
UCD IIRG at TAC 2011

Lorna Byrne

School of Computer Science

& Informatics

University College Dublin

Ireland

lorna.byrne@ucd.ie

John Dunnion

School of Computer Science

& Informatics

University College Dublin

Ireland

john.dunnion@ucd.ie

Abstract

This notebook paper describes the IIRG sys-
tems entered in the TAC 2011 Knowledge Base
Population Track. In 2010, we participated in
the Regular Slot filling Task(Byrne and Dun-
nion., 2010), and while we scored well with re-
spect to precision our system was found to have
very low coverage. This year, we found our-
selves dealing with a similar trade-off between
precision and recall.

1 Introduction

This is the second year that the IIRG (Intelligent In-
formation Retrieval Group) from University College
Dublin has participated in TAC’s Knowledge Base
Population (KBP) Track. The Knowledge Base Pop-
ulation Track is composed of two related tasks: En-
tity Linking (EL) which links entity mentions to their
corresponding entities in the Knowledge Base and
Slot Filling (SF) which augments existing Knowledge
Base entities with novel information. Entity Link-
ing tasks process the entity types Person (PER), Or-
ganisation (ORG), and Geo-Political Entity (GPE)
whereas Slot Filling tasks are limited to PER and
ORG entity types only. This year there were five
tasks in the KBP track: Mono-Lingual Entity Link-
ing and Regular English Slot-Filling Tasks, both of
which also ran last year, and three new tasks in-
troduced in KBP2011, Full Temporal Slot Filling
(TSF), Diagnostic Temporal Slot Filling and Cross-
Lingual Entity-Linking.

This year we participated in the Regular Slot Fill-
ing, Full Temporal Slot Filling and English Entity
Linking tasks. TAC provides participants with a
large source collection of 1,777,888 documents, con-
sisting mainly of newswire and Web documents, and
a reference knowledge base consisting of 818,741
nodes. Participants are required to use the source

collection to discover information about target enti-
ties; if any attributes are found they should be novel,
and thus systems also need to check if any of these
attributes already exist in the knowledge base.

In KBP2011, we participated in the Regular Slot
Filling task again and the Entity Linking and Tem-
poral Slot Filling tasks for the first time. In last
year’s submission for the Regular Slot Filling we sac-
rificed a good recall score for high precision and so
with this in mind tried to improve our Regular Slot
Filling system to enhance recall. For both the En-
tity Linking and Temporal Slot Filling task, having
never participated in these tasks before we built very
simple systems in order to familiarise ourselves with
these tasks.

2 Regular Slot Filling Task

The slot filling task is similar to the task of Ques-
tion Answering (QA). QA systems generate answers
in response to queries, normally a natural language
question, over large collections. The objective of SF
systems is to return a slot-value (exact answer) in re-
sponse to a slot query. Each slot query could easily
be transformed into an equivalent question or set of
questions for use in a QA system. The SF task could
be viewed as a specialised QA task where the ques-
tions remain the same and only the target or focus of
the questions change. Given the similarities between
the two tasks and our previous research, we decided
to approach this task from a QA perspective.

Our system follows a simple pipeline architecture
similar to that of a traditional Question Answering
System described in Pasca (Pasca, 2003). The SF
pipeline consists of three main modules: Query Pro-
cessing, Passage Retrieval and Slot-Value Selection.
We have implemented a two-stage retrieval module.
In the first stage, we retrieve a set of documents in re-
sponse to the target entity in the initial query using

an off-the-shelf document retrieval component. In
the second stage, we reduce this search space to pas-
sages in order to identify passages and segments that
match the generated candidate patterns and then ex-
tract a slot-value based on an identified slot-value
type in as narrow a search space as possible.

2.1 Pre-Processing

In this phase of the system development we used
the data from both the 2009 and 2010 Regular Slot
Filling Tasks as a source of training data. We cre-
ated training examples by extracting the slot-value
at the sentence-level and annotated occurences of
the target entity and the slot-value. There were
some slot-values for which it was necessary to create
patterns manually; for example, URL patterns to
identify websites to extract for the slot org:website.
While extracting training data we found in many
cases that the slot-value occurs in close proximity
to the target. For example, consider the following
sentences for the slot per:date of birth where the
person is the target-entity and the date is the
slot-value:

Raul Castro was born on June 3, 1931
Sean Preston, was born in September 2005
Hugo Chavez was born on July 28, 1954

Candidate patterns were then generated around
the slot-value in such text segments. These were
used later in the selection process, using a com-
bination of the Stanford POS tagger and Stanford
NER tools1. An example of one simple pattern that
can be created from the examples above for the slot
per:date of birth, is the following:

<person> VB:bear <date>

Any verb encountered is usually reduced to its
canonical form to allow for greater coverage.

Given the similarities between Slot-filling and
Question Answering, it is also possible to translate
the slots themselves into equivalent questions for use
in a QA system. For example, there are a number of
questions which correspond to the slot per:age:

When was <target-entity> born

How old is <target-entity>

What age is <target-entity>

. . .

. . .

Identifying questions such as these allowed us
to augment our candidate patterns with previously
learned patterns from QA research or from previ-
ously run QA tracks such as TREC.

1http://nlp.stanford.edu/software

It is also possible to identify an Expected Value
Type for each slot from the training examples. For
each of the slot queries we generated an Expected
Value Type from the associated candidate patterns.
For example: per:spouse requires a person as the
slot-value, per:date of birth requires a date, per:age
requires a number and org:website requires a URL.

During this phase, we also indexed all the docu-
ments of the document collection using Terrier 3.0
(I. et al., 2006). Terrier is a highly flexible, effi-
cient and effective open source search engine, readily
deployable on large-scale collections of documents.
Terrier implements state-of-the-art indexing and re-
trieval functionalities, and provides an ideal platform
for the rapid development and evaluation of large-
scale retrieval applications.2

2.2 Passage Retrieval

As indicated above, the Passage Retrieval (PR) mod-
ule is a two-stage module which identifies passages
or documents that are most likely to contain an an-
swer. Passages can be segments of text or entire doc-
uments. The slot-value selection module will apply
potentially computationally costly NLP techniques
to identify candidate slot-values, it is important to
ensure that the search space that this module is ap-
plied to is as narrow as possible. Although tradi-
tional Document Retrieval Methods can reduce the
search space significantly, some of the documents can
still be quite big and contain a lot of noise. It is
therefore necessary to reduce the search space fur-
ther by identifying useful passages of text within the
documents. The documents are processed using the
Stanford NER core pipeline. Occurrences of the tar-
get entity are annotated in each sentence and tar-
get entity tokens are also annotated as candidate-

target-entity. The sentences are then ranked based
on the features they contain, i.e. sentences contain-
ing the target entity or candidate target entity are
ranked higher than sentences which contain no entity
mentions. It is the highest ranked sentences that are
presented as input to the Slot-Value Selection Mod-
ule as candidate slot-bearing passages.

2.3 Slot-Value Selection

The final phase of the pipeline selects and extracts
the segment of text that is most likely the rel-
evant slot-value. Each returned slot-value must
also contain the docid of the supporting document
from which the slot-value was extracted. The Slot-
Value selection module processes the candidate slot-
bearing passages returned by the PR module and se-
lects passages that are of the Expected Value Type,

2http://www.terrier.org

as identified in the Query Processing phase. Smaller
passages which conform to the candidate patterns
are then selected and added to an answer set. The
answer set identified is ranked according to frequency
of occurrence, where we prefer to extract a slot-value
that occurs in many documents. In order to identify
equivalent answers, both in the returned answer set
and to identify redundant answers already located in
the knowledge base we implement a text similarity
metric to identify similar values. We normalise each
candidate slot-value, remove any punctuation and
spaces etc. Using Levenshtein Distance(Levenshtein,
1966) we then calculate a distance score for each can-
didate slot-value from other candidate slot-values in
the same slot and also from entries in the KB info-
boxes that are equivalent to the slots. The most-
frequently occurring candidate slot-value is extracted
as the slot-value, but it is not returned if it has
an equivalent slot-value in the KB info-boxes. This
should mean that occurrences of “prime minister”,
“Prime Minister” and “Prime-Minister” would all be
equivalent for the list-valued slot per:title and only
one would be returned as the slot-value.

There is no threshold of answers generated in re-
sponse to a list-slot-value. For list-slot-values, we re-
move duplicate and redundant candidate slot-values
using the same distance metric as before and then
return all candidate values of the expected type as
slot-values. NIL is returned as the slot-value when
no slot-value is found, that is, when the PR module
fails to return any candidate slot-bearing passages
or when the Expected Value Type is not identified
in this phase.

Having identified the set of candidate slot-values
it is important to ensure that the slot-value is of the
correct type so answers of the form “3-year-old” for
per:age where the expected value type is NUMBER
should be reduced to “3”.

2.4 Results

Approximately 49% of the slot-values that we ac-
quired from the document collection were judged to
be the correct slot-values, although, again, our sys-
tem achieves very low coverage of slot-values across
the entire document collection, acquiring only 13%
of the novel slot-values (see Table 1). It is clear that
we haven’t made any improvements on the low recall
score from last year’s competition. While we have
to complete a full analysis of results for these tasks,
early inspection seems to indicate that the system
is bound by the Slot-Value Selection module, as our
system is not aggressive enough at picking out can-
didate slot-values from the candidate passages and
in most cases reverts to NIL. Our results serve to

Submitted run: IIRG1
Recall 0.12592593
Precision 0.49173555
F1 Score 0.20050548

Table 1: Results of Run Submitted to TAC 2011

per:spouse
per:title
per:employee of
per:member of
per:cities of residence
per:stateorprovinces of residence
per:countries of residence
org:top employees/members

Table 2: Slots used in Temporal Slot Filling Tasks

confirm the view that, Slot Filling is a challenging
and complex task and it is not easy to achieve good
performance here.

3 Full Temporal Slot Filling

KBP2011 saw the introduction of a framework
for evaluating and extracting temporal information
about a particular slot-value. The Full Temporal
Slot Filling task was introduced this year. Temporal
information can be distributed across multiple doc-
uments. In one document you might find the text
snippet “John Smith was named CEO today....” and
then in another document the following “John Smith

resigned as CEO last year...”. In this task, partici-
pants are required to add temporal boundaries to ex-
tracted slot-values, so in this example having found
that “CEO” is a slot-value for the slot per:title, sys-
tems are now required to augment this value with
temporal information. The task is limited to eight
slots taken from the Regular Slot Filling task, these
are listed in Table 2.

The temporal information for each slot can be rep-
resented using a four element tuple [T1 T2 T3 T4],
indicating that the slot-value became true at some
time between teh interval of T1 and T2 and end-
ing at some time between the interval of T3 and T4.
This 4-tuple of dates can be associated with a non-
NIL slot-value. This representation is chosen so as
to keep as close to possible with the Regular Slot
Filling Task and the info-box style of the Knowledge
Base. We used our basic slot filling pipeline with
an additional temporal component which identifies
any temporal information in close proximity to the
identified slot-value. For this task, we implemented
a simple approach with the objective of familiarising

Extract from Four-Tuple Response for SFT257 Slot per:spouse
T1 19590101 XIN ENG 20080224.0243.LDC2009T13
T2 19591231 XIN ENG 20080224.0243.LDC2009T13
T3 20070101 XIN ENG 20080224.0243.LDC2009T13
T4 20071231 XIN ENG 20080224.0243.LDC2009T13

Table 3: System Response for SFT257 slot per:spouse

ourselves with this new task and created only a few
candidate patterns from the supplied training data.

Consider the following pattern:

<target-entity> divorces husband of

<temporal>18 years</temporal> <slot-value>

We can now also add the constraint that the keyword
“divorces” indicates that the value of per:spouse is
no longer true.

Systems are required to return the same output as
the regular slot filling task, a slot-value and an asso-
ciated document identifier that supports the value.
The addition of the temporal boundaries is a very
challenging task as systems must first correctly iden-
tify the slot-value for a given slot and then identify
whether there are any temporal constraints associ-
ated with this value. If a system identifies tempo-
ral boundaries, it must then try to extract the in-
formation to complete the 4-tuple if it is available.
The sentence: “Raul was married to fellow revolu-

tionary Vilma Espin from 1959 until her death in

June 2007.” where Raul is the target entity. The
slot per:spouse can be filled with the value “Vilma
Espin”. However, as we have also identified some
temporal boundaries on this value we now need to
augment this slot-value with this information. We
need to extract the temporal information in he form
of tuples. The phrase “from 1959” indicates that
at some point in 1959 this slot-value became true,
that is during the interval from 1st January 1959
to 30th December 1959 this slot-value became true.
The phrase “until her death in June 2007” indicates
that at some point in June of 2007 this slot-value
became false, that at some point from 1st June 2007
until 30th June 2007 this relationship and therefore
the slot-value became false. With this information
now identified we can begin to fill each element of
the tuple in turn as illustrated in Table 3

3.1 Results

The Full Temporal Slot Filling Task adds a new di-
mension to the already difficult Regular Slot Filling
Task. We built a very simple system for this task in
order to familiarise ourselves with the new temporal
constraints placed on slot-values. We have imple-
mented a temporal phase in the Regular Slot Filling
pipeline architecture described in Section 2, so that

Submitted run: IIRG1
Recall 0.12995498
Precision 0.25048107
F1 Score 0.17112607

Table 4: Results of TSF Run Submitted to TAC 2011

Slot Recall Precision F1
per:spouse 0.2790 0.4104 0.3322
per:title 0.1663 0.2230 0.1905
per:employee of 0.2500 0.2635 0.2565
per:member of 0.01716 0.2187 0.0318
per:cities of residence 0.1607 0.2045 0.1800
per:stateorprovinces of residence 0.1071 0.1666 0.1304
per:countries of residence 0.0292 0.2399 0.0521
org:top employees/members 0.0 0.0 0.0

Table 5: Temporal Slot Filling Task Slot Results

the performance of the Temporal Slot Filling system
directly correlates with the performance of the Reg-
ular Slot Filling task. The TSF system achieves very
low coverage of slot-values, acquiring approximately
13% of the novel temporal slot-values (see Table 4).
The TSF system has not filled many slots with tem-
poral information (see Table 5), this is not surprising
though given the systems dependency on the Regu-
lar SF system, which also achieves low coverage of
slot-values across the document collection.

4 Mono-Lingual Entity Linking Task

The objective of the Entity Linking task is to as-
sociate each query entity with the relevant knowl-
edge base file or files. In the Entity Linking task
participants are given a list of target entities to pro-
cess. There are 3 generic entity types included in
this task: person (PER), organisation (ORG) and
geo-political entity (GPE). Each EL query consists
of a target entity and a supporting document id. Sys-
tems are required to provide the ID of the KB entry
to which the name refers or NIL if the entity does
not exists. NILs should be of the format “NILxxxx”,
where “xxxx” refers to a unique id given to a clus-
ter of similar query entities. The same entity can be
referred to by more than one name so systems are
required to assign a unique id to all related non-KB
entities. NIL clustering allows us to identify novel
entities and will support the automatic creation of
novel KB entities.

This task is further divided into two subtasks: an
entity-linking task using the free text from the KB
pages associated with the knowledge base nodes and
an entity-linking task without using this free text.
Given that the same entity can often be referred to

by more than one query string and one entity name
can refer to more than one entity this makes En-
tity Linking quite a challenging task. Again, hav-
ing never participated in the EL task before, we de-
cided to build a simple system to take part in the
Entity Linking task, without using the Knowledge
Base text.

4.1 Pre-Processing Phase

In the Pre-Processing phase, we processed the doc-
uments in the knowledge base into single documents
to conform with standard TREC formats for ease of
indexing. We then indexed this collection based on
the fields wiki-title and wiki-text. Firstly, it is nec-
essary to normalise the patterns to the same case
and remove any punctuation, e.g. EL 02080 Tony“
Rezko contains additional unnecessary punctuation.

Entities will normally occur using different name
variants and possibly docids for that reason, in this
phase we also calculate the similarity between all of
the the query entities in order to cluster similar en-
tities together for each query. We calculate a simi-
larity score using Levenshtein Distance(Levenshtein,
1966). This will allow us to cluster similar entities to-
gether based on the threshold set for distance score.
For these initial runs we have chosen to cluster ex-
act matches only, and thus have opted for a distance
score of zero as the initial threshold.

4.2 Passage Retrieval

In Passage Retrieval, we use the EL queries as input
into our search engine and in response we return a
list of node ids which correspond to KB entities. The
query runs on the wiki-title field for each document.
The first run submitted used the EL query as the
input query. For the second submitted run we imple-
mented some query expansion techniques. The query
expansion techniques involved using simple pattern-
matching techniques for resolving acronyms, etc. and
we also incorporated our slot filling system and set
it to retrieve one slot alternate name using only the
support document as a source of input. The inten-
tion here was to capture any information available
for the per:alternate name and org:alternate name.

4.3 Entity Node Selection

The Entity Node Selection phase selects the best
match for the query. The input into this module
is the list of wiki-titles retrieved by the PR module.
We then apply shallow pattern matching techniques
to select the node id that is the closest match for the
query entity.

Setting a similarity threshold to 0, we assign all
similar NIL nodes to a NIL id of the form NIL00001.

Entity Linking Scores with no wiki-text
Highest F1 (no Web) 0.714
Median F1 (no Web) 0.521

Table 6: EL Highest and Median B3 F1 Score

Scores for English entity-linking-no-wiki-text task
KBP2010 micro-avg B3 Precision B3 Recall B3 F1

IIRG1 0.560 0.515 0.557 0.535
IIRG33 0.579 0.555 0.545 0.550

Table 7: Results of EL Runs Submitted to TAC 2010

A query which has this id indicates that the queries
refer to the same entity and that this entity does not
exist in the Knowledge Base.

4.4 Results

For the Entity Linking task we built a very simple
system in order to familiarise ourselves with the task.
The EL task itself is quite a challenging one and our
naive approach to EL should serve to justify the use
of more sophisticated techniques in order to disam-
biguate entities. We didn’t expect that these results
would be impressive; but rather that they would indi-
cate the need to incorporate the use of the wiki-text
and more than likely the supplied document collec-
tion in order to disambiguate the KB entities.

Results for the Entity Linking task are calculated
based on B3 Precision, Recall and F1 score and a
micro-average accuracy computed across all queries.
The run that has implemented some simple query
expansion techniques (IIRG3) performs slightly bet-
ter than the initial run which doesn’t implement this
feature (IIRG1). Our results for both runs are very
close to the median. While we have not yet had suf-
ficient time to examine the Gold Standard for this
task, early inspections seems to indicate that our sys-
tem performs well when identifying entities that do
not exist in the knowledge base. For future runs we
hope to incorporate the wiki-text and/or the source
collection as a feature of our query distance calcu-
lations in order to disambiguate query entities from
KB entities where they exist.

5 Conclusions

This year we participated in three KBP tasks, Reg-
ular Slot Filling, Temporal Slot Filling and Mono-
lingual Entity Linking. Our Regular Slot Filling ap-
proach achieved second place amongst the teams that
did not access the web and our Entity Linking results
were very close to the median results of those runs
that did not use wiki-text. Slot Filling remains a dif-

ficult task and systems struggle to achieve F-measure
higher than 30%. It is clear that we have traded
high precision for low recall in the Regular Slot Fill-
ing task, the poor performance of our Regular Slot
Filling system directly correlates with the low cover-
age of our Temporal Slot Filling system. In future
runs, we hope to adopt a more aggressive strategy
for selecting candidate slot values so that we may
not only evaluate more of the candidate patterns we
have generated, but also in order to participate in
more of the additional Temporal tasks, given their
dependency on good quality slot-values.

References

L. Byrne and J. Dunnion. 2010. UCD IIRG at TAC
2010. In Proceedings of the TAC 2010 Workshop. Nist
publication.

Ounis I., Amati G., Plachouras V., B. He, Macdonald
C., and Lioma C. 2006. Terrier - A High Performance
and Scalable Information Retrieval Platform. In ACM
SIGIR06 Workshop on Open Source Information Re-
trieval (OSIR 2006).

A. Levenshtein. 1966. Binary codes capable of correct-
ing deletions, insertions and reversals, volume 10(8).
Soviet Physics Doklady.

Marius Pasca. 2003. Open Domain Question Answering
from Large Text Collections. Center for the Study of
Language and Information.

