Slot Filling through Statistical Processing and Inference Rules

Vittorio Castelli, Radu Florian, Ding-Jung Han

November 15th, 2010
Overview

- System descriptions
- Results
- Follow-up experiments
System

Preprocessing

Documents

Information Extraction System

Cross-doc Coreference System

Lucene

Run-time

TAC-KBP KB

Doc Index

TAC-KBP KB

Redundancy Removal

Single-doc Filler Extraction

Document Retrieval

Answers

Document, Entity Pairs

Query

No external knowledge source is used.
Preprocessing

Documents → Information Extraction System → Cross-doc Coreference System → Lucene

Run-time

TAC 2010 Workshop

© 2010 IBM Corporation
Wu Shu-chen, the former first wife, visited her husband Chen Shui-bian in detention in the morning.

She was accompanied by their son Chen Chih-chung and Lawrence Gao, a Democratic Progressive Party lawmaker.
Wu Shu-chen, the former first wife, visited her husband Chen Shui-bian in detention in the morning.

She was accompanied by their son Chen Chih-chung and Lawrence Gao, a Democratic Progressive Party lawmaker.
Wu Shu-chen, the former first wife, visited her husband Chen Shui-bian in detention in the morning. She was accompanied by their son Chen Chih-chung and Lawrence Gao, a Democratic Progressive Party lawmaker.
Wu Shu-chen, the former first wife, visited her husband Chen Shui-bian in detention in the morning. She was accompanied by their son Chen Chih-chung and Lawrence Gao, a Democratic Progressive Party lawmaker.
Wu Shu-chen, the former first wife, visited her husband Chen Shui-bian in detention in the morning. She was accompanied by their son Chen Chih-chung and Lawrence Gao, a Democratic Progressive Party lawmaker.
Information Extraction System

- Trained on data annotated based on KLUE2 ontology
 - 52 entity types: PERSON, ORG, EVENT_MEETING etc
 - 47 relation types: locatedAt, employeeOf, partOfMany etc

- Targeted annotations for low-count relations (< 100 instances)
 - 22 relation types
 - 846 additional documents (short self-sufficient paragraphs): 16.9k mentions and 8.3k relations

- Total: 1367 documents
 - 85.8k mentions and 33.4k relations
Improvements On Mention Detection/Coreference

- **Mention Detection**
 - Using revised annotation ontology KLUE2
 - Improved from last year: $F = 78.57 \rightarrow 82.95$

- **Coreference Resolution**
 - Used hard constraints induced by parse-tree paths
 - Improved from last year: $F = 68.48 \rightarrow 69.31$ (on system mentions)
 - While reducing run-time by 50%
Improvements on Relation Detection

- **Sequential Decoding of Relations**
 - Modeling the dependency between relations
 - Are both *locatedAt* relations valid?
 - A 23-year-old [man](green) will appear in [court](gray) Thursday in connection with the failed [bombings](gray) in [London](green).

- **Decode using a stack decoder**
 - Order mention pairs within each sentence, from left to right
 - For each mention pair, run the existence detector and the type classifier (both are MaxEnt-based)
Relation Detection

- Cascaded Model (TAC-KBP 2009)
- Sequential Model

(on true mentions/entities)
Documents → Information Extraction System → Cross-doc Coreference System

Doc Index → TAC-KBP KB

Answers → Redundancy Removal → Single-doc Filler Extraction

Query → Document, Entity Pairs

Preprocessing

Run-time
Cross-Document Coreference

- **Via Entity Linking** *(TAC-KBP 2009)*
 - (Entity, Document) → KB ID or null
 - Built a reverse document index
 - Keys are KB ID, values are documents containing the KB ID
Preprocessing

Documents

Information Extraction System

Cross-doc Coreference System

Lucene

Run-time

Answers

Redundancy Removal

Single-doc Filler Extraction

Document Retrieval

Document, Entity Pairs

Query
Document Retrieval

Query

Query Document

YES

Query has KB ID?

NO

Consult Reversed Document Index

Get documents from Lucene Search

KB ID	Doc IDs
kbe0109446 | Doc_1234 Doc_5678 ...
...
...

Query Expansion for Acronyms

Query Match 1 Document 1

Query Match 2 Document 2
Documents Indexing with Lucene

- **Indexing only mention strings**
 - If we miss mentions, we miss documents

- **Improving mention detection**
 - Added query mentions to dictionaries of applicable types
 - “CC” is added to the ORGANIZATION dictionary
 - Nudge the system to treat them like the other dictionary entries
 - Improved document recall: 77.79 → 84.62 (LDC training queries)
Acronym Query: “CC”

- Comedy Central? Circuit City?
 - Query Document: Following an investigation, the Competition Commission (CC) said it was seeking ...

- If a query is an acronym
 - Find full names in the query document
 - Retrieve documents using both the acronym and the full names

- Significant improvement: doc recall 0 → 100 while reducing # of docs retrieved from 1.3k to 180.
Example: per:children

Query: Chen Shui-bian

Wu Shu-chen, the former first wife, visited her husband Chen Shui-bian in detention in the morning.

She was accompanied by their son Chen Chih-chung and Lawrence Gao, a Democratic Progressive Party lawmaker.
Example: per:children

Query: Chen Shui-bian

Wu Shu-chen, the former first wife, visited her husband Chen Shui-bian in detention in the morning.

She was accompanied by their son Chen Chih-chung and Lawrence Gao, a Democratic Progressive Party lawmaker.
Example: per:children

Query: Chen Shui-bian

Wu Shu-chen, the former first wife, visited her husband Chen Shui-bian in detention in the morning.

She was accompanied by their son Chen Chih-chung and Lawrence Gao, a Democratic Progressive Party lawmaker.
Example: per:children

Query: Chen Shui-bian

Per:children: Chen Chih-chung

Wu Shu-chen, the former first wife, visited her husband Chen Shui-bian in detention in the morning. She was accompanied by their son Chen Chih-chung and Lawrence Gao, a Democratic Progressive Party lawmaker.
Example: per:children

Query: Chen Shui-bian

Per:children: Chen Chuh-chung

Wu Shu-chen, the former first wife, visited her husband Chen Shui-bian in detention in the morning. She was accompanied by their son Chen Chih-chung and Lawrence Gao, a Democratic Progressive Party lawmaker.
Single-Document Slot Filler Extraction

Find all relevant entities:

- Chen Shui-bian
- Document
- Wu Shuchen, her, she
- their
 - per:children
 - Chen Chih-chung
- per:spouse
 - their
 - Wu Shuchen, her, she
- Chen Shui-bian, her, she
- partOfMany

Relation Inference:

- Chen Shui-bian, husband
- son, Chen Chih-chung
- per:children

Collect non-duplicate fillers:

- Chen Shui-bian
 - Per:children: Chen Chih-chung.
Relation Inference

- **Level 0**: no inference (just use the original relations)
- **Level 1**: use basic relation properties
 - Equivalence, transitivity, symmetry.
- **Level 2**: use simple implications
 - *Palmisano* managerOf *IBM* implies *Palmisano* employeeOf *IBM*.
- **Level 3**: relation chaining
 - If *Ben* colleague *Vittorio* and *Vittorio* employeeOf *IBM* then *Ben* employeeOf *IBM*.
- **Level 4**: recursive reasoning (using extracted slots in inference)
 - If *Chen Shui-bian* per:spouse *Wu* and *Wu* per:children *Chen Chih-chung*, then *Chen Shui-bian* per:children *Chen Chih-chung*.
Example Rules

per:date_of_birth(X,Y) :- bornOn(X,Y).
per:age(X,Y) :- ageOf(X,Y).
per:employee_of(X,Y) :- employedBy(X,Y).

per:religion(X,Y) :- partOfMany(X,Y), religious(Y).
per:religion(X,Y) :- located(X,Z), religiousFacility(Z,Y).

per:origin(X,Y) :- isOrigin(Y), coref(X,Y).
per:origin(X,Y) :- partOfMany(X,Y), isGPE(Y).
per:origin(X,Y) :- per:sibling(X,Z), per:origin(Z,Y).
per:origin(X,Y) :- partOfMany(X,Z), per:origin(Z,Y).

per:siblings(X,Y) :- isSibling(Y), relativeOf(X,Y).
per:siblings(X,Y) :- per:parents(Z,X), per:parents(Z,Y), X!=Y.
per:siblings(X,Y) :- partOfMany(X,Z), per:siblings(Z,Y), X!=Y.
Redundancy Removal

- Accumulate instance counts for fillers.

- **Group fillers into equivalence classes**
 - Fillers linked to the same KB entity are grouped.
 - Group fillers based on string similarity.
 - Heuristics for person/organization names.

- **Pick the highest \(n \) classes based on counts:** representatives (longest) are answers.
Results & Conclusions
Internal Results on LDC Training Queries

- Baseline: r/p/f=17.21/24.05/20.06
- Submission: r/p/f=36.85/33.02/34.83
- Relation filtering (threshold = 0.85)
- Relation filtering (threshold = 0.58)
- Give up dbpedia
- Eq-classing fillers
- Corpus v3
- max 800 docs
- Query expansion for acronyms
- Deal with wrong GPE mentions in ORG queries
- Lucene docs vetting
Official Results

- **IBM1**: max 5k docs for extraction, and 2 slot types filtered (per:employee_of and per:charges)
- **IBM2**: Same as IBM1 but no slot type was filtered
- **IBM3**: Same as IBM1 but with max 800 docs for extraction

<table>
<thead>
<tr>
<th>System</th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM1</td>
<td>28.0</td>
<td>27.0</td>
<td>27.5</td>
</tr>
<tr>
<td>IBM2</td>
<td>25.3</td>
<td>29.0</td>
<td>27.0</td>
</tr>
<tr>
<td>IBM3</td>
<td>31.0</td>
<td>25.9</td>
<td>28.2</td>
</tr>
<tr>
<td>Human</td>
<td>70.1</td>
<td>54.1</td>
<td>61.1</td>
</tr>
<tr>
<td>TopSystem</td>
<td>66.8</td>
<td>64.8</td>
<td>65.8</td>
</tr>
<tr>
<td>Top2System</td>
<td>66.5</td>
<td>18.7</td>
<td>29.2</td>
</tr>
</tbody>
</table>
Effect of Inference on Performance

Level 0: no inference
Level 1: basic relation properties
Level 2: simple relation implications
Level 3: relation chaining
Level 4: recursive reasoning
Post-filtering

- Reject a filler based on its inference traces
 - Potential gain in precision

- Trained a MaxEnt model to reject a filler
 - Training data: system output without redundancy checks
 - Features: inference traces with no lexical info
 - 3.7k/ 4.5k positive/negative examples

“Sam Palmisano, the current chief executive officer of IBM, ...”
Post-filtering (10-fold cross-validation)

<table>
<thead>
<tr>
<th>T</th>
<th>Accuracy</th>
<th>True Positive %</th>
<th>False Negative %</th>
<th>False Positive %</th>
<th>True Negative %</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 1</td>
<td>33.4</td>
<td>33.4</td>
<td>0</td>
<td>66.7</td>
<td>0</td>
</tr>
<tr>
<td>T = 0.8</td>
<td>56.7</td>
<td>31.3</td>
<td>2.0</td>
<td>41.3</td>
<td>25.4</td>
</tr>
<tr>
<td>T = 0.5</td>
<td>73.3</td>
<td>19.4</td>
<td>12.7</td>
<td>14.0</td>
<td>53.9</td>
</tr>
</tbody>
</table>

Reject a filler only if classifier predicts WRONG with confidence > T
Conclusions

- Demonstrated an effective combination of statistical IE and rule-based reasoning
- Observed significant benefits from recursive reasoning
- Established a direction towards a fully statistical system