the set of Wikipedia articles is a superset of

the KB, it is possible for the selected candidate to be

outside the KB. In this case, we call the linked entity

target a known NIL. While this can benefit the sys-

tem by providing a concrete target for known NILs,

it also adds a few challenges.

First, sometimes the system will link to an equiv-

alent concept which is not in the KB, and wrongly

emit a NIL. For example, the system selected “Ab-

bot and Costello” as a known NIL for the query

“Abbot” in the text “which included several Abbot

and Costello comedies”, when the runner up answer

“Bud Abbot” was the keyed one.

Second, since we utilized existing resources from

a different version of Wikipedia than the KB’s back-

ing version15, our process required mapping back

into the relevant version. To do so, we built a “re-

verse map” derived from redirects and the Wikipedia

change log. This process is a somewhat tedious and

imperfect one.16 Otherwise, mapping into the KB

from the relevant version of Wikipedia is trivially

performed, and unmappable candidates result in a

NIL response.

2.4 Experimental Results

We submitted three runs for the linking task, includ-

ing one heuristic-based NIL classification (LCC1)

and two machine learning-based runs (LCC2,

LCC3). The main run LCC1 used no live web ac-

cess. LCC3 varied from LCC2 in that the classifier

bias was relaxed to produce a greater proportion of

14The value of N is determined by the ranking settings. NIL

keys cannot be used, since the actual target is unknown.
15January 2010 snapshot.
16Because the page history is a graph, it is sometimes impos-

sible to infer the original article. Also, not all types of page evo-

lutions are recorded (e.g., when content is moved, as with the

page Movement for Democratic Change). On the 2009 dataset,

reverse mapping errors resulted in 2% accuracy loss.



Submission ALL KNOWN NIL PER ORG GPE

LCC1 85.8 79.2 91.2 96.0 82.4 78.9

LCC2 (Max) 86.8 80.6 92.0 95.6 85.2 79.6

LCC3 86.4 82.4 89.8 95.3 84.5 79.4

Median 68.4 - - 84.5 67.7 59.8

Table 2: Entity Linking Submission Scores.

non-NIL responses.17

Table 2 shows the results of LCC’s three runs,

with overall accuracy as well as accuracy on se-

mantic subsets of the data. Scores which were best

across all 46 task submissions are bolded, and the

median score is shown for reference. LCC2’s over-

all accuracy of 86.8% was the high score for the en-

tire task, though LCC1’s performance in the person

(PER) category was slightly higher. Both ML runs

exceeded the heuristic system; however, the heuris-

tic run lacked live access to the web.

The actual NIL proportion of queries was 54.7%.

LCC3, with its relaxed NIL bias, predicted the most

accurate proportion of NILs, at 54.4%; however,

LCC2 still outperformed LCC3, even with a less ac-

curate ratio of 56.4%. LCC3 generated more errors

overall by attempting to produce more non-NIL en-

tities. Also, NIL outcomes have many ways of being

correct, as opposed to a particular sense, which has

only one way of being correct.

We found that our lowest performing semantic

category of queries was location (GPE). Analysis re-

vealed that locations often had insufficient or mis-

leading document context, particularly in web docu-

ments. In more than one instance, a document had a

strong entertainment context, which then caused the

selection of an entertainment-oriented entity over

the correct location. For example, “AZ” was re-

solved to the rapper, rather than the U.S. state. This

was compounded by a configuration bug in LCC2

and LCC3 which did not utilize the semantic consis-

tency feature during candidate ranking, which would

have eliminated person matches for a location type.

Another class of errors were due to excessive le-

niency in candidate generation. In an effort to ob-

tain all correct senses for entities, the system pro-

duced too many candidates which then resulted in

more difficult disambiguation. The DPR source was

a prolific offender.

17This parameter adjustment was selected due to a perceived

overweighting of NIL instances in the training corpus.

In general, our system successfully utilized the

single sense per discourse (SSD) principle. How-

ever, in several cases, such as with the dateline query

“BUFFALO[, N.Y.]”, the system mistook context

elsewhere in the document to be indicative for the

query entity. Consequently, the document context

for the sports teams “Buffalo Bills” and “Buffalo

Sabres” beat out the location.

In one case, finer grained semantic types were

required to distinguish “Bengkulu” as a city rather

than the province. Adding to the challenge was the

overwhelming prior probability on this entity as a

province, at 86% versus 13%. Our systems do have

access to finer grained distinctions, but time was not

available for system development to properly utilize

these resources for the submission.

Evaluation results were consistent our expecta-

tions, based on previously observed performance. In

post-hoc evaluation on the 2009 data and 2010 train-

ing data, scores ranged from 86-90%, indicating bet-

ter than state-of-the-art accuracy.

3 Slot Filling

The Slot Filling task consists of extracting relation-

ships and attributes for target entities. A slot filling

query consists of the text of an entity, the document

it occurred in, and a reference to a node in the KB

if applicable. In the 2010 KBP task specification,

there are 42 different slot types defined: 26 for per-

sons and 16 for organizations. Each of these slots

are defined as being single- or list-valued.

The task of slot filling can be thought of as a

constrained form of question answering. For ex-

ample, filling the Subsidiary slot for the target en-

tity “Samsung” is like asking the question, “What

are the subsidiaries of Samsung?” For this reason,

our approach to slot filling follows the same series

of processing stages typical to a question answering

system (Harabagiu et al., 2001).

Our system’s first stage is query processing,

which analyzes the query in order to understand



which entity is being targeted and how to locate it in

text. Next is passage retrieval, which selects relevant

passages from the corpus that contain references to

the target entity. After selecting these passages, can-

didate answers are extracted. Finally, these candi-

date answers are merged and the top slot fill(s) are

selected. We describe our implementation of these

steps in the following sections.

3.1 Query Processing

Given a slot filling query, the system’s first task is to

properly understand that query, namely the identity

of the target entity. For entities contained in the KB,

a node id is provided. But for entities outside the

KB, the node id is marked NIL. Here we employ the

entity linking system in order to distinguish between

NIL and known NIL target entities.

Having identified and linked all non-NIL entities,

the system next generates aliases. This process uses

the resources described in Section 2.1, except the

mapping performed is the opposite of that in sense

generation. Since these aliases are used for docu-

ment retrieval, we increase their precision using a

layer of statistical filtering.

3.2 Passage Retrieval

During passage retrieval, the system finds passages

which could contain a reference to the target entity.

A query is created to search the source corpus for all

documents containing a reference to the entity. The

source corpus is stored in a Lucene18 index for this

purpose. Ideally, we would run the linking system

over the entire source document corpus and index

the results for searching (as we do with named en-

tity types); however, since we did not have time, we

use the entity name and generated aliases to perform

searches.

Results are filtered to include only passages con-

taining an alias or an entity coreferential to an alias.

For this task we use precision-oriented name and

pronoun coreference methods.19

3.3 Answer Extraction

For answer extraction, the system identifies relation-

ships between the target entity and potential slot fills

18http://lucene.apache.org
19Later analysis showed that nominal coreference would have

been more beneficial than anticipated.

by running a set of relation extractors over the re-

trieved passages which are associated with each slot

to be filled. The relation extractors leverage entity

extraction. In several cases, custom entities were

created to handle new entity types. Additionally, we

make use of answer projection, which obtains an-

swers outside the source collection, to both locate

candidates as well as validate the answers found by

relation extractors.

Relation Extraction. A variety of LCC tools

were used to perform relation extraction. The first

was CiceroCustom, a rapidly customizable event

and relation extraction system, which uses automatic

topic detection, active learning, and cascades of ma-

chine learning classifiers. Snapshot models are con-

tinually created throughout the annotation process,

and new training examples are selected based on the

model’s uncertainty of those examples. This reduces

the amount of human interaction required by avoid-

ing the annotation of examples about which the sys-

tem is already confident. The second tool our ap-

proach utilized was a template-based system built on

top of a semantic parser. The final relation extraction

tool was a set of rules built with LCC’s proprietary

Packrat grammar system (Lehmann et al., 2005).

Custom Entity Extraction. KBP slot filling in-

cludes several relations which require entity types

that were not defined by CiceroLite. The primary

tool used to fill these gaps was Welder, a system that

allows the rapid creation of extractors for new en-

tity types using data from Wikipedia as well as the

web. Welder derives a rich array of semantic features

from both semi-structured data, including Wikipedia

categories and hyperlinks, as well as unstructured

data, such as subject complement patterns (Hearst,

1992). Higher precision is obtained using features

similar to those in the entity linking system, such

as LINK PROB. In addition, topically-related con-

textual terms relevant to the entity class, obtained

from weakly-supervised learning, are used for dis-

ambiguation. To handle exceptional cases, additions

to CiceroLite’s customizable rule layer were made.

KBP Customization. Existing LCC extractors

covered approximately 30 of the KBP slots and new

extractors were created for the rest. Special han-

dling had to be added for certain slots. For exam-

ple, the LCC Hiring extractor denotes an employ-

ment relationship, while our Join extractor may de-



note employment or membership, depending on the

type of organization joined. Most of the entity types

required existed in CiceroLite, but Welder was used

to extend our coverage of crimes, death causes, and

the different types of organizations (to distinguish

membership/employment).

Answer Projection. We also developed a projec-

tion module with the aim of taking known slot-filling

attribute values from structured reference sources

and finding evidence to verify them in the source

document corpus. First, the module gets input at-

tribute values for the target entity from structured

reference resources like DBpedia. We selected

attributes from the reference source which corre-

sponded to the requested slot fills. We picked the

appropriate reference fields using a combination of

analysis techniques utilizing the semantics of the

field names and verifying known values from avail-

able keyed data. The attribute values were alternated

using different heuristics depending on the nature of

the value; for example, for birth date, only the year

was required. An answer was extracted if the en-

tity mention and attribute value mention occurred in

the same sentence. This approach was beneficial in

raising the recall of our system.

3.4 Answer Processing

After running all of the relation extractors, the can-

didate answers are merged and ranked to form the

final answers for system output.

Merging. Merging of answers is necessary be-

cause the same concept can be referred to in mul-

tiple ways. This includes synonymous texts, writ-

ing styles and conventions, usage of popular aliases,

and even misspellings. We use four steps to merge

answers. First, coreference chains are used to nor-

malize pronouns and partial names to their canon-

ical form. Next, answers are combined if they

are found to have synonym, hypernym, or hy-

ponym relationships according to WordNet (Fell-

baum, 1998). Then, answers which are linked to

the same Wikipedia concept are merged. Finally,

surface-level variations (e.g., typos) are detected us-

ing the Dice coefficient.

Ranking. For single-valued slots, candidates

must be ranked in order to select the best answer

for a query. We use a scoring function based on

answer’s merged group size, with candidates from

higher precision retrieval strategies weighted more.

For known or known NIL target entity queries, we

again apply our entity linking system. We give pref-

erence to answers in context with an entity with

high link confidence to the target entity. For list-

valued slots, one value was selected from each set of

merged values, selected first by frequency and then

by length.

3.5 Experimental Results

We submitted three different runs for the slot fill-

ing task. Our first submission consisted of our core

extraction system with no web access or projection.

The second submission included projection for bet-

ter recall, but used aggressive context filtering to

maintain precision. Our third and final submission

did not filter projection or use entity linking, but

considered fewer candidates. This was intended to

enhance the recall.20 The scores obtained by each

of our runs are listed in Table 4 and the breakdown

between single- and list-valued slots are in Table 3.

Submission P R F

LCC1 45.3 18.8 26.6

LCC2 44.9 19.4 27.1

LCC3 43.6 19.2 26.7

LCC1 + no aliases 48.1 15.8 23.8

LCC1 + manual aliases 48.9 16.8 25.0

Median 21.4 10.5 14.1

Max 66.8 64.8 65.8

Table 4: Slot Filling Submission Scores.

Both the precision and recall of the system were

lower than expected. Our development set scores

had a precision of around 80% with recall around

35%. The majority of precision errors tended to be

from imprecise relation extractors, incorrect named

entity recognition, or coreference errors.

One source of errors was caused by an issue in

linking target entities. For example, the entity “Sean

Preston” was linked to his mother “Britney Spears”,

because on Wikipedia his name redirects to her page.

This caused the entities to be considered aliases of

each other, which hurt our precision. Surprisingly,

this issue was never encountered during develop-

ment of our entity linking system.

We thought that the entity linking system might

significantly improve our precision in the case where

20Because of the way the candidates were filtered, this actu-

ally had lower precision and recall.



LCC1 LCC2 LCC3

Single List Total Single List Total Single List Total

P 74.7 36.5 45.3 73.6 39.4 44.9 71.6 38.2 43.6

R 26.5 16.9 18.8 26.5 17.8 19.4 26.5 17.6 19.2

F 39.1 23.7 26.6 39.0 24.5 27.1 38.6 24.0 26.7

Table 3: Single-valued vs. List-valued Slot Filling Scores.

an entity target name was polysemous. In practice,

this did not occur, as 98% of the known NILs were

the most popular entity for that name. Since the an-

swers extracted almost always concerned the target

entity, this left little opportunity for the linking sys-

tem to improve results by filtering out spurious can-

didates.

On the other hand, the linking system did pro-

vide benefits to system recall. Using no aliases

at all resulted in a F-score of 23.8. During post-

evaluation analysis, a human annotator went through

the aliases and created a manual set of unambiguous

aliases, which resulted in a F-score of 25.0, actually

lower than with automatic aliases, as illustrated in

Table 4. While automatic aliases caused precision

errors, they benefited our system by improving re-

call.

Another source of precision errors was

mapping from LCC extractors to KBP slot

types. Both Membership/Employment and

Org Member Of /Subsidiary can be tricky to

differentiate. For a real world extraction system,

these errors are not as problematic since it would

be reasonable to collapse these into Affiliation and

Org Part Of.

The recall errors are spread out across the differ-

ent slot types, and are mostly due to the variety of

patterns not seen during system training.

4 Surprise Slot Filling

The surprise slot filling task is new for KBP 2010.

The purpose of this task is to test the efficient porta-

bility of extraction systems to novel tasks. Both Ci-

ceroCustom and Welder were designed to rapidly

develop extractors, and both were heavily used. The

surprise slot types are Awards Won, Charities Sup-

ported, Diseases, and Products.

4.1 Customization

Our approach to the surprise slot filling task was to

create custom extractors for each new slot type.

Awards Won. This extractor made use of an ex-

isting Award entity type in CiceroLite supplemented

by a fresh Welder-generated lexicon of 11,700 com-

mon awards. To extract the Awards Won relations,

we created a CiceroCustom extractor around this en-

tity type, as well as a grammar rule.

Charity Supported. This slot type requires hav-

ing a strong lexicon of charities. We used Welder

to learn the names of 7,400 charities. Unfortunately,

many of the charities mentioned in the source data

collection are not famous21 enough to learn with

Welder. However, many of these unknown char-

ities contain words such as “Society”, “Fund”, or

“Save”. We used a statistical approach over the

7,400 known charities to learn these terms. To ex-

tract charities supported, we created a custom re-

lation extractor. This extractor found a contextual

relation between charities and persons within a cer-

tain distance of each other. Because this is a low

precision approach, we used Welder to create a lexi-

con of giving/supporting terms, which were required

within the context.

Diseases. Welder was used to create a lexicon of

27,900 diseases. A CiceroCustom extractor was cre-

ated to extract Diseases relations, along with a sup-

plementary grammar rule.

Product. The Product slot was not only the most

difficult slot in the surprise task, but also the most

frequently occurring one. One reason product ex-

traction is difficult is because traditional NER spec-

ifications do not provide a parent type from which

to begin customization. Also, products are often

named after other entities, and occur in a wide va-

riety of contexts.

We found Welder to be very effective in creating

lexicons for specific product types. For example, we

created a lexicon of 872 microprocessors. However,

it was infeasible to manually “weld” lexicons for ev-

ery conceivable product category, in the span of this

21A famous entity being either frequently mentioned on the

Internet or having a page in Wikipedia.



evaluation. Therefore, we primarily relied upon a

recall-oriented rule-based approach.

4.2 Experimental Results

We made two submissions for the surprise task. The

first was made after 11 hours, with a total of 29 man

hours. The second was after 34 hours, with an ad-

ditional 29 man hours spent. The second day was

mainly spent improving our recall, specifically for

the product extractor. The results obtained by our

system for the Surprise Task are listed in Table 5.

The additional day of work between our two sub-

missions provided significant improvements, adding

57% in recall. With only this small amount of work,

our scores on the surprise task are close to those of

the regular slot filling task.

Slot LCC1 LCC2

Type P R F P R F

Award 56.5 19.7 29.2 55.6 22.7 32.3

Charity 48.1 19.1 27.4 48.1 19.1 27.4

Disease 42.8 22.2 29.3 46.7 25.9 33.3

Product 50.5 13.3 21.1 53.0 25.3 34.3

Total 50.3 15.4 23.6 52.3 24.2 33.1

Table 5: Surprise Slot Filling Scores per Slot Type.

Table 6 shows our results which were the best

obtained by any completely automatic approach for

this task.22 LCC was the only team to obtain scores

with F-measure of greater than 10% (Ji et al., 2010).

The table also displays elapsed time, which shows

the increase in performance after a second day of

customization.

Submission P R F Time

LCC1 50.3 15.4 23.7 11 hours

LCC2 (Max) 52.4 24.2 33.1 34 hours

Table 6: Surprise Slot Filling Submission Scores.

This surprise task also showed the usefulness of

Welder in generating large entity lexicons in a short

period of time. Without these lexicons, the system

performance would have been significantly worse.

Finally, the challenges experienced during this eval-

uation have already helped us create improvements

to our customization software.

Our performance was lower than expected, espe-

cially the recall. Both precision and recall on the de-

velopment set were around 50%; however, the size

22One team submitted better results, but these required man-

ual intervention by human users.

of that set was very small. The Awards Won extrac-

tor suffered from our system’s lack of structured data

extraction. Several documents contained bulleted

lists of award winners, which our system was un-

able to parse. The Diseases extractor was trained on

fairly simple sentences, and struggled with several

of the more complicated sentences that occurred in

the test data. Despite our attempt to make the Char-

ity Supported extractor high precision, our system

occasionally struggled to tell when someone was

supporting the charity or just mentioned in context

with it. Finally, the Product extractor was fairly im-

precise. An example of an error was “Porsche Cor-

ral”, which looks a model of Porsche, when in fact it

is an event. More time is required in order to build a

high quality all-encompassing product extractor.

5 Conclusions

The KBP track at the TAC 2010 marks the sec-

ond year of this important information extraction

evaluation. KBP emphasizes the need for linked

data, where information mined from text can be con-

nected to and stored with preexisting knowledge of

entities in the world.

This year, additional changes were made to the

tasks which further increased their realism. One

such change to the Entity Linking task extended its

document collection to include blog and USENET

genre documents in addition to newswire. Another

change was the addition of a new surprise version

of the Slot Filling task. It tests the adaptability of

extraction systems to new domains under time con-

straints.

This was LCC’s first year in the evaluation, and

we participated in three tasks. For entity linking, we

used a three step process of sense generation, sense

ranking and NIL sense detection. It achieved high

recall of entity senses through both context-free and

context-dependent sense generation sources. Key

to our system was a robust context modeling ap-

proach which used Wikipedia link-based similarity

with low ambiguity context terms. NIL sense de-

tection was achieved with a logistic classifier and

twenty feature groups. Our system achieved accu-

racy scores in the upper 80’s, which proved to be

best in the task this year.

Our slot filling system utilized processing stages



similar to that of a question answering system. It

applied four independent relation extraction systems

to obtain answers, including both machine learning

and rule-based methods. The entity linking system

was employed to disambiguate known NIL queries,

generate aliases, and link final candidate answers.

Despite being one of the higher performing systems,

results were lower than expected, underlining the

difficulty of the task. Factors included overfitting

our system on the limited training data, and a special

breed of linking errors which harmed system preci-

sion.

For the surprise system, we customized our slot

filling system to four new slot types in a matter of

hours. This involved not only the creation of sev-

eral new relation but also entity extractors. Results

were submitted after one day and again after a sec-

ond day, where day two results demonstrated a 40%

improvement in F-measure. At a fraction of the time

invested, performance exceeded that of the system

on the regular slot filling task. Though scores were

lower than anticipated, LCC’s submission achieved

an F-measure three times higher than any other fully

automated approach. Challenges included overfit-

ting on the very limited training data and the task of

rapidly developing a general purpose product extrac-

tor from scratch. We appreciated the opportunity to

participate in this new exercise, and are continuing

to improve our customization process based on this

experience.

A demo of LCC’s extraction capabilities incorpo-

rating some of the described linking and slot filling

technology can be found online.23

6 Acknowledgements

The authors gratefully acknowledge the support and

funding of part of this work by the Air Force Re-

search Laboratory (AFRL). Any opinions, findings,

and conclusion or recommendations expressed in

this material are those of the authors and do not nec-

essarily reflect the view of the AFRL or the US gov-

ernment.

23http://demo.languagecomputer.com/cicero

References

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, and Z. Ives.

2007. DBpedia: A Nucleus for a Web of Open Data.

In 6th Intl Semantic Web Conference, Busan, Korea,

pages 11–15. Springer.

R.L. Cilibrasi and P.M.B. Vitanyi. 2007. The Google

Similarity Distance. IEEE Transactions on Knowl-

edge and Data Engineering, 19:3:370–383.

C. Fellbaum, editor. 1998. WordNet: An Electronic Lex-

ical Database. MIT Press.

S. Harabagiu, D. Moldovan, M. Pasca, R. Mihal-

cea, M. Surdeanu, R. Bunsecu, R. Girju, V. Rus,

and P. Morarescu. 2001. The Role of

Lexico-Semantic Feedback in Open-Domain Textual

Question-Answering. In ACL01.

M. Hearst. 1992. Automatic Acquisition of Hyponyms

from Large Text Corpora. In 14th International Con-

ference on Computational Linguistics.

Heng Ji, Ralph Grishman, and Hoa Trang Dang. 2010.

Overview of the TAC 2010 Knowledge Base Popula-

tion Track. In TAC (Text Analysis Conference) 2010

Workshop.

J. Lehmann, P. Aarseth, M. Deligonul, L. Nezda, and

A. Hickl. 2005. ACE 2005 TERN System Descrip-

tion: TASER. In Proceedings of 2005 Automatic Con-

tent Extraction Conference.

J. Lehmann, P. Aarseth, L. Nezda, Sarmad Fayyaz,

Arnold Jung, Sean Monahan, and Meeta Oberoi.

2007. Language Computer Corporation’s ACE 2007

System Description. In Proceedings of 2007 Auto-

matic Content Extraction Conference.

F. Li, Z. Zheng, F. Bu, Y. Tang, X. Zhu, and M. Huang.

2009. QUANTA: KBP (Entity-linking Task, Slot-

filling Task), RTE (Two-way Task). In TAC (Text Anal-

ysis Conference) 2009 Workshop.

P. McNamee, M. Dredze, A. Gerber, N. Garera, T. Finin,

J. Mayfield, C. Piatko, D. Rao, D. Yarowsky, and

M. Dreyer. 2009. HLTCOE Approaches to Knowl-

edge Base Population at TAC 2009. In TAC (Text Anal-

ysis Conference) 2009 Workshop.

D. Milne and I.H. Witten. 2008. Learning to link with

Wikipedia. In ACM Conference on Information and

Knowledge Management (CIKM’2008).


