
Generate Compressed Sentences with Stanford Typed Dependencies
towards Abstractive Summarization

Peng Li and Yinglin Wang
Department of Computer Science and Engineering, Shanghai Jiao Tong University

{lipeng, ylwang@sjtu.edu.cn}

Abstract

In this paper, we implement sentence
generation process towards generate ab-
stractive summarization which is pro-
posed by (Genest and Lapalme, 2010).
We simply use Stanford Typed Depen-
dencies1 to extract information items and
generate multiple compressed sentences
via Natural Language Generation en-
gine. Then we follow LexRank based
sentence ranking combined with greedy
sentence selection to build final summa-
ry. Although the quantitative evalua-
tion based on Rouge metric demonstrates
poor performances, we believe that this
sentence generation process make im-
portant role towards generate abstractive
summarization.

1 Introduction

TAC2011 guided summarization task is to write
a 100 word summary of a set of 10 newswire ar-
ticles for a given topic, where the topic falls into
a predefined category. A summary should cov-
er all the aspects relevant to its category. Re-
ferring to accidents and natural disasters cate-
gory, 7 aspects should be covered by the auto-
matically generated summary. These aspects are
what happened; date; location; reasons for acci-
dent/disaster; casualties; damages; rescue effort-
s/countermeasures. Additionally, an ”update”
component of the guided summarization task is
to write a 100-word ”update” summary of a sub-
sequent 10 newswire articles for the topic, under
the assumption that the user has already read the
earlier articles.

1http://nlp.stanford.edu/software/
dependencies_manual.pdf

The work proposed by (Genest and Lapalme,
2010; Genest et al., 2009) demonstrate many
reasons why the next generation summarization
system architecture should move from extractive
way to abstractive way. Here we give more im-
plement details about how to generate multiple
compressed sentences.

2 Main Approach

2.1 Information Item Extraction
In (Genest and Lapalme, 2010), they define in-
formation items as subject-verb-object triple. In-
stead of defining some pruning rules, we use
English grammatical relations defined by Stan-
ford Typed Dependency Manual. Algorithm 1
present how to recognize possible information
items. We found that possible information items
contains many wrong triples, so we need Algo-
rithm 2 to filter out correct information items.

2.2 Sentence Generation
We leverage information items to generate new
sentences. For each information item, we have
predicate, then need generate Noun Phrase (See
Algorithm 4) to build subject and generate Verb
Phrase(See Algorithm 5) to build object. Then
call NLG to combine subject, predicate and ob-
ject to become a new sentence(See Algorithm 3).
We use Simplenlg2 which is a simple Java API
designed to facilitate the generation of Natural
Language.

2.3 Summary Generation
Inspired by (Li et al., 2011), we want to order
the compressed sentences so that the representa-
tive sentences can be ranked higher, then select
top ranked sentences as long as the redundancy
score (similarity) between a candidate sentence

2http://code.google.com/p/simplenlg/



Algorithm 1 Recognize Information Items
EnglishGrammaticalStructure eg
SET predicates
Collection typedDependencyCollection
for all td in typedDependencyCollection do

TreeGraphNode gov = td.gov()
GrammaticalRelation gr = td.reln()
if gr = “nsubj′′ or gr = “dobj or gr = “xcomp′′

or gr = “agent′′ then
predicates.add(gov)

end if
end for
List tmpItems
Set subjects, objects
for all n in predicates do

subjects = getSubjects(eg, n)
if subjects.size() == 0 then

continue
end if
for all s in subjects do

objects = getObjects(eg, s)
if objects.size()! = 0 then

for all o in objects do
item = new InformationItem(s, n, o)

end for
else

item = new InformationItem(s, n, null)
end if
tmpItems.add(item)

end for
end for
return tmpItems

Algorithm 2 Filter Information Items
Require: Run Algorithm 1 get tmpItems

List filteredItems, objs
TreeGraphNode subj, obj
for all item in tmpItems do

subj = item.getSubject()
obj = item.getObject()
if !predicates.contains(subj) and obj! = null
then

objs.addobj
items.add(item)

end if
end for
for all item in tmpItems do

TreeGraphNode s = item.getSubject(), p, o
InformationItem newItem
if predicates.contains(s) then

for all TreeGraphNode obj in objs do
p = item.getPredicate()
o = item.getObject()
newItem = new
InformationItem(obj, p, o)
items.add(newItem)

end for
end if

end for
return filteredItems

Algorithm 3 Generate compressed sentence
Require: build DependencyGraph

SPhraseSpec newSent
NPPhraseSpec subjectNp
V PPhraseSpec vp
TreeGraphNode s ,p
for all item in filteredItems do

s = item.getSubject()
subjectNp = generateNP (graph, s)
newSent.setSubject(subjectNp)
p = item.getPredicate()
vp = generateV P (graph, p)
newSent.setV erbPhrase(vp)

end for

Algorithm 4 Generate Noun Phrase
NPPhraseSpec np, tmpNp;
PPPhraseSpec pp;
Stack stack
stack.add(head)
while !stack.isEmpty() do

children = grpah.adj(head);
for all td in children do

GrammaticalRelation gr = td.reln()
if gr = “prep′′ then

pp = generatePrepP (td)
np.setPostModifier(pp)

else if gr = “nn′′ or gr = “conj′′ then
tmpNp = generateNP (graph, td.dep())
np.setPostModifier(tmpNp)

else if gr = “det′′ or gr = “num′′ or gr =
“amod′′ then

np.setPostModifier(td.dep())
else

continue
end if

end for
end while



Algorithm 5 Generate Verb Phrase
V PPhraseSpec vp
NPPhraseSpec dirobjNp, indirObjNp
vp.sertV erb(verb)
if object! = null then

dirobjNp = generateNP (graph, object)
vp.setObject(dirobjNp)
children = grpah.adj(verb);
for all td in children do

GrammaticalRelation gr = td.reln()
if gr = “iobj′′ then

indirObjNp =
generateNP (graph, td.dep())
vp.IndirectObject(indirObjNp)
break

end if
end for

else
for all td in children do

GrammaticalRelation gr = td.reln()
if gr = “ccomp′′ then

vp.setPostModifier(complement)
break

end if
end for

end if

and current summary is under 0.5. This is re-
peated until the summary reaches a 100 word
length limit. We use an LexRank algorithm to
obtain top ranked sentences. LexRank (Erkan
and Radev, 2004) algorithm defines a random
walk model on top of a graph that represents sen-
tences to be summarized as nodes and their sim-
ilarities as edges. The LexRank score of a sen-
tence gives the expected probability that a ran-
dom walk will visit that sentence in the long
run. A variant is called continuous LexRank im-
proved LexRank by making use of the strength
of the similarity links. The continuous LexRank
score can be computed using the following for-
mula:

L(u) =
d

N
+ (1− d)

∑
v∈adj[u]

p(u|v)L(v)

where L(u) is the LexRank value of sentence u,
N is the total number of nodes in the graph, d
is a damping factor for the convergence of the
method, and p(u|v) is the jumping probabili-
ty between sentence u and its neighboring sen-
tence v. p(u|v) is defined using content similar-
ity function sim(u, v) between two sentences:

average
ROUGE-2
recall

average
ROUGE-SU
recall

A B A B
Run-1 0.04069 0.04436 0.07923 0.08217
Run-2 0.04200 0.03579 0.07476 0.07234

Table 2: Rouge Results

average BE recall
A B

Run-1 0.02207 0.02407
Run-2 0.02391 0.01877

Table 3: BE Results

p(u|v) = sim(u, v)∑
z∈adj[v] sim(z, v)

We use Jaccard similarity, Longest Com-
mon Substring, Levenshtein Distance to define
sim(u, v) as the similarity between two sen-
tences.

3 Evaluation

TAC 2011 provides 44 topics for evaluation.
Each topic includes a topic statement and 20 rel-
evant documents which have been divided into
2 sets: Document Set A and Document Set B.
Each document set has 10 documents, and all
the documents in Set A chronologically precede
the documents in Set B. Eight NIST assessors
selected and wrote summaries for the 44 topic-
s in the TAC 2011 guided summarization task,
and assessors wrote 4 model summaries for each
docset. All summaries were also automatically
evaluated using ROUGE/BE.

In Run-1(summarizer ID is 36), we set the
ranking threshold is 0.002, we set this value is
0.004 in Run-2(summarizer ID is 50). Table 1 is
manual evaluation results, Table 2 is the ROUGE
results, Table 3 is the BE results.

3.1 Analysis
The pyramid score is better than our TAC 2010
summarization system, but the linguistic quality



average
modified
(pyramid)
score

average
numSCUs

average
numrepe-
titions

macroaverage
modified
score with
3 models

average
linguistic
quality

average
overall
respon-
siveness

A B A B A B A B A B A B
Run-1 0.215 0.172 2.955 2.068 0.295 0.136 0.213 0.169 1.364 1.477 1.773 1.727
Run-2 0.223 0.156 3.000 1.909 0.295 0.227 0.221 0.154 1.841 1.864 1.977 1.750

Table 1: Manual Evaluation

is lower then before, The average ROUGE and
BE scores get very lower performance. The main
reason lies in the sentence generation process. In
the future, we will explore the English grammar
deeply to find new algorithm to get better results.

4 Conclusions

Acknowledgments

This work was supported by the National
Natural Science Foundation of China (NS-
FC No. 60773088), the National High-tech
R&D Program of China (863 Program No.
2009AA04Z106), and the Key Program of Basic
Research of Shanghai Municipal S&T Commis-
sion (No. 08JC1411700).

References
Erkan, Günes. and Dragomir Radev. 2004. LexRank:

Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence
Research, 22(1):457–479.

Genest, Pierre-Etienne and Guy Lapalme. 2010.
Text generation for abstractive summarization. In
Proceedings of the Second Text Analysis Confer-
ence, Gaithersburg, Maryland, USA: National In-
stitute of Standards and Technology.

Genest, Pierre-Etienne, Guy Lapalme, and Mehdi
Yousfi-Monod. 2009. Hextac: the creation of a
manual extractive run. In TAC 2009 Workshop,
Gaithersburg, Maryland, USA: National Institute
of Standards and Technology.

Li, Peng, Yinglin Wang, Wei Gao, and Jing Jiang.
2011. Generating aspect-oriented multi-document
summarization with event-aspect model. In Pro-
ceedings of Empirical Methods in Natural Lan-
guage Processing.



SJTU CIT at TAC 2011: RTE Track

Guangxin Wang and Peng Li and Yinglin Wang
Department of Computer Science and Engineering, Shanghai Jiao Tong University

{wgxin, lipeng, ylwang@sjtu.edu.cn}

Abstract

In this paper, we present a system that us-
es machine learning algorithms combin-
ing with various knowledge for the task
of recognizing textual entailment. The
features chosen quantify lexical, syntac-
tic and semantic level matching between
text and hypothesis sentences. We ana-
lyze how different knowledge resources
and classifiers could impact on the final
overall performance of the RTE classifi-
cation of two-way task. The evaluation
results are not as good as we hope, but
encourage us to make improvement in
next version.

1 Introduction

In recent years, the task of recognizing textural
entailment (RTE) became a hot topic in natural
language processing community. Given two tex-
t fragments, the system can determine whether
the meaning of one text can be inferred from the
other text. More specifically, textual entailment
is defined as a directional relational ship between
two text fragments, termed Text (T) and Hypoth-
esis (H). For examples,

• T: He bought a pen in the store.

• H: He owes a pen.

Obviously, T infers H. This means that H maybe
entailed by incorporating more prior knowledge
that would enable its inference from T, but it
should not be entailed by that knowledge alone.
In other words, it is not allowed to validate H’s
truth regard-less of T.

Such kind of RTE system can be very useful
in many applications. Recent application can be

found in Twitter which is used for remove redun-
dant information when generate summarizations
from tweets.

The challenge of this task is that it needs in-
depth inference instead of just comparing the
word similarity between two sentences. For ex-
ample, from “owe” happens after buy we know
that these two sentences has a chronological re-
lation. Word “bought” align with word “owe”.
However, finding correct word alignment is very
difficult due to the fact that possible matches
could be exponential in the number of word-
s (Zhang et al., 2010).

In this paper, we extends the work proposed
by (Ren et al., 2009), focus on exploring di-
verse lexical, syntactic and semantic know-ledge
in feature-based text entailment using mixture of
classifiers. Our study illustrates that the seman-
tic resources contributes to most of the perfor-
mance improvement. We also demonstrate how
semantic information such as Wikipedia, Word-
Net, ConceptNet and VerbOcean can be used in
the feature-based framework.

2 Main Approach

2.1 Classification Approach

We use Support Vector Machine(SVM), Multi-
layer Perceptron(MLP), Decision Trees(DT) and
AdaBoost(AB). Support Vector Machine (SVM)
is a supervised ma-chine learning technique mo-
tivated by the statistical learning theory (Vap-
nik, 1998). Based on the structural risk mini-
mization of the statistical learning theory, SVM-
s seek an optimal separating hyper-plane to di-
vide the training examples into two classes and
make decisions based on support vectors which
are selected as the only effective instances in the
training set. In this paper, we use the binary-
class LibSVM developed by (Chang and Lin,



2011). The Decision Trees are interesting be-
cause we can see what features were selected
from the top levels of the trees. AdaBoost were
selected because it is known for achieving high
performance, and MLP was used because it has
achieved high performance in others NLP tasks.

2.2 Features

2.2.1 Lexical Distance
We use Jaccard Similarity, Longest Common

Substring and Levenshtein distance as the lexical
distance features. Jaccard Similarity is a similar-
ity measure that compares the similarity between
two sentences. When applying to compute sim-
ilarity between T and H, it is defined as the size
of the intersection of the words in T and H com-
pared to the size of the union of the words in T
and H. The Longest Common Sub-string (LCS)
of T and H will find the longest string that is a
substring of both T and H. It is found by dynam-
ic programming. The standard Levenshtein dis-
tance is motivated by the good results obtained
as a measure of similarity between two strings.
This distance quantifies the number of changes
(character based) to generate one text string (T)
from the other (H). Using stems, this measure
improves the Levenshtein over words. The lex-
ical distance feature based on Levenshtein dis-
tance is interesting because works to a sentence
level.

2.2.2 Dependency Tree
The dependency features includes information

about the words, part-of-speeches and phrase la-
bels of the words on which the mentions are
dependent in the dependency tree derived from
the syntactic full parse tree. We use Stanford
Typed Dependencies to build Dependency Tree
of the sentence. The dependency features are
expressed as a dependency pair (Head, Modi-
fier) (Nielsen et al., 2006), to cover the cases
when the same word lemmas appear in different
grammatical relations, possibly also with differ-
ent parts of speech.

2.2.3 WordNet, ConceptNet, VerbOcean
Word similarity based on WordNet has been

widely used in RTE. Its strength is that it con-

tains a large amount of words, by calculating
the distance between two words it’s easily to get
the similarity. However, in alignment in RTE is
usually between words that have different POS
or between single word and phrase. For exam-
ple, Hunter has some relation to phrase Killing a
prey. Therefore, we introduce a knowledge base
called ConceptNet. Verb and verb similarity is
also important in decision making. The knowl-
edge bases listed above are relatively week in
comparing verbs. Thus a few works had put ef-
fort in extracting verb pair through plain text.
Here we use VerbOcean, it is a broad-coverage
semantic network of verbs, it defines several re-
lations between verb.

2.2.4 Wikipedia

Wikipedia is a vast, constantly evolving re-
source of interlinked articles providing a giant
multilingual database of concepts and seman-
tic relations. It serves as a promising resource
for natural language processing and many oth-
er research areas. (Gabrilovich and Markovitch,
2007) computes two phrase relation by rep-
resenting them with two vector of wiki en-
try and calculating the similarity between them.
Wikipedia Miner (Milne and Witten, 2009) is a
freely available toolkit for navigating and mak-
ing use of content of Wikipedia. It provides
simplified, object-oriented access to Wikipedia’s
structure and content and offers several services
to help users to search for entities, comparing the
relation between entities and wikifying snippet-
s of texts. Assuming that each Wikipedia topic
serves as a semantic concept, we make use of
Wikify service of the toolkit to annotate docu-
ment collection with links to relevant Wikipedi-
a concepts. Wikiminer also provides a semantic
relatedness measure between two concepts using
category hierarchy and textual content of respec-
tive concepts. After the Wikification of docu-
ment collection, we use the relatedness measure
(RM) of a concept with all other concepts in the
document collection as its importance measure.
We obtain sentence similarity by combining Wi-
ki and Word similarity linearly.



Run ID Micro
Average
Precision

Recall F measure

Run-1 18.52 27.60 22.17
Run-2 16.50 38.30 23.07
Run-3 17.92 33.33 23.31

Table 1: Main Test Results

Resource Micro
Average
Precision

Recall F measure

Verbocean 15.30 19.50 17.14
Wikipedia 15.49 11.62 13.28

Table 2: Ablation Test Results

3 Evaluation

The experimental data set we use came from
RTE 6. After getting all features, we use
Support Vector Machine(SVM), Multilayer Per-
ceptron(MLP), Decision Trees(DT) and Ad-
aBoost(AB) to train a classification model.

3.1 Main Test
We submitted three runs, executed with different
thresholds. The results are shown in table 1. We
can see that we still have many works to do to
improve the performance of our system. Com-
pared to past RTE result, these results are rela-
tively poor. We believe that it is mainly due to
the sentences’ incomplete information and bad
feature generation procedure.

3.2 Ablation Test
In this test we submitted two runs with different
knowledge resources as shown in table 2. They
all have negative impact of Micro Average Pre-
cision, Recall and F measure.

4 Conclusions

In this paper, We propose a textual entailmen-
t recognition framework and implement a sys-
tem of classification which takes lexical, syntac-
tic and semantic features as considered. Official
results show that our system gets worse perfor-
mance of all participating systems. That means

there are still many part of the system needed to
be improved in the future.

Acknowledgments

This work was supported by the National
Natural Science Foundation of China (NS-
FC No. 60773088), the National High-tech
R&D Program of China (863 Program No.
2009AA04Z106), and the Key Program of Basic
Research of Shanghai Municipal S&T Commis-
sion (No. 08JC1411700).

References
Chang, C.C. and C.J. Lin. 2011. Libsvm: a library

for support vector machines. ACM Transaction-
s on Intelligent Systems and Technology (TIST),
2(3):27.

Gabrilovich, E. and S. Markovitch. 2007. Com-
puting semantic relatedness using wikipedia-based
explicit semantic analysis. In Proceedings of the
20th international joint conference on Artifical in-
telligence, pages 1606–1611.

Milne, D. and I.H. Witten. 2009. An open-
source toolkit for mining wikipedia. In Proc. New
Zealand Computer Science Research Student Con-
f, volume 9.

Nielsen, R., W. Ward, and J.H. Martin. 2006. Toward
dependency path based entailment. In Proceed-
ings of the Second PASCAL Challenges Workshop
on Recognising Textual Entailment, pages 44–49.

Ren, H., D. Ji, and J. Wan. 2009. Whu at tac 2009:
A tri-categorization approach to textual entailment
recognition. In Preproceedings of the Text Analy-
sis Conference (TAC).

Vapnik, V.N. 1998. Statistical learning theory.

Zhang, Xinhua, Peng Li, and Yinglin Wang. 2010.
Sjtu cit at tac 2010 : Rte track. In TAC 2010 Work-
shop, Gaithersburg, Maryland, USA: National In-
stitute of Standards and Technology.


	Main1
	Main2

