
UGent Participation in the TAC 2013 Entity-Linking Task

Laurent Mertens, Thomas Demeester, Johannes Deleu, Chris Develder
Dept. of Information Technology - IBCN

Ghent University – iMinds, Ghent, Belgium
firstname.lastname@intec.ugent.be

Abstract

This article describes the system used by the
UGent-IBCN team for participating in the
Text Analysis Conference (TAC) 2013 En-
glish Entity-Linking task. We kept the over-
all rule-based workflow of our last year’s sub-
mission, but significantly altered individual
components. Most importantly, these changes
include improved document pre-processing,
new ways of candidate selection, and com-
pletely redesigned scoring and NIL-detection
mechanisms. Finally, we provide detailed data
of our system’s performance.

1 Introduction

The aim of the TAC Entity-Linking (EL) task is to
build a system that resolves given mentions in a
given set of documents to their corresponding enti-
ties in a standard Knowledge Base (KB), referred to
henceforth as the TAC KB. Systems should also be
able to detect the case in which the underlying en-
tity of such mentions is not represented in the TAC
KB, and cluster these mentions (i.e., surface forms)
when they refer to the same entity. KB entities are
assigned one of four possible labels: GPE (Geo-
Political Entities), ORG(anizations), PER(sons) or
UKN (unknown). This last label should be consid-
ered a wildcard signifying the entity could be any-
thing, rather than indicating the entity is neither of
the other labels.

The system we used for participating in this
year’s task is a direct evolution of last year’s sys-
tem, which is described in detail in (Mertens et al.,
2012). The overall workflow has not been altered,

but the separate components have undergone signif-
icant changes. As such, we will often refer to our
last year’s paper for additional details where rele-
vant, in order to reduce redundancy, and focus on
the novelties.

In what follows, we will start with a general
overview of our system, and zoom in more closely
on the pre-processing of the data, highlighting dif-
ferences with last year’s system in Section 2. Sec-
tion 3 will focus on the entity-linking proper, fol-
lowed by Section 4 in which we provide ample data
demonstrating the accuracy of our system on the
TAC 2010, 2011, 2012 and 2013 English EL tasks.
We conclude with some final remarks, and possible
roads for further work in Section 5.

2 Data Preparation

2.1 General Overview

The general workflow of our system can be di-
vided into two distinct steps. First, there is the pre-
processing of the KB and documents to be parsed,
followed by the combination of all these elements
in order to parse the documents proper, and thus re-
solve the mentions they contain. An overview of the
workflow of our system is depicted in Figure 1.

The rationale of the pre-processing is to group
different facets of the information contained in the
KB into distinct repositories, to ease manipula-
tion of this data and keep things easier to oversee.
The document representation (after preprocessing)
should allow a practical comparison between docu-
ment contents and the relevant KB entries.

Fig. 1: Flowchart

2.2 Combining NER Systems

A key ingredient in this pre-processing is applying
Named Entity Recognition (NER) to the relevant
texts. For this, we combined four different NER
systems, namely CogComp (Ratinov & Roth, 2009),
LingPipe1, OpenNLP2 and Stanford NER (Finkel et
al., 2005), as discussed below.

To annotate a document D, we first apply the dif-
ferent NER systems to it. The Stanford NER is used
twice, using a case-sensitive and case-insensitive
model. In total, this amounts to five different NER

1http://alias-i.com/lingpipe/index.html
2http://opennlp.apache.org/

outputs, resulting in five tokenized and annotated
documents. To allow a token-per-token compari-
son between systems, we need to first align these
outputs, as different NER systems use different tok-
enization rules.

After alignment, we proceed to the mapping of
the annotations to one “combined” annotation, us-
ing performance statistics of each NER obtained us-
ing the annotated TAC queries from previous years.
Finally, we post-process the results to further reduce
the number of wrong tags.

We refer to this system as the ComboNER. Perfor-
mance statistics for the TAC 2012 and 2013 query

BIS Avg. Combo
Total 2013 queries: 2190

2013
Correct 1368 1142 1620
Exact 1331 1075 1500
Fuzzy 37 67 120
Total 2012 queries: 2226

2012
Correct 1673 1417 1865
Exact 1636 1369 1796
Fuzzy 37 48 69

Table 1: NER statistics on TAC 2012 and 2013 query
sets. “BIS” = Best Individual System, “Avg.” = average
over individual systems.

sets is shown in Table 1. In this table, “Correct”
means the NER annotation between the query off-
sets in the query document bears the query label,
“Exact” means the query offsets correspond to the
mention boundaries, and “Fuzzy” means the men-
tion between the query offsets is a subset of a larger
mention. An example of this last instance would be
the case were the query mention is e.g. “Obama”
at query offsets [start = 255, end = 259], but the
fully annotated mention is “Barack Obama” at po-
sition [start = 248, end = 259].

2.3 Processing the TAC KB

The TAC KB contains a set of entities derived from
about 800.000 Wikipedia pages, originating from an
October 2008 snapshot. Such an entry consists of
data gathered by the automatic parsing of the in-
foboxes from the original Wikipedia page, as well
as a stripped version of the text of the Wikipedia ar-
ticle. An example of an entry from the TAC KB can
be seen in Figure 2.

Each entry starts with a line containing the title of
the Wikipedia page from which the information was
gathered, the label (denoted as “type”) of the entry, a
unique ID for the TAC KB, and the name of the en-
try (often the same as the Wikipedia page title). This
is then followed by a class assigned to the original
infobox (i.e., one class per entity), and a listing of
“facts”, which were automatically parsed from the
Wikipedia infobox and consist of a factname, and
a factvalue. We refer to these as “WikiFacts”. Fi-
nally, the entry concludes with a field containing a
stripped version of the text of the Wikipedia arti-
cle, the “WikiText”. Recall the possible label val-

ues: GPE, ORG, PER and UKN. Note the differ-
ence with the “typical” NER labels: LOC(ation),
MISC(ellaneous), ORG and PER.

2.3.1 Splitting the KB
We attempt to dissect the KB into several distinct

parts, defined by the type of data they contain. To
this end, we define and create directly from the TAC
KB:

• WikiBank: a dataset containing all named en-
tities from the WikiTexts, as tagged by the NER
system, per KB entry.

• WikiClass: a dataset containing the corre-
sponding infobox class (see above) for each KB
entry.

• WikiCtxt: a dataset containing relevant con-
textual terms for each KB entry.

• WikiFacts: a dataset containing all (factkey,
factvalue)-pairs for each KB entry, extracted
from the TAC KB.

• WikiLinks: a dataset containing for each KB
entity a list of all incoming and outgoing refer-
ences to other KB entries.

For details on how these datasets were created, we
refer the reader to (Mertens et al., 2012), as this part
of the process has remained practically unaltered.
The WikiClass is new, but is in essence merely a
mapping between entities and infobox classes. Sig-
nificant differences occur for the WikiBank, and Wi-
kiCtxt. For the WikiBank, we created a new Wik-
iBank by applying the ComboNER to the WikiTexts,
instead of only the Stanford NER. For the WikiC-
txt, we altered the system to work with stems, rather
than tokens. For this, we used the English stemmer
provided with the Lucene3 package.

Also a new addition to the troops is the Wiki-
Cats dataset, which we created from a June 2012
Wikipedia dump, and which contains all Wikipedia
categories relevant to each KB entry. For this, we
first gathered a list of redirects from TAC KB en-
tities to new Wikipedia pages, and then parsed the
Wikipedia pages that correspond to an entity in the
TAC KB, either directly or through a redirect, and
extracted its corresponding Wikipedia categories.

3https://lucene.apache.org/

<entity wiki title="Mike Quigley (footballer)" type="PER" id="E0000001" name="Mike

Quigley (footballer)">

<facts class="Infobox Football biography">

<fact name="playername">Mike Quigley</fact>

<fact name="fullname">Michael Anthony Joseph Quigley</fact>

<fact name="dateofbirth">October 2, 1970 (1970-10-02) (age38)</fact>

<fact name="cityofbirth"><link entity id="E0467057">Manchester</link></fact>

...

</facts>

<wiki text><![CDATA[Mike Quigley (footballer)

Mike Quigley (born 2 October 1970) is an English football midfielder.

]]></wiki text>

</entity>

Fig. 2: Excerpt from the TAC KB

2.3.2 Cleaning up UKNs

The majority of the entities in the KB are UKNs.
This makes that when parsing, one has to treat them
as potentially of any label, which for our system re-
sults in a lot of noise when generating candidates.
In an attempt to alleviate this problem, we also cre-
ated a list containing, for each label, all WikiClasses
that appear with entities of this label (see Figure 2),
as well as how many times each class occurs for
each label. For this purpose, we normalized the
class names4. This list is stored in a simple tab-
delimited text file, and by adding a tag preceding
a class, we can “route” this class to the label spec-
ified by the tag, or ignore all entities bearing this
label for classes tagged with “@REM”. As this task
needs to be done manually, and there are a lot of
different UKN classes (2238 normalized classes, to
be precise), we did not annotate all classes, but only
the most commonly occurring. A short excerpt can
be seen in Figure 3 to illustrate this. Statistics on
how many classes and entities were redirected for
our submission runs can be seen in Table 2.

2.3.3 Extracting Surface Forms from the KB

This part has essentially remained unchanged.
See (Mertens et al., 2012) for details.

4The normalizing procedure consisted of lowercasing all
names, removing the “infobox” part, replacing underscores
by whitespaces, and converting &, ", < and
> to the characters they represent.

#GPE

settlement 88301

uk place 9102

...

tw district 1

#ORG

radio station 7333

military unit 5945

...

#UKN

@REM album 72992

@REM film 34659

@PER musical artist 30092

...

Fig. 3: Excerpt from the class redirect list.

GPE ORG PER REM

ORG
C. 3 0 0 1
E. 1007 0 0 31

UKN
C. 85 64 113 212
E. 113432 40357 79304 262666

Table 2: Class (C.) and Entity (E.) label redirect statistics.
Unlisted combinations indicate 0 redirects.

2.4 Processing the Documents

Documents to be parsed are grouped into batches,
simply meaning that we concatenate multiple doc-
uments into one single, large, document. The size
of these batches is arbitrary, the limitation being de-
termined by the amount of RAM of the system, as
these batches get fully loaded into memory upon
parsing. Each batch is comprised of 5 files. One
file contains the tokenized and annotated (concate-
nated) document, as processed by the ComboNER.
The four remaining files, one per label (LOC, ORG,
PER, MISC), contain lists of mentions per document
for the label under consideration, appearance counts
of these mentions per document, as well as the po-
sitions at which these mentions occur. (Since TAC
queries contain character offsets in the original doc-
uments, we had to translate token positions in our
processed documents to these original character po-
sitions.)

The TAC 2013 EL corpus contains documents
from three different sources, namely newswire data
(NW), web data (WB) and discussion forum data
(DF). Note that the DF data is a new source intro-
duced this year.

3 Entity Linking

Starting from the datasets described in §2.4, we
parse all documents separately, per label, except for
MISC5. There is a generic model for the three re-
maining labels, with some specific tweaks per label.
Recall that the labels used by TAC differ from the
“standard” NER labels. In this regard, we equate
“LOC” to “GPE”. When parsing a specific label, we
treat all UKN’s in the TAC KB that remain after the
mapping described in §2.3.2 as if they were of that
specific label.

In a first step, we cluster the mentions of the la-
bel under consideration on a per document basis (see
§3.1). Each cluster is identified by one of its mem-
bers, which we refer to as an “InnerID”. Next, we try
to resolve these InnerIDs to reference entities from
the TAC KB, considering them “NIL” if no suitable
matches are found. The linking result for the In-
nerID is then transferred to all members of its clus-
ter.

5We do not parse for MISC, since there are no MISC
queries.

The generic steps we go through when resolving
these InnerIDs are as follows:

1. Per document, retrieve the list of InnerIDs of
the label being parsed.

2. Per InnerID, gather a list of possible candidates
from the TAC KB.

3. If no candidates are found, normalize the In-
nerID (i.e., its surface form), and try again.

4. If still no candidates are found, assume there
are no matches in the KB, and tag the InnerID
as a NIL.

5. Else, score all candidates (even if there is only
one!).

6. Return the candidate with the highest score if
it passes the NIL test, else tag the InnerID as a
NIL.

In what follows, we will delve deeper into these dif-
ferent steps.

3.1 In-document Clustering
This part has remained largely unchanged compared
to our TAC 2012 system, except for some bug fixes.
Note that it is also possible to forcefully add some
desired string as an InnerID to some document. This
is necessary for forcing TAC queries whenever the
mention to be resolved has not been detected by the
ComboNER system, or when a mention has been de-
tected, but tagged with the wrong label. This last
situation is only relevant to training runs (see §4.1).

3.2 Finding Candidates
We distinguish three ways to find valid candidates
for a given mention. The first way is by string com-
parisons and query expansions, and has been ex-
plained in detail in (Mertens et al., 2012). It has
since remained largely unchanged. The two remain-
ing, newly added, methods, aim to find candidates
in a more indirect way, as described next. Not all
approaches are used for all labels; which approach
is used for which label is displayed in Table 3.

3.2.1 Using Categories
One new method tries to exploit the WikiCate-

gories. We first generate a list of categories rele-
vant to the document, by, for each token from the
document, retrieving the list of categories to which
this token belongs (quite possibly none). A token

is considered to belong to a category simply if it is
contained in the category name. Stopwords are ig-
nored in this regard. We then cross-check these lists
to determine how many tokens of a given category
appear in the document. If this number exceeds a
given threshold6, we retain this category. Then, we
retrieve a list of all entities that have this category
assigned to them. Finally, we perform some string
comparisons in order to measure whether there is
sufficient overlap between the candidate’s name, and
the mention under consideration. If so, the candidate
is retained.

3.2.2 Using Context
A second way is by trying to exploit the Wiki-

Context. The process is very similar. We stem the
document, and for each stem retrieve a list of entities
whose WikiContext contains this stem. We compute
a score for each entity that takes into account the
weight of the stem for this entity7, as well as the to-
tal number of known context stems for this entity. If
this score exceeds a given threshold, the candidate is
retained.

GPE ORG PER
Text x x x
Cat o x x
Ctxt x x o

Table 3: Breakdown of candidate gathering approaches
per label. (Text = string comparison & query expansion
method.)

3.3 Scoring Candidates
The scoring of candidates is a three step process.
First, we compute a number of subscores, focusing
on different aspects of the KB. Then, we combine
these scores into one final score by linearly combin-
ing them using optimized weights. Lastly, the can-
didate with the highest score is subjected to a NIL
test. The overall scheme is the same for each label,
but the weights are label-dependent, and also depen-
dent on the number of candidates found for a given

6More precisely, if the ratio of the number of category name
tokens present in the document to the total number of tokens the
category name consists of exceeds a given threshold.

7This weight is a function of the ratio of the number of times
this stem appears in this entity’s WikiText to the total number
of occurences over the entire TAC KB.

mention. We come back to this after first delving a
bit deeper into these steps.

3.3.1 Subscores
We compute the following subscores per candi-

date. For more details, see (Mertens et al., 2012).

WikiBankScore: this is a measure of the named
entity overlap between the document, and the candi-
date’s entry in the WikiBank.

WikiCatsScore: this is a measure of the overlap
between the Wikipedia categories assigned to the
document, and those associated with the candidate.

FullCatsScore: contrary to the WikiCatsScore
which considers partial overlap between document
and category name, the FullCatsScore counts only
those categories whose every token appears in the
document.

WikiCtxtScore: this is the number of stems the
document and the candidate’s WikiContext have in
common.

WikiFactScore: this is the number of WikiFact
values that appear in the document. Note that some
WikiFacts, e.g., those containing only numbers, are
discarded.

WikiLinksScore: this number indicates how
many of the KB entities that are connected to the
candidate also appear in the document. This score
is actually split in two parts, the self-explanatory
WikiLinksInScore and WikiLinksOutScore.

Non-Zero Feats: this is the number of WikiScores
(see previous paragraphs) that are non-zero.

Exact CU Match: this is a boolean value indi-
cating whether or not the InnerID is an exact case-
insensitive match with the candidate’s generic name
(i.e., the one extracted from its Wikipedia page title).

Difference Found: this is a boolean value indicat-
ing whether or not the difference between the In-
nerID’s and the candidate’s names has been found in
the document. E.g., consider the InnerID “Atlanta”,
and the candidate “Atlanta, Illinois”. In this case, the
difference between “Atlanta” and “Atlanta, Illinois”
would be “Illinois”. If this term appears in the doc-
ument, this score will be 1, else it will be 0. Note

that this check is actually case-insensitive, and that
if the difference consists of more than one token, all
tokens need to be present in the document.

3.3.2 Combining the Subscores
The combination of the subscores is done through

a straight-forward weighted sum, with two twists.
Firstly, the WikiCats, WikiFacts and both Wik-

iLinks scores are amortized, by taking into account
how many items the candidate’s entry in the respec-
tive datasets contains. This is done in order to ac-
count for the fact that one expects it to be more
likely for overlap to occur for a candidate having,
e.g., many WikiLinks, than for a candidate having
very few WikiLinks.

Second, the weights are not only label-dependent,
but also depend on the number of candidates that are
found for the InnerID under consideration. Per label,
we define five ranges, namely [1, 2], [3, 5], [6, 10],
[11, 25], and [26,+∞[. For each of these ranges, we
determine a set of optimized weights.

After the combined score has been determined,
we apply two more corrections as follows:

S = Scomb · UKNPenalty · OW. (1)

In this equation, S is the final score we obtain for
a particular candidate, Scomb refers to the com-
bined subscores, UKNPenalty refers to the factor
described in §3.3.3, and OW refers to the Origin
Weight, as described in §3.3.4.

3.3.3 Dealing with remaining UKNs
For UKN candidates that were not filtered by

our WikiClassMap, we still aplied the same UKN-
Penalty from last year. For details, see (Mertens et
al., 2012). In short, the UKNPenalty is a weight be-
tween 0 and 1 that indicates how much of a given
non-UKN label (GPE, ORG, PER) the UKN under
consideration appears to be. For non-UKN candi-
dates, the UKNPenalty is simply 1.

3.3.4 Origin Weights
Recall from §3.2 and Table 3 that we use differ-

ent approaches to generating candidates. Noting that
one particular candidate can be gathered by more
than one method, in total these three methods can
be combined into seven different “origins” for each
candidate. E.g., a candidate can be found by the

string comparison method, as well as through use of
categories, whilst another candidate was only found
through use of context. For each of these origins,
we assign a weight, the OW factor in Eq. 1, allow-
ing to diminish or increase the role of a certain ori-
gin. E.g., one might expect that a candidate that has
been found by all three methods is more likely to
be correct than one that has been found by only one
method. In practice however, rather the opposite ap-
peared true, namely that some methods were nois-
ier than others, and that this noise level was label-
dependent.

3.4 Dealing with NILs

The final step in the InnerID resolution is to deter-
mine whether the highest scoring candidate is actu-
ally correct, or if this InnerID should rather be as-
signed the NIL tag. Additionally, NILs should be
clustered according to their underlying entity.

3.4.1 NIL Detection
To determine whether or not to accept the high-

est scoring candidate, we use a NIL detection
scheme comprised of six distinct NIL thresholds,
each adding their fixed part to an overall NIL score if
passed. If this score exceeds a final, seventh, thresh-
old, the candidate is accepted. If not, we reject it,
and thus assign a NIL tag to the InnerID. The indi-
vidual thresholds are as follows.

• NILNonZeroFeats: a threshold comparing the
top score to a function of the candidate’s Non-
Zero Feats (see §3.3.1).

• NILRatio: a threshold comparing the top score
to a function of the ratio of the document’s
number of tokens to the document’s number of
mentions (regardless of label).

• NILTopToSnd: a threshold comparing the ra-
tio of the top candidate’s score to the second
highest score to a fixed threshold. If there is no
second candidate, this ratio is treated as +∞.

• NILTopToMean: a threshold comparing the
ratio of the top candidate’s score to the mean
score over all candidates to a fixed threshold.
If there are less than 3 candidates, this ratio is
treated as +∞.

• NILTopToTrd: a threshold comparing the ra-
tio of the top candidate’s score to the third high-
est score to a fixed threshold. If there is no third
candidate, this ratio is treated as +∞.

• NILWikiLinks: a threshold comparing the top
score to a function of the candidate’s number of
WikiLinks scores.

Note that NILTopToSnd and NILTopToMean ac-
tually use two thresholds each. If the highest of both
thresholds is exceeded, this threshold will contribute
more to the total NIL score than if only the lower
threshold is exceeded.

Finally, we sum all individual threshold scores,
and compare this to a final threshold. If this thresh-
old is breached, the candidate is accepted, or else
rejected.

These thresholds are a function of a number of pa-
rameters. These parameters are, just as for the scor-
ing system, label-dependent, and also use the same
5 candidate ranges.

3.4.2 NIL Clustering
NIL clustering was done by mapping NIL Inner-

IDs to normalized forms, and clustering all InnerIDs
with equal normalized forms together.

3.5 Parameter Tuning
The total number of parameters for our system is as
follows.

• Per label: 7 origin weights. Note that not all
weights are relevant to all labels, as not all la-
bels consider all origins.

• Per label, and per candidate range:

– 10 weights for the candidate scoring,
– 16 weights for the NIL detection.

Optimization is divided into two distinct steps. First,
we focus on the non-NIL queries to tune the scoring
weights in order to maximize the number of queries
for which the correct candidate obtains the highest
score. Then, we turn to the full query set in order to
tune the NIL detection weights, aiming for a maxi-
mal (“ordinary”) F1 score8.

8To be precise, we optimize the product of the F1 score with
the number of correctly answered queries.

The basic scheme we follow in performing this
optimization is as follows. For a given objective
function F (P⃗) we wish to maximize, we (heuristi-
cally) define an initial parameter set P⃗0, and a vec-
tor of step-sizes ∆⃗, containing a default step-size for
each parameter. Starting from P⃗0, we then cycle
through all parameter dimensions, for each param-
eter taking the corresponding step first in the posi-
tive direction, and, if this yields no improvement, in
the negative direction. If a direction yields improve-
ment, we keep stepping further down this direction
until no further improvement is achieved, at which
point we move on to the next parameter. Optimiza-
tion stops when a full cycle without improvement
has been gone through. One can then take the result
of this optimization as a starting point of a next run
using a different ∆⃗.

4 Results

We trained our system using the TAC EL queries
from 2010, 2011 and 2012. A breakdown of queries
per label and year can be seen in Table 4. A break-
down of queries per source and year is shown in Ta-
ble 5. Table 6 depicts statistics about the number of
clusters, and number of entities per cluster, per year.
Note that the clustering subtask was introduced in
2011.

Year GPE ORG PER Σ

2013 803 701 686 2190
2012 602 706 918 2226
2011 750 750 750 2250
2010 749 750 751 2250
Year NW WB DF Σ

2013 1134 343 713 2190

Table 4: Breakdown of queries per label and year, as well
as per source for 2013.

4.1 Parsing the queries

We make a distinction between “training” runs, and
“evaluation” runs. Training runs are runs for which
we make use of the correct label assignment as
found in the annotated queries. Evaluation runs do
not make use of this information, and thus simulate
a situation in which no annotations are available.

For training runs, we group the queries per label,

Year NW WB DF Σ

2013 924 289 607 1820
2012 1417 599 - 2016
2011 1486 745 - 2231
2010 1493 738 - 2231

Table 5: Breakdown of number of documents per source.

All Link NIL

2013
726 327 399

Avg. 3.02 3.33 2.76
Med. 2 3 2

2012
1941 1016 925

Avg. 1.15 1.16 1.13
Med. 1 1 1

2011
1514 706 808

Avg. 1.49 1.59 1.39
Med. 1 1 1

Table 6: Cluster statistics. “#” = number of clusters,
“Avg.” and “Med.” = average and median number of en-
tries per cluster respectively.

and then parse each group separately. We parse the
document for which the query is formulated, and if
we do not find the query mention with the correct
label in this document, we forcefully add it as an
InnerID of the correct label.

For evaluation runs, we use the provided offsets
whenever possible. These runs proceed in three
steps when offsets are available, or two steps if not.
In this last case, the first step is skipped.

Step 1: for each label, we go through all queries.
If for a given label and query the query mention is
found as being tagged with this label at the given
position, then we go ahead parsing the query for this
label. If not, we skip the query.

Step 2: for each label, we go through all queries
that have not been parsed in Step 1. Offsets are not
taken into account in this run, but we simply look if
the given query mention has been tagged with this
particular label in this document. If so, we parse this
query for this label. Note that in this step, contrary
to Step 1, a same query might get parsed for more
than one label. In this case, heuristics are applied to
choose between the different answers.

Step 3: all remaining non-parsed queries are
queries for which the query mention has not been
tagged as neither GPE/LOC, ORG or PER. We parse
these queries thrice, once for each label, by forcing
the mention as the label under consideration. Here
again, heuristics are applied to choose between the
different answers.

4.2 Statistics
We submitted several runs, but only list our best
performing run in the following tables9. Tables 7
- 11 show different aspects of the performance of
our system. Table 7 shows the results of our sys-
tem on evaluation and training runs performed on
the TAC 2010 till 2012 data, followed by Table 8
depicting detailed statistics of system performance
on the TAC 2013 data. Table 9 shows candidate ori-
gin statistics for the combined 2010, 2011 and 2012
queries. Table 11 shows detailed information about
the number of queries for which our system finds
candidates, how many of those queries are actu-
ally “inKB” queries, for how many of these “inKB”
queries we do indeed find the correct answer as a
candidate, referred to as the “True Candidate”, and
in how many cases this True Candidate received the
highest, second highest or third highest score (of all
candidates for that query). The first two columns in
this table denote the number of queries whose an-
swer is “inKB” and NIL respectively.

4.3 Discussion
Although our system has vastly improved over last
year’s performance, as evidenced by the data de-
picted in Table 1210, with evaluation runs signifi-
cantly outperforming last year’s training runs, and
even outperforming last year’s best system (0.744
vs 0.730 B3+F1), it only performs slightly above the
median in this year’s task (0.600 vs 0.588 B3+F1).
We did expect sub-optimal performance on the DF
documents due to their excessive length (see Ta-
ble 10), something our system is not designed to

9The difference between these runs was chiefly the use of
different parameter tunings.

10Note that some external components, e.g., the WikiBank,
WikiCtxt, etc., have been updated since last year, as described
in this paper, making the performance of our 2012 system on
the 2013 data slightly better than it would have been with last
year’s KB components. The other results have been taken from
(Mertens et al., 2012).

2010 µ-avg. B3+ F1
Eval 0.838 -
Ev GPE 0.809 -
Ev ORG 0.787 -
Ev PER 0.919 -
Train 0.854 -
Tr GPE 0.845 -
Tr ORG 0.795 -
Tr PER 0.923 -

2011 µ-avg. B3+ F1
Eval 0.855 0.823
Ev GPE 0.824 0.798
Ev ORG 0.805 0.761
Ev PER 0.936 0.911
Train 0.870 0.840
Tr GPE 0.849 0.826
Tr ORG 0.819 0.776
Tr PER 0.941 0.917

2012 µ-avg. B3+ F1
Eval 0.790 0.744
Ev GPE 0.673 0.624
Ev ORG 0.741 0.661
Ev PER 0.905 0.885
Train 0.869 0.825
Tr GPE 0.774 0.736
Tr ORG 0.865 0.776
Tr PER 0.935 0.918

Table 7: Results for TAC 2010, 2011 & 2012 query sets. “Eval/Ev” refers to evaluation runs, “Train/Tr” to training
runs.

2013 Eval Ev GPE Ev ORG Ev PER Train Tr GPE Tr ORG Tr PER

All
µ-avg. 0.759 0.679 0.812 0.799 0.794 0.732 0.850 0.809
B3+F1 0.600 0.546 0.605 0.660 0.642 0.617 0.637 0.678

DF
µ-avg. 0.637 0.623 0.659 0.649 0.703 0.694 0.786 0.668
B3+F1 0.500 0.535 0.397 0.488 0.565 0.616 0.471 0.506

NW
µ-avg. 0.832 0.730 0.878 0.908 0.854 0.766 0.897 0.914
B3+F1 0.721 0.631 0.739 0.810 0.754 0.684 0.764 0.828

WB
µ-avg. 0.770 0.667 0.787 0.746 0.787 0.833 0.807 0.754
B3+F1 0.597 0.444 0.571 0.637 0.616 0.625 0.591 0.650

Table 8: Results for TAC 2013 query set. “Eval/Ev” refers to evaluation runs, “Train/Tr” to training runs. “DF” =
Discussion Forum, “NW” = Newswire, “WB” = Web.

I Ca I+Ca Cx I+Cx Ca+Cx All

GPE
TP 664 0 0 0 631 0 0
FP 132 0 0 0 61 0 0
NIL 78 0 0 6 28 0 0

ORG
TP 143 9 52 97 229 13 82
FP 28 7 4 55 22 3 5
NIL 25 4 2 32 20 2 0

PER
TP 545 2 173 0 0 0 0
FP 45 0 3 0 0 0 0
NIL 39 1 1 0 0 0 0

Table 9: Candidate Origin for training run on combined TAC 2010/2011/2012 queries. “I” = string matching, “Ca” =
Category, “Cx” = Context. The NIL row contains the origin of the entities to which NIL queries were resolved.

2013 2012 2011 2010
NW WB DF NW WB NW WB NW WB

Avg. 328 1959 13650 516 557 747 850 722 969
Med. 196 620 5316 344 380 610 705 593 553
Min 7 16 84 18 35 34 38 37 55
Max 3787 52997 134317 12398 4599 7102 3550 5201 16265

Table 10: Tokens per document statistics per document source and year, as extracted from the ComboNER output.
“Med.” = Median.

Queries Candidates
inKB NIL QWC Links TCP TC1 TC2 TC3

2012
GPE 527 75 525 523 502 437 31 11
ORG 276 430 267 239 217 215 2 0
PER 374 544 373 355 342 342 0 0

2011
GPE 229 521 518 511 498 480 9 6
ORG 412 338 338 286 267 253 8 2
PER 485 265 265 239 235 234 0 1

2010
GPE 503 246 500 492 470 452 12 1
ORG 304 446 304 257 235 227 4 4
PER 213 538 213 186 184 182 0 1

Table 11: Candidate Statistics for training runs. QWC = Queries With Candidates, Links = non-NIL queries, TCP =
True Candidate is Present, TC# = True Candidate’s score ranks at #.

data → 2010 2011 2012 2013
↓ system µ-avg. B3+F1 µ-avg. B3+F1 µ-avg. B3+F1 µ-avg. B3+F1

2012
Eval 0.806 - 0.794 0.764 0.656 0.586 0.264 0.137
Train 0.832 - 0.828 0.799 0.739 0.670 0.368 0.188

2013
Eval 0.838 - 0.855 0.823 0.790 0.744 0.759 0.600
Train 0.854 - 0.870 0.840 0.869 0.825 0.794 0.642

Table 12: System performance comparison between 2012 and 2013 submissions.

handle, but were initially disappointed by our per-
formance on the other document sets.

When more closely analyzing the 2013 query set
however, it is clear that much focus was directed
toward the clustering subtask, as evidenced by the
statistics shown in Table 6. Since we did not alter
our primitive NIL clustering mechanism from last
year, this explains in large part the massive differ-
ence of 15.9% between µ-average and B3+F1 scores
(2013 Eval, Table 8). Furthermore, when comparing
µ-average scores on the NW and WB documents be-
tween the 2012 and 2013 query sets, as shown in Ta-
ble 13, we note that our system performs as expected
on this year’s NW documents, and even scores bet-
ter than expected on this year’s WB documents, at
least for the evaluation runs. Limiting ourselves
to NW and WB documents for 2013, we obtain a
weighted µ-average score of 0.806 for our evalua-
tion run, which is in accordance with our µ-average
score of 0.790 when evaluating the 2012 data. Recall
that the 2012 queries were noticeably more difficult
than previous years.

A noticeable difference concerning our system’s
performance on the 2012 and 2013 data, is the much

NW WB
Eval Train Eval Train

2012 0.829 0.897 0.715 0.816
2013 0.832 0.854 0.770 0.787

Table 13: µ-average scores on NW and WB documents
from TAC 2012 and 2013 query sets for 2013 system.

smaller difference between evaluation and training
run scores for 2013 (see, e.g., Tables 12 and 13). The
clearly smaller selected NW documents for 2013
compared to all previous years (see Table 10) might
provide a clue as to why this is for this type of docu-
ments, as the smaller size might limit the amount of
NER errors, but we can only speculate in this regard,
as this reasoning would, on first sight, contradict the
same effect for the considerably longer WB and DF
documents. Whatever the case may be, the decrease
of the training-evaluation gap across the board when
comparing our 2012 and 2013 systems indicates that
our ComboNER system does indeed provide cleaner
and more accurate NER tags, but this same gap still
indicates that the dependency of our system on the
NER accuracy is still its biggest weakness.

5 Conclusion

We explained the workings of our system used for
participating in the TAC 2013 English EL task, fo-
cusing on changes and novelties compared to our
2012 system. Detailed performance statistics are re-
ported concerning the performance of our 2013 sys-
tem on several years of TAC EL tasks, as well as
comparing the performance of our 2012 and 2013
systems. These last data show that our 2013 system
has vastly improved over our 2012 system, scoring
15.8% and 46.3% higher on evaluation runs on 2012
and 2013 data respectively (0.744 vs 0.586 B3+F1
for 2012, 0.600 vs 0.137 B3+F1 for 2013), and beat-
ing last year’s best system (0.744 vs 0.730 B3+F1)
on the 2012 EL task. Despite all this, our system per-
formed only slightly above the median in this year’s
task (0.600 vs 0.588 B3+F1).

Although we managed to decrease the gap be-
tween our µ-average and B3+F1 scores on 2012
data, these gaps are again considerable on the 2013
data (eval.: 0.759 vs 0.600, train: 0.794 vs 0.642),
indicating the inadequacy of our system to perform
(specifically NIL) clustering beyond a crude base-
line approach, a task the 2013 data was very much
geared toward, and our system is not. Concentrating
on our µ-average scores and the NW and WB doc-
uments, we do however note that in this regard our
system performs on par with obtained results on the
2012 data.

We also still note significant gaps between evalua-
tion and training runs, specifically on the 2012 data,
and to a lesser extend on the 2013 data. This is an in-
dication that our system, despite the beneficial effect
of our ComboNER system, is still very much depen-
dent on the accuracy of the used NER system(s). To
address this issue, we contemplate building a system
that would combine NER and NED, with both prob-
lems providing feedback to each other, in order to
obtain a more robust and accurate system with re-
gard to both tasks.

References
J. R. Finkel, T. Grenager and C. Manning. 2005. Incor-

porating Non-local Information into Information Ex-
traction Systems by Gibbs Sampling. Proceedings of
the 43nd Annual Meeting of the Association for Com-
putational Linguistics (ACL 2005), pp. 363-370

L. Ratinov and D. Roth. 2009. Design Challenges and
Misconceptions in Named Entity Recognition. Pro-
ceedings of the Thirteenth Conference on Computa-
tional Natural Language Learning (CoNLL-2009), pp.
147-155

L. Mertens, T. Demeester, J. Deleu, P. Demeester and
C. Develder. 2012. UGent Participation in the TAC
2012 Entity-Linking Task Proceedings of the Fifth
Text Analysis Conference (TAC 2012)

