Ilinois Cognitive Computation Group UI-CCG TAC 2013
Entity Linking and Slot Filler Validation Systems

Xiao Cheng, Bingling Chen, Rajhans Samdani,
Kai-Wei Chang, Zhiye Fei, Mark Sammons,

John Wieting, Subhro Roy, Chizheng Wang, and Dan Roth
Department of Computer Science, University of Illinois at Urbana-Champaign
Urbana, IL 61801
{cheng88,chen386,rsamdanZ,kchanglO,zfei2,mssammon,
wieting2, sroy9, cwang86,danr}
@illinois.edu

Abstract

In this paper, we describe the University of
Illinois (UI_LCCG) submission to the 2013
TAC KBP English Entity Linking (EL) and
Slot Filler Validation (SFV) tasks. We devel-
oped two separate systems. Our Entity Link-
ing system integrates an improved version of
the Illinois Wikifier with additional function-
ality to identify and cluster entity mentions
that do not correspond to entries in the refer-
ence knowledge base. Our Slot Filler Valida-
tion system follows an entailment formulation
that evaluates each candidate answer based on
the evidence present in the source document it
refers to.

1 Illinois Entity Linking System

The goal of the TAC KBP English Entity Linking
(EL) task is to cluster name entity mentions in a doc-
ument and either link them to entities in a knowledge
base (KB), or assign them to a non-KB entry (NIL)
with a unique NIL ID.

Our Entity Linking system has two main com-
ponents: (1) the Wikifier! (Cheng and Roth, 2013;
Ratinov et al., 2011) as the underlying knowledge
base linking engine, linking all mentions in a given
text to the entire Wikipedia (a superset of the TAC
KBP Knowledge Base); and (2) a cross-document
coreference resolution system based on the Best La-
tent Left-Linking (L3M) approach (Samdani et al.,
2012; Chang et al., 2013). During testing, the sys-
tem runs the linking and clustering components sep-
arately and then combines the results.

"http://cogcomp.cs.illinois.edu/page/
software_view/33

It is important to note that our Wikifier component
is not retrained on TAC data and our L3M cluster-
ing is trained and tuned on the 2012 Entity Linking
queries, optimizing for the B3 F1 metric.

1.1 EL System Description

The UI_CCG EL system first preprocesses the query
mentions and documents. Then it applies the Wiki-
fier to link the mentions to Wikipedia entities and ap-
plies cross-document coreference resolution system
to cluster mentions into groups. The final decision is
provided by a voting scheme based on the clustering
and wikification results. Figure 1 shows the overall
system architecture. We next describe each stage in
detail.

1.1.1 Preprocessing

We note that due to the excessive amount of time
needed to exhaustively annotate the referenced doc-
uments, we purposefully transform the input docu-
ment according to the query. Specifically, in the pre-
processing stage we truncate the longer documents
and only keep, for each long document, the start-
ing paragraph, the paragraphs surrounding query
mentions and, if length permits, the sentences that
contain possible coreference mentions of the query
mention. The goal is to keep the text short while
minimizing the loss of critical context needed to
make the linking decision.

The linking system consists of 3 stages: Candi-
date Generation, Ranking, and Clustering. The first
two stages are accomplished using the Wikifier and
the last stage uses the L3 component.

Preprocessing

i Query
| Normalization

Purposeful
Coreference

1
1
i
1
Document !
Transformation |

1

/" Linking

| Wikification |

Cross-Doc
Coreference

Reconcile
NIL Clusters

N

Linking
Problem

Query Mapping

Wikipedia Entities

Figure 1: Overall UI_.CCG Entity Linking system architecture

1.1.2 Wikification

We run the Wikifier? to get a list of confident
Wikipedia links for each query and the associated
confidence scores. The Wikifier performs the fol-
lowing steps.

Candidate Generation We first generate can-
didates for each mention by taking the top 20
Wikipedia pages that were linked based on the nor-
malized mention surface. We also search lexically
in the arguments of DBPedia infobox relations and
other candidates in the same document when cer-
tain textual relations are found (Cheng and Roth,
2013). In addition to the query mention, we also
generate candidates for each NER mention and for
noun phrase sub-chunks of length up to 5. Further-
more, we consider as mentions those phrases that are
comprised of two such mentions when connected by
prepositions, conjunctions and punctuation marks.
These strings are matched exactly against all anchor
text links in Wikipedia, against page titles and redi-
rect page titles.

>The Wikifier was trained on a pre-2011 Wikipedia dump
(Ratinov et al., 2011) with redirects from May 2013 and rela-
tions from DBPedia 3.8

Candidate Ranking We now rank the candidates
following these essential steps:

e The first step is mainly based on the prior
P(entity|mention) and P(mention|entity)
(for a given page in Wikipedia, the distribution
over the various text spans hyper-linked to it
and vice versa).

e Then, we rank the candidates again based
on the context compatibility by considering
TFIDF similarity of groups of words around
the mention and each candidate, using multiple
window sizes. We then rank the top candidates
based on the similarity of the link structures of
their corresponding Wikipedia pages.

e Lastly, we identify important textual rela-
tions and enforce relational constraints (Cheng
and Roth, 2013), including coreference rela-
tions, by matching relation arguments against
Wikipedia infobox (DBPedia) and page-link
relations, on the entire document. Let e¥ de-
note the kth candidate for the ith mention. This

stage promotes and demotes pair rg?’l) of entity

candidates ef and eé. to maximize the following

objective function of linking coherency, where
(k1)

k . . . k
s; and w;;"" are priors for entity candidate e;

(k1)

and candidate pair 7;;" respectively:

I'p = argrl‘nax Z Z S?ef + Z Z wgfvl)rgfvl)
ik

ij okl
s.t. rl(,j’?’l) €{0,1} Integral constraints
eb e {0,1} Integral constraints
Viy,eb =1 Unique solution

27~§J].€’l) <ek+ eé» Relation definition

1.1.3 Cross-Document Coreference Resolution

We consider using a coreference resolution sys-
tem to group query mentions into clusters. We ex-
perimented with a range of pairwise clustering clas-
sifiers. The L3M classifier (Samdani et al., 2012)
performed best on the 2012 development set; in this
case we trained it on contextual and surface string
similarity features. In particular, the string similarity
is based on NESim? (Do et al., 2009) and takes into
account acronyms and edit distance; context features
include words with different window sizes (8, 16, 24
words etc.).

We assume the mentions arrive at the classifier in
a streaming fashion and only mentions to the left of
the current mention are considered “seen”. We ex-
perimented with the following approaches:

Trivial Link all mentions to separate clusters

AllLink We compute the pairwise score between
the current mention and all other mentions
(whether seen or unseen), and link it to the clus-
ter with the highest pairwise score.

SumLink We compute the normalized sum of pair-
wise scores between the current mention and
seen entities in each cluster. We then put the
current mention in the cluster with the highest
normalized score.

L3M This approach is similar to SumLink, and we
compute the score using a latent EM classifier
as in (Samdani et al., 2012).

*http://cogcomp.cs.illinois.edu/page/
software_view/22

Since singleton clusters (clusters of size 1) domi-
nate the cluster distribution in our development data,
trivial clustering achieves a very competitive base-
line. To test our system’s robustness under different
cluster size distributions, we also tested the perfor-
mance with certain ratios of singleton clusters re-
moved from the data.

To address the lack of NIL cluster training data,
we also used the Wikifier component to generate
around 10k training queries for the cross-document
clustering.

The performance of the different clustering ap-
proaches described above on development data is
summarized in Table 1.

Clustering Algorithm
R |Trivial |AllLink | L®M | L> M, | SumLink
On TAC 2012 Data
100% | 64.54 | 86.49 [83.92]82.94| 86.52
75% | 87.82 | 88.36 (89.19|89.14 | 88.49
50% | 92.73 | 92.88 [93.14|93.12| 93.08
25% | 94.72 | 94.72 |94.89|94.86 | 94.86
0% 95.84 | 95.84 |95.95/95.94| 95.88
On Wikifier Generated Data
100% | 43.53 | 79.77 |86.73|82.68 | 85.45
75% | 55.77 | 82.09 |88.09|84.74| 87.23
50% | 64.38 | 83.60 |89.05|86.48 | 88.25
25% | 69.89 | 85.27 (89.62|87.43 | 88.82
0% 73.82 | 86.40 [90.18| - 89.31
Table 1: Clustering performance on development data.

‘R refers to the percentage of singleton clusters removed
from training/testing data. The performance measure is
the standard B>F1 regardless of whether the entity is
NIL. The L?M, metric is obtained by removing surface
string features.

1.1.4 Voting and Generating Final Output

We consider the following procedure to cluster
query mentions into groups and to assign the ID of
the KB entry that the mentions in the cluster refer to,
or a NIL ID if such a KB entry does not exist.

From Wikifier, for each query ¢, we get a list of
confident Wikipedia titles {¢} with corresponding
ranking scores 7;(t) and a linker score /; for whether
the answer ¢; should be NIL. Then, we consider
jointly deciding the references of query mentions in

the same cluster by the voting schemes described in
(Ratinov and Roth, 2011). This approach provides
a more robust answer when evaluating on the devel-
opment set. We consider the following two ways of
voting:

Max The most confident candidate entity across all
query references:

t* = arg max{r;(t)|Vi,l; > 0} (1)
t

Sum The most confident candidate entity by sum-
ming all its ranking score across all query ref-
erences:

t* = arg{nax Z ri(t) ()

Vi,l; >0

We used the {; > 0 threshold for all our runs.

Note that the assignment to a cluster can be NIL
if I; < 0 for all mentions ¢ in the cluster. In such
cases, we assign the cluster to a non-KB entry with
a unique NIL ID, otherwise the cluster is mapped to
a Wikipedia entry but the entry does not appears in
the provided knowledge base, in which case we also
assign a unique NIL ID.

We combine the output of the Wikifier obtained
above with the cross-document coreference clusters
by taking the most confident candidate in the cluster.
On the development set, the Wikifier and the cross-
document coreference system achieve around 75%
agreement in terms of the pair-wise cluster member-
ship test.

1.2 EL Results

This section describes the results of experiments we
ran on our Entity Linking system on the develop-
ment data and on the evaluation data.

1.2.1 Results on development data

We used the 2012 TAC Entity Linking data to de-
velop our system. Table 2 summarizes the system
performance on this data set.

Note that if we use the query offset exactly, the
performance drops significantly. This phenomenon
demonstrates the importance of better coreference
resolution for the Entity Linking task, as the first two

Metrics

Approach | MA | B? Precision | B® Recall | B> F1
Max 75.8 70.5 72.1 71.3
Sum 75.8 70.6 72.2 71.4
Exact 71.5 64.9 68.0 66.4

Table 2: System performance on 2012 Entity Linking
queries. Sum and Max are runs as explained in Sec. 1
and the Exact run is obtained by taking the top answer of
the exact query mention.

approaches, which use a voting procedure to intro-
duce candidates from other mentions, help the per-
formance.

1.2.2 Performance on TAC 2013 Evaluation
Queries
We also include the official results for TAC 2013
Entity Linking evaluation: The official result for our
submitted 5 runs is presented in Table 3

Metrics
Approach | MA | B3+ Prec.| B>+ Recall | B>+ F1
Max 79.6 77.0 60.5 67.8
Sum 79.8 77.2 60.5 67.8
Norm. Max | 80.6 77.9 62.0 69.1
Norm. Sum | 80.7 78.2 62.0 69.2
No Thres. |80.5 77.6 62.8 69.4

Table 3: Official system performance on 2013 Entity
Linking Evaluation queries. No Thres. run uses the Max
voting method and ignores negative linker score. Sum
and Max are runs as explained in Sec. 1. Runs with the
prefix Norm. incorporate query normalization.

A more detailed performance break-down by dif-
ferent document domains and query types is summa-
rized in Table 4.

1.3 EL Discussion and Conclusions
1.4 Error Analysis

To understand our system performance better, we
also analyze our system errors on the 2013 gold eval-
uation data by checking mismatched query clusters
in Table 5.

Error Type | Percent Main Causes Gold Error
) 11i istakes,
Link to NIL | 19.74 | SPEUEMUSEAKES, oy ieal — United States NIL
nick names
. f , entit
Mismatch 6382 | <O etr;gicrfg MY | Bears or [Seattle] fans — NIL(Seattle Seahawks) | Seattle
. didate typi
Misc. 16.44 candidate typing [Great Britain] — United Kingdom G¥ea.t
etc. Britain

Table 5: Entity Linking errors by types. For Link to NIL type errors we fail to identify a known concept. For mismatch
errors both system output and gold annotation are either NIL or non-NIL with different ID.

Approach
Domain | Max | Sum | N.Max | N.Sum | N.T.
All 67.8167.8] 69.1 | 69.2 (694
KB 65.6|65.8| 679 | 68.2 |68.6
NIL 70 [69.7| 70 69.8 | 70
NW 7541755 76 76.1 | 77
WB 64 [64.2| 643 | 644 (639
DF 5741572 604 | 60.3 | 60
PER 69.9|70.2| 70.2 | 70.6 |70.8
ORG |63.9|63.7| 63.8 | 63.7 |63.5
GPE 69.2169.1| 72.5 | 72.4 |73.3

Table 4: Official system performance break-down. The
metric used is the official modified B3F1 (Ji et al., 2011).
N.T. refers to No Threshold. N.Max and N.Sum refers
to Normalized Max and Normalized Sum respectively as
described in Table 3

Due to the differences in task definitions (for ex-
ample, only named entities of types PER, ORG and
GPE are queried in the KBP Entity Linking task),
we need better adaptation of Wikification tools to the
TAC Entity Linking domain. One possibility in the
future would be extracting high quality entity types
and restricting output to only the relevant named en-
tity types. In Table 4, we can see that

e Our system performs worst on the ORG type
queries and the corresponding performance is
insensitive to different approaches. The cause
is revealed by the Mismatch error in Table 5.
In the Wikification task we would always link
Seattle in the [Seattle] Seahawks to the Seattle
City (GPE), whereas in Entity Linking it should
link to the team (ORG) Seattle Seahawks.

e We did not use any resources external to
Wikipedia to perform systematic spell check-

ing for the queries. This hurts the performance
on the DF (Discussion Forum) data signifi-
cantly, as the language use from this domain
is usually informal and error-prone.

2 Illinois Slot Filler Validation System

The Slot Filler Validation (SFV) task resembles,
when each candidate answer (query) is considered
separately, the problem of Recognizing Textual En-
tailment (RTE). We approach the SFV task by
finding matches in the relevant document for the
query arguments and predicate and then determin-
ing whether together they satisfy the desired rela-
tion. If all these conditions are met sufficiently well,
the system predicts that the proposed answer is en-
tailed, and therefore correct.

2.1 SFV System Overview

The UI-CCG SFV system has five stages: 0) use
NLP tools to preprocess the document text; 1) find
matches for query arguments in the proposed docu-
ment; 2) check argument compatibility with the re-
lation named in the query; 3) find matches for re-
lations in the vicinity of matched arguments using
hand-written rules; and 4) make a decision based on
the evidence from stages 1 — 3. The architecture is
summarized in Figure 2.

2.1.1 Preprocessing

The TAC KBP document collection was first pro-
cessed to remove XML and HTML markup and
stored in a Lucene database. At run-time, the rel-
evant document text is retrieved from this database
and processed with a range of Illinois NLP tools.
First, the text is “cleaned” to remove problem-
atic character sequences. Then, using the Cu-
rator (Clarke et al.,, 2012), the text is processed

AT,

N
Source

Documents

_/

y
S

Document
Retriever

3

POS Tagger
Shallow Parser

-

~——o

Preprocessor/
Argument
Generator

Argument
Checker

Decision
Maker

Relation
Matcher

Argument

Matcher

Figure 2: UL_CCG Slot Filler Validation system architecture

with the Illinois tokenizer, POS tagger (Roth and
Zelenko, 1998), Shallow Parser (Punyakanok and
Roth, 2001), Named Entity Recognizer (Ratinov and
Roth, 2009), and Wikifier (Ratinov et al., 2011;
Cheng and Roth, 2013).

The document text is often noisy, especially when
drawn from the News Group and Discussion Forum
subsets of the KBP data. We implemented some
heuristics to clean up character sequences likely to
cause errors in the preprocessing tools. The prob-
lematic sequences appear to come from several dis-
tinct sources:

e Creative use of punctuation for formatting.
This was prevalent in the weblog and news-
group data sets, and two common instances
consisted of repeated punctuation to indicate
document section boundaries; and use of char-
acters such as asterisks or tildes to represent
bullet point markers.

Complete or partial inclusion of XML/HTML
markup. This was found mainly in KBP system
responses, presumably due to imperfect char-
acter offset calculations by participating Slot

Filler systems.

Imperfect translation between character encod-
ings. The observed results of these problems
were the use of unexpected characters or char-
acter sequences for section breaks (in the case
of documents presented as single newspaper ar-
ticles, but which consist of a set of topically
connected, but factually unrelated short items),
or of other characters such as quotation marks
or non-standard spacing or dashes.

Over-long documents. The cause of this prob-
lem was mainly that we lacked a parser to
handle forum data, which comprised long se-
quences of related posts. In a few other cases,
apparent processing errors in whatever method
was used to generate the source corpus led
to some instances that concatenated multiple
news documents in a single file.

Some of the resulting malformed character se-
quences create problems for the NLP tools applied
during preprocessing. To mitigate these problems,
all documents are first processed using the follow-
ing heuristics: characters were mapped to their ascii

equivalents where possible, and removed otherwise;
quotations were normalized; and sequences of re-
peated punctuation characters were removed. In
addition, all xml/html markup was removed from
query slot fillers.

This significantly increased the number of query
documents that the system could process. For the
2012 data, NLP processing errors resulted in 4, 395
queries being ignored (automatically labeled as in-
correct) before the cleanup heuristics were intro-
duced. After they were introduced, the number of
documents that could not be processed fell to 2,007
— a reduction of over 50%.

To address the problem of long documents, arti-
cles whose text exceeded 100,000 characters were
truncated at the nearest sentence boundary to that
character limit. This is obviously not an ideal so-
lution, and in future work we plan to write a forum
parser that segments forum sequences in an intuitive
way.

2.1.2 Candidate Argument Generation

The SFV query data includes a very limited set
of types for query subjects (Person or Organiza-
tion). Moreover, many of the relations specified
by the task imply type constraints on both argu-
ments. We identified a number of relevant coarse-
grained argument types (Person, Organization, Lo-
cation, State, Province, City, Nationality, Date, and
Number) and wrote a set of simple constraints that
the different relations imposed on the possible types
of their arguments. These constraints jointly spec-
ified links between subject and object types: for
example, date_founded requires an Organization as
its subject and a Date as its object, while the rela-
tion employee_or_member_of allows two cases: one
where the subject is a Person and the object is an
Organization; and the other where the subject and
object are either Organizations or Locations (since
we did not have a reliable NLP component to iden-
tify Geopolitical entities, which might be labeled as
either Locations or Organizations). We used these
constraints to identify necessary argument type re-
sources, as well as a means to filter out inappropri-
ate candidate argument matches in the candidate slot
filler source document. To further increase recall
we also allowed some constituents to pass through
the filter even if they violated the constraint. This

was permitted as long as the constituent could not
be classified as any other type.

Candidate argument boundaries are generated
from constituents identified by the Named Entity
Recognizer, shallow parser, and Wikifier. Where
possible, types are inferred from the constituent la-
bels or, in the case of dates and numbers, using reg-
ular expressions to detect appropriate patterns. For
sub-types of Location, we experimented with using
gazetteers that we hoped would be sufficiently ex-
haustive — for example, for cities, states, and coun-
tries. However, we found that only our Cities re-
source had sufficient coverage to allow its use as part
of the argument labeling system.

Through early error analysis on the 2011
RTE/Slot Filler Validation data, we found that the
system missed a significant number of candidate ar-
guments in the source text, either because no con-
stituent covered the relevant span, or because no
type was found for a constituent that covered the
matching span. We therefore extended the candidate
identification component to search for exact matches
for query subjects and objects in the source text, and
creating the appropriate argument constituent when
exact matches are found. If an unlabeled argument
constituent is found, the system checks all labeled
constituents found in the document for one with the
same surface form, and if one is found, its label is
attached to the unlabeled constituent.

We consider these steps to be examples of Pur-
poseful Inference, by which we mean adapting the
system’s interpretation of a source document based
on the specified information need. This strategy po-
tentially introduces noise, as system slot fillers are
often incorrect, but is a high-precision means of in-
creasing recall for the query entities, whose type is
necessarily compatible with the surface form. In the
case of object entities, it increases recall at the early
stages of the system, deferring the entailment deci-
sion to later stages.

2.1.3 Argument Matching

To identify whether or not a candidate argument
in a source document matched an argument speci-
fied in a query, the Illinois Named Entity Similarity
tool (NESim) (Do et al., 2009) is used. This tool
models some typical variations of name represen-
tation, including acronyms, nicknames, and partial

name matching. Those candidates that match with
sufficiently high score are retained, and the rest are
removed.

NESim is a high-recall matching resource, and
potentially leads to numerous false positives in the
case of partial name matches or acronym matches.
For both the query subject and the object, the sys-
tem therefore requires that at least one candidate
anywhere in the document is a “strong” match with
the argument (matches 75% or more of the tokens
in the span); this mitigates NESim’s relaxed match-
ing rules by avoiding last-name-only matches, or ho-
mographic acronyms to match incorrect expanded
names.

The system next generates all pairs of subject-
object candidates. Each pair is then checked for
compatibility using the constraints described in Sec-
tion 2.1.2. Although some relations (like charges)
have no obvious object type, we found that we could
still improve results by including constraints such as
“not a date”, “not a number”, etc. This component
is designed to be high recall, filtering out the most
obvious mistakes.

2.1.4 Relation Matching

The Relation Matching stage uses hand-coded
rules that specify lexical patterns that can account
for argument position. Each rule is associated with a
specific relation, so rule arguments are subject to the
type constraints imposed via the argument checker.
Rule lexical terms are lemmatized, and text tokens
are lemmatized at the time of comparison to abstract
over inflected forms.

Rules were generated by the authors based on in-
tuition, and extended using error analysis of two
sets of 3000 examples from the 2011 and 2012 Slot
Filler Validation data sets. Some rules are dupli-
cated across relation types. The system currently
uses about 600 rules, although an improved rule syn-
tax would reduce duplication and would therefore
significantly reduce the number of rules. Figure 3
shows examples of the two main types of rule: Ad-
jacency rules, which focus on highly localized pat-
terns that tend to occur in the immediate vicinity of
relation arguments; and Standard rules, which en-
code patterns that are less localized.

In Rule 1, “adj:” terms fix the positions of the
subject (SUBJ) or object (OBJ) argument relative to

the lexical elements of the rule. This rule encodes
the pattern in which an alternate name is given in
parentheses immediately after another name.

In Rule 2, the lexical terms are lemmas that must
be matched in the vicinity of two arguments that
match the query subject and object.

Match precision is controlled via a set of param-
eters to allow emphasis on precision or on recall of
different aspects of the rule match. For example:
How far away can the subject/object be from a rule
match term? Do all the rule components have to
match? Does the order of components matter? Can
arguments be matched separately? The last param-
eter behaves as a weak proxy for coreference; more
is said about this in the Discussion (Section 2.5).

2.1.5 Decision

The Decision component integrates the argument
and relation match information and assigns the final
label to the query.

We tried two versions of the decision component.
The first, hereafter referred to as the rule-based sys-
tem, uses a deterministic procedure with a tuned
threshold to label queries: development data (in the
form of a subset of the 2011 RTE SFV data or of the
2012 KBP SFV data) is used to optimize a thresh-
old that determines how many rule terms must be
matched to infer that the relation holds. Presently, a
single threshold is learned for all rules and all rela-
tions.

The second version, which we call the learning-
based system, uses a machine learning algorithm to
train an SVM classifier that is used to predict the
query label. Optimal parameters were tuned for the
SVM using grid search, and during training the pos-
itive examples were given 6 times the weight of the
negative examples to overcome the imbalanced data
set.

This learning-based system encodes features
based on previous component decisions by the ar-
gument matcher and the relation identifier’s rule ap-
plications. The strategy aims to learn how to correct
mistakes made by the rule-based system, and to ex-
pand the coverage of the rule based system. Each
feature was conjoined with the query relation and so
one weight vector was used to learn the parameters
for all relations. The features used included whether
or not a rule was triggered; and whether a sentence

Rule 1: alternate_names @ @ @ adj:OBJ; (; adj:SUBJ;)

Target example: Marion Robert Morrison (John Wayne)

Rule 2: charges @ @ @ serve; years; for

Target example: Wilson served seven years for armed robbery

Figure 3: Examples of Slot Filler Validation rules. The leftmost term names the relation to which the rule applies,
while the terms to the right of “@ @ @ specify the rule itself (see section 2.1.4). For each rule, the “Target example”

indicates a text span that would match the rule.

had ended between the query arguments when a rule
was triggered. Additional features used to expand
the coverage of the system included the minimum
distance between the query arguments when a rule
was not triggered as well as the unigrams and POS
tags between the query argument pairs when they
were both in the same sentence.

We also experimented with a more expressive fea-
ture set which had features for particular rules in or-
der to try and learn optimal conditions for specific
rules instead of just the relations. In addition to the
previous features, these included the maximum dis-
tance between all matching components of a rule
and the subject and object as well as which tokens
of the specific rule were actually found in the docu-
ment.

2.2 SFV Results

To develop and train our Slot Filler Validation sys-
tem, we used data from the 2011 RTE Slot Filler
Validation task and from the 2012 KBP Slot Filler
assessed results. This section describes the selec-
tion and use of development, training, and test data
from previous TAC KBP-related tasks, and the per-
formance on the 2012 and 2013 tasks.

2.3 Training/Development Data

To develop the UI-CCG system, we used the 2011
Slot Filler Validation data from the TAC RTE track,
and generated a comparable data set (“2012 SFV”)
from the 2012 KBP Slot Filler queries, system out-
puts, and TAC annotator assessments. For final eval-
uation of the learning-based system, we split the
2012 data into two halves, a training set and a test
set, keeping the proportions of queries for each re-

lation type comparable to the data set as a whole.
We developed rules and features initially on a 3000-
example sample of the 2011 RTE SFV data. We then
generated a 3000-example sample from the 2012
KBP data and analyzed the errors on this data set
to improve rules and features. For the rule-based
system without learning, we tuned a decision thresh-
old on the 3000-example subset and evaluated on the
entire 2012 data set. We also ran the system with a
higher threshold to produce a more conservative out-
put.

For the system with the learning component, dur-
ing development we trained the system on the 3000-
example 2012 SFV subset and evaluated on a second
3000-example subset. When we had identified two
good feature sets, we trained on the training set of
the 2012 data and evaluated performance on the test
set.

2.4 System Performance

The results for the four system configurations on the
entire 2012 SFV data set are reported in Table 6,
with the baseline being the performance if no SFV
results are filtered. The learning-based systems were
evaluated only on the test set of the 2012 data. We
also show the results of 10-fold cross-validation on
the entire 2012 corpus.

The results for these same system configurations
on the entire 2013 SFV data set are reported in Ta-
ble 7. The last two entries refer to training on half of
the 2013 data and testing on the remainder.

2.5 SFV Discussion and Conclusions

The results in the previous section indicate that our
overall approach is reasonably successful at improv-

System Configuration Precision | Recall | F1

Baseline — always say ‘YES’ 0.181 1.000 | 0.307
Argument Checker only 0.184 0.986 | 0.310
Argument match plus Argument Checker 0.280 0.798 | 0.415
Rules, no learning, low threshold (0.55) 0.449 0.667 | 0.537
Rules, no learning, high threshold (0.85) 0.475 0.558 | 0.513
Learning, coarse features 0.402 0.766 | 0.527
Learning, expressive features 0.402 0.687 | 0.507
Learning, coarse features, 10 fold CV 0.447 0.827 | 0.581
Learning, expressive features, 10 fold CV 0.489 0.775 | 0.600

Table 6: Performance on KBP 2012 data. “Argument Checker only”: say “NO” if argument checker fires, otherwise
say “YES”; “Argument Match plus Argument Checker”: say “YES” if both arguments match and Argument Checker
does not fire, don’t use relation matching

System Configuration Precision | Recall | F1

Baseline — always say ‘YES’ 0.248 1.000 | 0.398
Argument Checker only 0.254 0.967 | 0.402
Argument match plus Argument Checker 0.305 0.825 | 0.446
Rules, no learning, low threshold (0.55) 0.349 0.708 | 0.467
Rules, no learning, high threshold (0.85) 0.367 0.604 | 0.456
Learning, best features 0.338 0.783 | 0.472
Learning, most expressive features 0.330 0.398 | 0.361
Learning, best features, 2013 Dev 0.400 0.863 | 0.547
Learning, most expressive features, 2013 Dev 0.469 0.604 | 0.528

Table 7: Performance on KBP 2013 data of system configurations developed and tuned on KBP 2012 data with
the exception of the last two learning systems which were trained on half of the 2013 data. “Argument Checker
only”: say “NO” if argument checker fires, otherwise say “YES”; “Argument Match plus Argument Checker”: say
“YES” if both arguments match and Argument Checker does not fire, don’t use relation matching

ing the raw KBP Slot Filler results. In this section,
we assess specific aspects of the UL_CCG Slot Filler
Validation system and propose future work for each.

2.5.1 Assessing the Textual Entailment
Approach

The entailment-based approach we have used for
slot filler validation addresses two key challenges:
applying entailment recognition at large scale (tens
of thousands of documents) and recognizing en-
tailed relations from entire documents. These arise
from the properties of the KBP slot filler task, but
are representative of typical Information Extraction
needs.

The system performance is good enough to im-
prove over raw Slot Filler system behavior, but there
is clearly a lot of room to improve precision and even
recall. Moreover, the current system is oriented to-
ward filtering results from other NLP systems, and
not towards querying a large document collection it-
self.

We plan to extend our system by accounting for
local inference operations beyond the local match-
ing capabilities incorporated into the system thus
far. The current system, tuned for higher recall, will
serve as a filtering step, and the deeper system will
be applied to relatively few candidate documents in
cases where simpler methods are unreliable.

2.5.2 Rule-based Approach

The rule-based approach, and the rule encoding
that we used, is very straightforward but quite ef-
fective for the simple relations specified in the Slot
Filler task. The rule syntax is a convenient way
to represent surface variations in representation of
many relations, and constitutes a straightforward
mechanism for extending the system to recognize
new relations.

It is clear that the syntax we used to encode rules
can be improved to reduce duplication (for exam-
ple, by assigning numbers to rules, and mapping
individual rules to multiple compatible relations).
However, we also believe that further abstraction en-
coding multi-word-expressions such as named en-
tities, and local syntactic structure such as apposi-
tions, possessive constructions, and modifier-head
structures would improve expressiveness and speci-
ficity.

We evaluated two models of rule application: in
one, both arguments had to be sufficiently close to a
single set of terms that matched the rule; in the other,
the arguments had to be sufficiently close to some set
of terms that matched the rule. In the latter case, the
result was a crude approximation of co-reference: in
Figure 4 the term “died” matches in two locations,
each near a strong match for the subject or object,
but not both. This heuristic also introduces errors,
but we found that overall there was a significant im-
provement in F1 using this relaxed model.

Finally, we observe that each relation match de-
cision is presently independent of all other such de-
cisions, but that when multiple compatible entities
are in close proximity (see Figure 5), some relations
may impose constraints on others. In the example
shown, “Josh Smith” is in the “title” relation with
“CEQO”, and so cannot also be in the “title” relation
with “Vice President of Operations”.

We plan to extend the decision model to account
for these additional constraints, which we feel will
be easier with the more expressive rule syntax de-
scribed above and also by further clustering the rules
in a way that each cluster will have its own set of
features. For instance, those rules which include a
verb and an object should have SRL features, while
those rules in which an adjective is modifying a
noun would benefit from features derived from de-
pendency parsing.

2.5.3 Lexical Similarity

One potential source of improvement would be to
generalize the rules by using lexical similarity. We
experimented with a version of WNSim (Do et al.,
2009), modified to account for derivationally related
words, as a WordNet similarity metric. We used a
threshold that was deemed optimal from previous
RTE tasks to expand the vocabulary specified by
the rules. However, on the 2012 data, the perfor-
mance of the rule based system dropped from an
F1 of 0.537 to 0.482. As expected the recall in-
creased from 0.667 to 0.729, but the precision fell
from 0.449 to 0.360. To improve our system, we
plan to explore other ways of using lexical similar-
ity in order to improve our results.

QUERY: Vitaly Ginzburg cause_of_death heart failure

DOCUMENT: Nobel Physics prize winner Vitaly Ginzburg, who helped develop the Soviet hydrogen
bomb, has died at age 93, the Russian Academy of Sciences said Monday. Ginzburg said the bomb “saved”
his life during an anti-Jewish campaign. But he had drawn controversy in recent years with fierce public
criticism of the Russian Orthodox Church, which has enjoyed surging popularity and political influence

since the fall of the atheist Communist regime.

“He died from heart failure,” Irina Presnyakova, a
spokeswoman for the Russian Academy of Sciences...

Figure 4: Example of “relaxed” rule matching allowing coreference-like behavior.

The award was accepted by [CEO] [Josh Smith] and [Vice President of Operations] [Celia Jones].

Figure 5: Example of contraints arising from multiple relations.

2.54 Learning-based approach

Learning was difficult in this task. There are many
relations and the dataset is significantly skewed to-
wards negative examples, resulting in relatively few
positive examples for many relations. In addition,
our results suggest that data from 2012 was signif-
icantly different from that of 2013 as training on
2012 did not generalize well to the 2013 data.

Not surprisingly, the more expressive feature set
increased precision and lowered recall. The im-
proved results on the 10-fold cross validation evalu-
ation (see Table 6) suggest that this feature set works
well when more training data is available.

Figure 6 illustrates a query that the rule-based sys-
tem incorrectly predicts to be entailed, but which the
learning system correctly labels as not entailed. The
rule in question is overly general, and essentially en-
codes a proximity-based relation match. Two mech-
anisms in the learning approach may account for this
improved behavior: down-weighting of an overly
noisy rule, or recognition of lexical items (such as
commas) that have a strong anti-correlation with a
correct rule match.

2.5.5 Comparing the Rule-based and
Learning-based approaches

For the Slot Filler Validation use case, the rule-
based approach has the appealing characteristic of
being fairly robust: performance degrades from the
2012 to the 2013 data set, but is still significantly
above baseline, and degrades less than the learning-

based approach. Given the challenges to a learning
model — limited per-relation training data and a do-
main shift due to the changes in participating KBP
Slot Filler systems from year to year — this approach
is areasonable starting point. In a scenario where the
application domain is static, the learning approach
is clearly superior. At present, the features used
in the learning-based model are necessarily simple.
To avoid sparsity problems, more advanced training
methods will have to be investigated and more ro-
bust feature sets that are more sophisticated and ab-
stract will be required. The use of rule applications
as the basis for such features seems reasonable, pro-
vided the rules are not overly specific.

2.5.6 Summary

The application of a Textual Entailment Recog-
nition model to the task of Slot Filler Validation
is an intuitive one, but the scale of the task makes
application of “deeper” NLP resources such as co-
reference resolvers and semantic role labelers prob-
lematic. Our approach is a straight-forward one, but
performs well on the filtering task, even when there
is a significant domain shift (as Slot Filler system
behaviors change from year to year). The current
framework allows for new relation recognition re-
sources to be added via a simple rule syntax, and
appears well-suited to development of a deeper anal-
ysis component that is applied very selectively after
most of the relevant document content is filtered by
earlier components.

RULE MATCHED: [[OBJ]] [[*1] [[*]] [[SUBIJ]] Antis : .
QUERY: Patricia Neal origin Greek

DOCUMENT: ..a stroke. “Frequently my life has been likened to a Greek [tragedy] [,]” Neal
wrote, “and the actress in me cannot deny that comparison...”

Figure 6: Example of query that learning-based system predicts correctly, but the rule-based system does not.

References

K.-W. Chang, R. Samdani, and D. Roth. 2013. A con-
strained latent variable model for coreference resolu-
tion. In Proc. of the Conference on Empirical Methods
in Natural Language Processing (EMNLP).

X. Cheng and D. Roth. 2013. Relational inference for
wikification. In Proc. of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

J. Clarke, V. Srikumar, M. Sammons, and D. Roth. 2012.
An nlp curator (or: How i learned to stop worrying and
love nlp pipelines). In LREC, 5.

Q. Do, D. Roth, M. Sammons, Y. Tu, and V. Vydiswaran.
2009. Robust, light-weight approaches to compute
lexical similarity. Technical report.

Heng Ji, Ralph Grishman, and Hoa Trang Dang. 2011.
Overview of the tac 2011 knowledge base population
track. In Fourth Text Analysis Conference (TAC 2011).

V. Punyakanok and D. Roth. 2001. The use of classifiers
in sequential inference. In NIPS.

L. Ratinov and D. Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
CoNLL.

L. Ratinov and D. Roth. 2011. Glow tac-kbp 2011 entity
linking system.

L. Ratinov, D. Roth, D. Downey, and M. Anderson.
2011. Local and global algorithms for disambiguation
to wikipedia. In Proc. of the Annual Meeting of the
Association for Computational Linguistics (ACL).

D.Roth and D. Zelenko. 1998. Part of speech tagging us-
ing a network of linear separators. In COLING-ACL,
The 17th International Conference on Computational
Linguistics.

R. Samdani, M. Chang, and D. Roth. 2012. Unified ex-
pectation maximization. In Proc. of the Annual Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics (NAACL).

