
	 1	

Cold	Start	Knowledge	Base	Population	at	TAC	2017	
Task	Description1	

Version	1.0	of	May	23,	2017	

	

What’s	New	...	2	
Introduction	...	3	
Input	..	5	
Schema	..	5	
Document	Collection	..	6	
Evaluation	Queries	...	8	

Cold	Start	KB	Task	Output	..	11	
Nodes	...	12	
Predicates	..	13	
type	...	13	
*mention	predicates	...	14	
link	..	16	
SF,	sentiment,	and	event	predicates	..	16	

Event	Realis	..	16	
Provenance	...	17	
Confidence	Measure	...	18	
Comments	..	19	

Slot	Filling	Task	Output	...	19	
Evaluation	..	21	
Component	Evaluations	..	21	
Composite	Evaluation	Assessment	...	22	
Composite	Evaluation	Scoring	..	24	

Submissions	...	26	
Appendix	..	27	
..	28	
Change	History	...	36	
	

	 	

																																																								
1	The	TAC	organizing	committee	welcomes	comments	on	this	Task	Description,	or	on	any	aspect	of	the	TAC	
evaluation.	Please	send	comments	to	tac-kbp@nist.gov.	

	2	

What’s	New	
The	2017	Cold	Start	KB	and	SF	tasks	differ	from	the	2016	tasks	in	the	following	significant	ways:	

1. The	Cold	Start	KB	includes	events	(analogous	to	entities)	and	event	arguments	(analogous	
to	slot	fillers).	

2. The	Cold	Start	KB	includes	sentiment	from	an	entity	towards	another	entity.	
3. The	Cold	Start	KB	will	be	evaluated	via	a	composite	KB	evaluation	using	queries	(as	in	Cold	

Start	2016),	and	a	set	of	component	evaluations	for	Entity	Discovery	and	Linking	(EDL),	Slot	
Filling	(SF),	Event	Nugget	Detection	and	Coreference	(EN),	Event	Argument	and	Linking	
(EAL),	and	Sentiment.	

4. Mean	Average	Precision	(MAP)	will	be	the	main	evaluation	metric	for	the	composite	KB	
evaluation	and	the	component	SF	evaluation.	

5. Multiple	justifications	are	allowed	and	encouraged	for	KB	relations	(involving	SF,	event,	or	
sentiment	predicates).		Justification	spans	for	any	single	justification	in	the	KB	and	SF	tasks	
must	come	from	the	same	document,	in	order	to	make	justifications	easier	to	differentiate	
and	count.	

The	2017	Cold	Start	KB	Construction	task	builds	on	the	2016	task	by	extending	the	KB	schema	to	
include	not	only	entities	and	Slot	Filling	relations,	but	also	events	and	relations	involving	event	
arguments	and	sentiment	between	entities.			

In	addition,	Cold	Start	2017	has	the	goal	of	encouraging	systems	to	1)	provide	meaningful	
confidence	values	for	assertions	that	are	made	in	the	KB	and	2)	return	as	much	evidence	for	each	
KB	relation	as	can	be	found	in	the	document	collection.		To	encourage	development	of	meaningful	
confidence	values,	the	primary	evaluation	metric	for	Cold	Start	2017	will	be	a	variant	of	mean	
average	precision	(MAP).	To	support	an	evaluation	that	rewards	systems	for	finding	more	than	one	
justification	for	each	KB	relation,	Cold	Start	2017	requires	that	all	text	spans	for	a	single	
justification	must	come	from	a	single	document.		This	simplification	allows	TAC	to	define	two	
justifications	to	be	the	same	if	and	only	if	they	come	from	the	same	document,	and	gives	more	
credit	for	finding	more	documents	that	each	justify	relation.2			

The	submitted	Cold	Start	KBs	are	evaluated	by	both	a	composite	query-based	evaluation,	and	a	set	
of	component	evaluations.	The	composite	KB	evaluation	applies	a	set	of	Cold	Start	evaluation	
queries	to	each	KB	and	assesses	the	correctness	of	the	events,	sentiment	sources	and	targets,	and	
SF	slot	fillers	found.		

The	component	evaluations	are	implemented	by	projecting	out	the	individual	components	from	the	
submitted	KB	and	evaluating	each	component	output	file	as	though	it	had	been	submitted	directly	
to	the	standalone	track	for	that	component.		

																																																								
2	The	TAC	Cold	Start	KB	and	SF	tasks	in	2014-2016	allowed	a	single	relation	justification	to	contain	
provenance	spans	from	multiple	documents,	in	order	to	encourage	inference	across	wider	contexts.		While	
restricting	provenance	spans	to	a	single	document	per	justification	may	seem	like	a	step	backwards	for	KBP	
2017,	the	benefit	of	being	able	to	count	justifications	outweighs	the	reduction	in	allowable	inference.		
Furthermore,	because	of	the	types	of	relations	and	what	is	consider	correct	in	Cold	Start/SF,	most	successful	
cross-document	inference	in	Cold	Start	has	been	limited	to	a	handful	of	hard-coded	inference	rules	(e.g.,	
involving	familial	relationships	and	part-whole	relationships	between	GPE’s);	such	inferences	could	be	done	
by	some	downstream	process,	using	a	separate	inference	engine	and	a	possibly	richer	set	of	inference	rules	
and	world	knowledge.	

	 3	

This	document	describes	the	2017	composite	(end-to-end)	Cold	Start	KB	Construction	task	and	the	
component	Slot	Filling	task,	which	are	evaluated	using	post-submission	assessment	of	responses	to	
Cold	Start	evaluation	queries.		

The	standalone	EDL,	EN,	EAL,	and	sentiment	tasks	are	evaluated	using	gold	standard	annotations	
on	a	common	set	of	approximately	500	"core"	documents,	and	are	described	fully	on	their	
respective	track	home	pages.	The	detailed	task	description	for	those	component	tasks	are	available	
on	their	track	home	pages:	

• Entity	Discovery	and	Linking	(http://nlp.cs.rpi.edu/kbp/2017/index.html).		
• Event	Nugget	Detection	and	Coreference	(http://cairo.lti.cs.cmu.edu/kbp/2017/event/)	
• Event	Argument	and	Linking	(https://tac.nist.gov/2017/KBP/Event/Argument/)	
• Belief	and	Sentiment	(http://www.cs.columbia.edu/~rambow/best-eval-2017/)	

Introduction	
Since	2009,	TAC	KBP	has	evaluated	performance	on	several	important	aspects	of	knowledge	base	
population:	entity	discovery	and	linking,	slot	filling,	event	nugget	detection	and	coreference,	event	
argument	extraction	and	linking,	and	belief	and	sentiment.	The	goal	of	the	Cold	Start	track	is	to	
exercise	technology	in	each	of	these	areas,	and	evaluate	the	ability	of	a	system	to	use	these	
technologies	to	actually	construct	a	knowledge	base	(KB).	Cold	Start	participants	build	a	software	
system	that	processes	a	large	text	collection	and	creates	a	knowledge	base	that	is	consistent	with	
and	accurately	represents	the	content	of	that	collection.	The	knowledge	base	is	then	evaluated	as	a	
single	connected	resource,	using	queries	that	traverse	nodes	and	predicate	links	in	the	KB	to	
determine	if	the	KB	contains	correct	relations	between	entities,	events,	and	strings.		In	Cold	Start	
2017,	the	predicates	can	be	slot	filling	predicates,	sentiment	predicates,	or	event	argument	
predicates.	

We	call	the	task	Cold	Start	Knowledge	Base	Population	to	convey	two	features	of	the	evaluation:	it	
implies	both	that	a	knowledge	base	schema	has	been	established	at	the	start	of	the	task,	and	that	
the	knowledge	base	is	initially	unpopulated.		Thus,	we	assume	that	a	schema	exists	for	the	entities,	
events,	and	relations	that	will	compose	the	knowledge	base;	it	is	not	part	of	the	task	to	
automatically	identify	and	name	relationships	present	in	the	text	collection.	In	2017,	Cold	Start	uses	
a	schema	that	combines	the	entity	types,	event	types,	and	relations	from	the	TAC	component	tracks	
of	EDL,	SF,	EN,	EAL,	and	BeSt.				

Cold	Start	also	implies	that	the	knowledge	base	is	initially	empty.	To	avoid	solutions	that	rely	on	
verifying	content	already	present	in	Wikipedia	or	other	large	data	sources	about	entities,	the	
queries	used	in	Cold	Start	will	be	dominated	by	entities	that	are	not	present	in	Wikipedia.		

This	document	describes	both	the	end-to-end	Cold	Start	KB	construction	task	and	the	component	
Slot	Filling	task.	

1. In	the	Cold	Start	Knowledge	Base	task	(CSKB),	participants	submit	entire	knowledge	bases,	
without	prior	knowledge	of	the	evaluation	queries.		

2. In	the	Slot	Filling	task	(SF),	the	Cold	Start	evaluation	queries	that	involve	only	SF	predicates	
are	split	into	Cold	Start	Slot	Filling	queries,	with	one	entry	point	per	query,	and	are	
distributed	at	the	start	of	the	task	evaluation	window.	Participants	do	not	have	to	submit	
entire	knowledge	bases.	Rather,	they	apply	their	slot	filling	system	twice,	the	first	time	on	
the	entry	point	for	each	query,	the	second	time	on	each	of	the	results	of	the	first	round.		

Participating	systems	in	both	the	Cold	Start	KB	and	SF	tasks	will	receive	the	following	input:	

	4	

1. a	document	collection;	
2. a	knowledge	base	schema		

From	these,	Cold	Start	KB	systems	will	produce	a	knowledge	base.	This	KB	will	be	submitted	to	
NIST	as	a	set	of	augmented	subject-predicate-object	triples.	The	Cold	Start	KB	will	include	various		
*mention, link,		and	type	triples,	as	well	as	a	range	of	triples	involving	SF,	event	argument,	and	
sentiment	predicates	(all	triples	are	described	more	fully	below).	Participating	KB	systems	must	tie	
each	entity	mention	and	event	mention	in	the	document	collection	to	a	particular	KB	node;	in	this	
way,	the	knowledge	base	can	be	queried	without	first	aligning	it	to	a	reference	knowledge	base.		

Systems	participating	in	the	Slot	Filling	task	will	also	receive:	 	

3. a	set	of	Cold	Start	Slot	Filling	(CSSF)	evaluation	queries	(each	evaluation	query	is	a	
sequence	of	one	or	two	SF	queries	to	be	applied	in	series).	

For	both	CSKB	and	SF	tasks,	the	results	will	then	be	evaluated	by	NIST:	

• Systems	participating	in	the	Slot	Filling	task	return	slot	fillers	directly	in	response	to	the	
given	CSSF	evaluation	queries,	and	the	fillers	are	then	assessed	and	scored.			

• Evaluation	of	the	Knowledge	Base	variant	will	start	by	applying	the	Cold	Start	evaluation	
queries	to	the	submitted	knowledge	base.	Each	query	will	start	at	a	named	entity	mention	in	
a	document	(identified	by	the	query’s	<beg>	and	<end>	tags),	identify	the	knowledge	base	
entity	that	corresponds	to	that	mention,	follow	a	sequence	of	one	or	more	relations	within	
the	knowledge	base,	and	end	in	a	“slot	fill”	(which	could	be	an	entity,	event,	or	string	node,	
depending	on	the	relation	predicate).	The	resulting	slot	fills	will	be	assessed	and	scored	in	
the	same	way	as	in	the	Slot	Filling	variant.	For	example,	a	CSSF	evaluation	query	might	ask	
‘what	are	the	ages	of	the	siblings	of	the	Bart	Simpson4	mentioned	in	Document	42?’	A	system	
that	correctly	identified	descriptions	of	Bart’s	siblings	in	the	document	collection,	linked	
them	to	the	appropriate	node	in	the	KB,	and	also	found	evidence	for	and	correctly	
represented	the	ages	of	those	siblings	would	receive	full	credit.

																																																								
4	Many	of	the	examples	used	to	illustrate	the	Cold	Start	task	are	drawn	from	The	Simpsons	television	show.	
Readers	lacking	a	detailed	working	knowledge	of	genealogical	relationships	in	the	Bouvier/Simpson	family	
need	not	agonize	over	what	they	have	been	doing	with	their	lives	for	the	past	quarter	century,	but	may	simply	
visit	http://simpsons.wikia.com/wiki/Simpson_Family.	

	 5	

Input	

Schema	

The	KB	schema	for	Cold	Start	2017	consists	of:		

• Entities:	Entities	and	entity	mentions	for	five	entity	types	(person,	organization,	geopolitical	
entity,	facility,	and	location)	as	defined	in	the	trilingual	EDL	task	of	the	2017	EDL	track.	

• SF	Relations:	Entity	attributes	("slots")	as	defined	in	the	SF	track.	These	comprise	forty-one	
relation	types	and	their	inverses.		

• Events:	Events	and	event	mentions	for	18	event	subtypes.	Cold	Start	defines	an	event	as	a	
Rich	ERE	cross-document	event	hopper,	and	an	event	mention	as	a	Rich	ERE	event	trigger.	

• Event	(Argument)	Relations:	Event	roles	and	arguments	for	the	18	event	subtypes,	as	
defined	in	the	EAL	track.		These	comprise	85	event	argument	relation	types	having	event	as	
the	predicate	subject,	and	56	inverses	having	an	entity	as	the	predicate	subject	and	an	event	
as	the	predicate	object.	

• Sentiment	Relations:	Positive	and	negative	sentiment	from	a	source	entity	toward	a	target	
entity,	as	defined	in	the	BeSt	track.		

The	schema	for	Cold	Start	2017	combines	the	entity	and	mention	types	from	TAC	KBP	2016	Entity	
Discovery	and	Linking,	the	SF	relation	types	from	TAC	KBP	2016	Cold	Start	Knowledge	Base	
Population,	the	event	roles	and	argument	types	from	TAC	KBP	2016	Event	Argument	and	Linking,	
the	event	mentions	from	TAC	KBP	2016	Event	Nugget	Detection,	and	sentiment	relations	from	TAC	
KBP	2016	Belief	and	Sentiment	(BeSt).		Annotation/assessment	guidelines	are	available	on	the	TAC	
web	site	(http://www.nist.gov/tac/2017/KBP/ColdStart/guidelines.html),	and	are	more	fully	
documented	in	the	data	packages	that	can	be	requested	from	the	LDC	upon	completion	of		TAC	KBP	
track	registration.	

For	relations	whose	objects	(“slot	fills”)	are	entities	(such	as	per:siblings	or	per:likes)	or	objects	
(such	as	per:confict.attack_attacker),	Cold	Start	KBs	will	be	required	to	link	that	slot	to	the	node	in	
the	submitted	KB	representing	the	correct	entity5	or	event.	Slots	whose	fills	are	strings	(such	as	
per:title	or	org:website)	must	be	linked	to	a	specially	created	string	node	to	represent	the	object	for	
that	relation.	

Cold	Start	entities	and	entity	mentions	are	defined	by	DEFT	Rich	ERE.	Full	annotation	guidelines	for	
DEFT	Rich	ERE	entities	are	included	in	the	DEFT	Rich	ERE	annotation	packages,	available	from	the	
LDC,	but	a	high-level	summary	of	the	five	entity	types	and	their	mentions	are	available	in	Rich	ERE	
Annotation	Guidelines	Overview.		For	Cold	Start,	all	named	and	nominal	mentions	must	be	
extracted,	and	the	entities	must	be	specific	individual	entities	(as	described	in	Annotation	
Guidelines	for	Individuality	of	Specific	Entities).		Pronominal	entity	mentions	may	be	extracted	(for	
use	in	the	sentiment	component	evaluation	in	BeSt),	but	are	not	required	for	the	composite	
evaluation	of	the	Cold	Start	KB.		A	Cold	Start	named	entity	mention	is	the	same	as	a	named	entity	
mention	in	Rich	ERE;	i.e.,	a	Cold	Start	named	entity	mention	is	a	mention	that	uniquely	refers	to	an	
entity	by	its	proper	name,	acronym,	nickname,	alias,	abbreviation,	or	other	alternate	name,	and	
includes	post	author	names	found	in	the	metadata	of	discussion	forum	documents.		The	extent	of	
																																																								
5	Because	facility	and	location	entities	are	not	included	in	the	slot	definitions,	only	person,	organization,	and	
geopolitical	entity	nodes	must	be	linked	to	the	SF	slots.	

	6	

the	named	entity	mention	is	the	entire	string	representing	the	name,	excluding	the	preceding	
definite	article	and	any	other	pre-posed	or	post-posed	modifiers.	A	Cold	Start	nominal	entity	
mention	is	the	head	of	the	nominal	entity	mention	in	Rich	ERE;	i.e.,	a	Cold	Start	nominal	entity	
mention	is	a	mention	not	including	the	entity's	proper	name,	referring	to	it	by	a	common	noun	
phrase	(but	for	Cold	Start,	the	nominal	mention	is	only	the	head	noun	of	the	nominal	phrase).	Entity	
mentions	are	allowed	to	nest	or	overlap;	for	example,	the	string	“Philadelphia	Eagles”	might	be	a	
mention	of	an	ORG	(the	football	team),	while	the	first	word	might	simultaneously	be	a	mention	of	a	
GPE	(the	city	of	Philadelphia).	

Cold	Start	defines	an	event	as	a	Rich	ERE	cross-document	event	hopper,	and	an	event	mention	as	a	
Rich	ERE	event	trigger	(which	is	also	the	same	as	an	event	nugget	in	the	TAC	KBP	Event	Nugget	
track).		The	criteria	for	determining	whether	two	or	more	event	mentions	belong	in	the	same	
hopper	are	essentially	the	same	regardless	of	whether	the	mentions	are	in	the	same	document	or	
different	documents.	The	Cold	Start	inventory	of	events	and	event	roles/arguments	is	a	subset	of	
the	event	types	in	Rich	ERE,	and	is	described	in	the	EAL	2016	Task	description.	

The	Cold	Start	inventory	of	SF	slots	is	described	thoroughly	in	TAC	KBP	2015	Slot	Descriptions	and	
TAC	KBP	2015	Assessment	Guidelines	available	on	the	TAC	Web	site.	Forty-one	slots	and	their	
inverses	are	used	for	the	evaluation.	Twenty-six	of	these	have	fills	that	are	themselves	entities,	as	
shown	in	Table	1	of	the	Appendix.	The	remaining	fifteen	slots	have	string	fills,	as	shown	in	Table	2	of	
the	Appendix.	Each	SF	predicate	having	an	entity	as	object	will	have	an	inverse.6		

Cold	Start	sentiment	relations	are	also	given	in	a	table	in	the	Appendix,	and	include	an	inverse	for	
each	sentiment	predicate.	

Cold	Start	event	relations	are	given	in	the	last	two	tables	in	the	Appendix.		The	first	shows	event	
predicates	having	an	event	as	subject,	and	an	entity	or	string	as	object.		The	second	table	shows	the	
inverse	event	predicates,	which	have	an	entity	(but	not	a	string)	as	subject,	and	an	event	as	object.	

All	inverse	relations	must	be	explicitly	identified	in	the	submitted	knowledge	base.	That	is,	if	the	KB	
asserts	that	relation	R	holds	between	entities	A	and	B,	then	it	must	also	assert	that	relation	R-1	
holds	between	B	and	A.	As	a	convenience,	the	Cold	Start	KB	validation	script	can	be	used	to	
introduce	missing	inverses	into	a	KB,	except	that	the	validator	will	not	infer	any	inverse	relations	
for	event	predicates	having	event	as	subject;	all	event	relations	having	an	event	as	subject	must	be	
explicitly	included	in	the	KB.	

	

Document	Collection	

The	Cold	Start	2017	evaluation	document	collection	will	be	the	TAC	KBP	2017	Evaluation	Source	
Corpus,	which	comprises	approximately	90,000	documents,	roughly	equally	distributed	between	
English,	Spanish,	and	Chinese,	and	balanced	between	newswire	(NW)	and	multi-post	discussion	
forum	(MPDF)	documents.	These	documents	will	be	new	(previously	unreleased)	documents	that	
will	be	distributed	by	NIST	via	Web	download	at	the	beginning	of	the	Cold	Start	evaluation	window.		
There	will	be	exactly	one	file	per	document,	and	all	files	will	be	parsable	as	XML.	Each	file	will	begin	

																																																								
6	Some	SF	slots,	such	as	per:siblings,	are	symmetric.	Others,	such	as	per:parents,	have	inverses	that	were	
already	in	the	2014	English	Slot	Filling	track	(in	this	case,	per:children).	The	remaining	SF	slots	(e.g.,	
org:founded_by)	had	no	corresponding	slot	in	the	2014	English	Slot	Filling	track;	Cold	Start	specifies	new	slot	
names	for	these	inverses.	All	such	slots	are	list-valued.	

	 7	

with	the	opening	tag	of	the	<DOC>	element	(<doc>	for	MPDF);	7	note	that	<DOC>	can	be	spelled	with	
either	upper	case	or	lower	case	letters,	depending	on	the	genre,	and	may	optionally	include	
additional	attributes	(such	as	"type"	for	some	newswire	data).	

Newswire	data	will	use	the	following	markup	framework:	

 <DOC id="{doc_id_string}" type="{doc_type_label}">

 <HEADLINE>

 ...

 </HEADLINE>

 <DATELINE>

 ...

 </DATELINE>

 <TEXT>

 <P>

 ...

 </P>

 ...

 </TEXT>

 </DOC>

where	the	HEADLINE	and	DATELINE	tags	are	optional	(not	always	present),	and	the	TEXT	content	
may	or	may	not	include	"<P>	...	</P>"	tags	(depending	on	whether	or	not	the	"doc_type_label"	is	
"story").	

Multi-Post	Discussion	Forum	files	(MPDFs)	are	derived	from	Discussion	Forum	threads.	They	
consist	of	a	continuous	run	of	posts	from	a	thread	but	they	are	only	approximately	800	words	in	
length	(excluding	metadata	and	text	within	<quote>	elements).	When	taken	from	a	short	thread,	a	
MPDF	may	comprise	the	entire	thread.	However,	when	taken	from	longer	threads,	a	MPDF	is	a	
truncated	version	of	its	source,	though	it	will	always	start	with	the	preliminary	post.	The	MPDF	files	
will	use	the	following	markup	framework,	in	which	there	may	also	be	arbitrarily	deep	nesting	of	
quote	elements,	and	other	elements	may	be	present	(e.g.	"<a...>..."	anchor	tags):	

 <doc id="{doc_id_string}">

 <headline>

 ...

 </headline>

 <post ...>

 ...
																																																								
7	In	contrast	to	some	of	the	KBP	source	corpora	prior	to	2016,	the	TAC	KBP	2017	Source	Corpus	will	not	
contain	any	files	that	begin	with	xml	declarations	such	as	<?xml	version="1.0"	encoding="utf-8"?>.		This	is	to	
ensure	that	offsets	align	across	the	various	KBP	2017	tracks	that	are	using	this	same	evaluation	source	
corpus,	regardless	of	whether	offsets	are	counted	from	the	beginning	of	the	file,	or	the	beginning	of	the	
<DOC>	tag.	

	8	

 <quote ...>

 ...

 </quote>

 ...

 </post>

 ...

 </doc>

All	provenance/justifications	for	Cold	Start	KB/SF	2017	tasks	must	be	drawn	from	the	documents	
in	the	TAC	KBP	2017	Evaluation	Source	Corpus.	Each	document	is	represented	as	a	UTF-8	character	
array	and	begins	with	the	<DOC>	tag,	where	the	“<”	character	has	index	0	for	the	document.	Thus,	
offsets	for	provenance	are	counted	before	XML	tags	are	removed.	Start	offsets	must	be	the	index	of	
the	first	character	in	the	corresponding	string,	and	end	offsets	must	be	the	index	of	the	last	
character	of	the	string	(therefore,	the	length	of	the	corresponding	string	is	endoffset	–	startoffset	+	
1).		

All	KBP	2017	systems	should	return	extractions	from	anywhere	in	the	document,	including	
<quote>	regions	of	MPDF	documents.		However,	for	the	following	component	KBP	tracks,	in	which	
evaluation	is	by	comparison	with	gold	standard	Rich	ERE	annotations	(which	will	not	include	
annotations	of	<quote>	regions),	the	track	coordinator	will	automatically	filter	out	<quote>	regions	
from	submitted	runs	before	scoring,	so	as	to	avoid	penalizing	runs	that	include	<quote>	regions:	

	 (a)	EDL	
	 (b)	Belief	and	Sentiment	
	 (c)	Event	Nuggets	
	 (d)	Event	Arguments	
	
For	the	following	KBP	tasks,	in	which	evaluation	is	by	assessment,	assessment	and	scoring	will	
allow	provenance	and	extractions	from	anywhere	in	the	document,	including	<quote>	regions:	
	 (a)	Slot	Filling	
	 (b)	Cold	Start	KB	Construction	

Evaluation	Queries	
CSKB	and	CSSF	systems	are	evaluated	by	the	same	set	of	Cold	Start	evaluation	queries.		A	Cold	Start	
evaluation	query	begins	with	one	or	more	mentions	of	the	same	entity,	followed	by	a	sequence	of	
slots	to	be	filled	for	the	entity.	Each	mention	in	the	query	is	called	an	entry	point	because	it	can	be	
used	to	select	(at	most)	one	entity	node	in	a	KB	that	is	being	evaluated;	multiple	entry	points	are	
included	for	each	Cold	Start	evaluation	query	in	order	to	increase	the	chances	that	the	KB	will	have	
a	response	to	the	query	even	if	it	misses	one	entry	point.		Each	Cold	Start	evaluation	query	is	split	
into	multiple	Cold	Start	Single	Entrypoint	(CSSE)	queries,	with	one	entry	point	per	CSSE	query	(the	
CSSE	queries	will	request	the	same	slots,	but	each	will	have	a	different	entry	point).			

At	the	beginning	of	the	CSSF	evaluation	window,	participants	in	the	Slot	Filling	task	will	receive	a	
set	of	CSSF	queries,	which	is	the	subset	of	the	CSSE	evaluation	queries	that	involve	only	SF	slots,	
and	will	apply	a	script	to	incrementally	convert	those	queries	to	a	form	that	looks	similar	to	queries	
from	the	2014	English	Slot	Filling	task.	Participants	in	the	Knowledge	Base	variant	will	not	receive	
the	queries;	rather,	NIST	will	apply	the	evaluation	queries	to	each	submitted	knowledge	base	and	
assess	the	results.	 An	outline	of	the	NIST	assessment	process	for	both	Cold	Start	variants	is	given	
below.		

	 9	

All	CSSE	evaluation	queries	start	with	an	entry	point	into	the	knowledge	base	being	evaluated.		The	
entry	point	is	defined	by	a	named	entity	mention	(name,	docid,	begin	offset,	and	end	offset),	and	is	
followed	by	the	entity	type	and	either	one	or	two	slots	to	be	extracted	for	the	entity.		The	query	may	
request	any	of	the	SF,	Sentiment,	or	Event	relations	that	have	the	query	entity	as	the	predicate	
subject.			

Evaluation	queries	could	take	one	of	two	forms:	single-hop	or	multiple-hop.		For	example,	here	is	a	
sample	single-hop	CSSE	evaluation	query	that	asks	“What	is	the	age	of	the	June	McCarthy	mentioned	
at	offsets	16931-16943	in	Document	42?”:	

 <query id="CSSF16_ENG_00243754cd">
 <name>June McCarthy</name>
 <docid>42</docid>
 <beg>16931</beg>
 <end>16943</end>
 <enttype>PER</enttype>
 <slot>per:age</slot>
 <slot0>per:age</slot0>
 </query>

This	single-hop	query	looks	very	much	like	a	query	from	the	2014	English	Slot	Filling	task,	except	
that	each	query	in	Cold	Start	asks	for	a	specific	slot,	rather	than	all	slots	for	which	there	is	
information	in	the	document	collection.	8

A	more	complex	“two-hop”	query	might	ask,	“What	are	the	ages	of	the	children	of	the	June	McCarthy	
mentioned	at	offsets	16931-16943	in	Document	42”:

 <query id="CSSF16_ENG_002109743e">
 <name>June McCarthy</name>
 <docid>42</docid>
 <beg>16931</beg>
 <end>16943</end>
 <enttype>PER</enttype>
 <slot>per:children</slot>
 <slot0>per:children</slot0>
 <slot1>per:age</slot1>
 </query>

	

The	above	queries	are	homogeneous	SF	queries	in	the	sense	that	each	query	asks	for	only	SF	
relations.		An	example	of	a	mixed	query,	involving	both	a	sentiment	predicate	(in	slot0)	and	an	
event	predicate	(in	slot1)	is	below	(“What	are	the	attack	events	in	which	the	target	is	a	person	
whom	June	McCarthy	dislikes?”):	

<query id="CSSF16_ENG_002109347b">
 <name>June McCarthy</name>
 <docid>42</docid>
 <beg>16931</beg>
 <end>16943</end>
 <enttype>PER</enttype>
																																																								
8	Participants	in	the	Slot	Filling	variant	should	treat	all	other	slots	as	if	they	appear	in	the	<ignore>	field	of	a	
Slot	Filling	query	from	2013	or	earlier.	

	10	

 <slot>per:dislikes</slot>
 <slot0>per:dislike</slot0>
 <slot1>per:conflict.attack_target</slot1>
 </query>

	

In	general,	two-hop	queries	will	start	from	an	entry	point	(selecting	the	corresponding	KB	entity	of	
a	CSKB	submission),	follow	a	single	entity-valued	relation,	then	ask	for	a	single	slot	value.	9	Such	
queries	will	verify	that	the	knowledge	base	is	well-formed	in	a	way	that	goes	beyond	basic	entity	
linking	and	slot	filling,	without	allowing	combinations	of	errors	to	drive	scores	to	zero.		

Because	two-hop	queries	do	not	look	like	any	slot	filling	queries	from	KBP	2009-2014,	participants	
in	the	Cold	Start	Slot	Filling	variant	must	process	the	CSSF	queries	in	two	“rounds”	using	the	CS-
GenerateCSQueries.pl	script	from	NIST,	which	adds	the	<slot>	entry	to	the	NIST-distributed	CSSF	
queries.	Participants	in	the	Slot	Filling	variant	must	treat	<slot>	as	the	slot	to	be	filled.		During	the	
first	round,	<slot>	will	be	identical	to	<slot0>.	The	CS-GenerateCSQueries.pl	script	will	then	
convert	a	first	round	output	file	to	a	second	round	query	file.	Second	round	queries	generated	by	
this	script	will	bear	<slot>	entries	equivalent	to	<slot1>.	Though	some	of	the	CSSF	queries	will	
differ	only	in	having	different	mentions	(possibly	for	the	same	entity)	as	their	entry	points,	
participating	CSSF	systems	are	prohibited	from	using	information	about	one	query	to	inform	the	
processing	of	another	query.	

For	the	Knowledge	Base	variant,	the	following	rules	are	applied	to	map	from	a	CSSE	evaluation	
query	to	a	knowledge	base	entry:	First,	form	a	candidate	set	of	all	KB	node	mentions	that	have	at	
least	one	character	in	common	with	the	evaluation	query	mention	and	that	have	the	same	type.	If	
this	set	is	empty,	the	submission	does	not	contain	any	answers	for	the	evaluation	query.	Otherwise,	
for	each	mention	K	in	the	candidate	set,	calculate:	

• COMMON,	the	number	of	characters	in	K	that	are	also	in	the	query	mention	Q.	
• K_ONLY,	the	number	of	characters	in	K	that	are	not	in	Q.	

Execute	each	the	following	eliminations	until	the	candidate	set	is	size	one,	and	select	that	candidate	
as	the	KB	node	that	matches	the	query:	

• Eliminate	any	candidate	that	does	not	have	the	maximal	value	of	COMMON	
• Eliminate	any	candidate	that	does	not	have	the	minimal	value	of	K_ONLY	
• Eliminate	all	but	the	candidate	that	appears	first	in	the	submission	file	

The	proper	specification	of	entity	mentions	in	a	KB	is	therefore	important	for	scoring	well;	CSKB	
participants	should	therefore	take	care	to	ensure	that	every	named	entity	mention	in	the	evaluation	
collection	serves	as	a	mention	for	a	node	in	the	KB.	

The	NIST	evaluation	of	a	KB	will	proceed	by	finding	all	entries	in	the	KB	that	fulfill	an	evaluation	
query.	For	example,	if	the	evaluation	query	‘schools	attended	by	the	siblings	of	Bart	Simpson’	finds	
two	siblings	for	the	node	specified	by	the	entry	point,	and	the	KB	indicates	that	those	siblings	
attended	two	and	one	schools	respectively,	then	three	results	would	be	assessed	by	NIST.	These	
results	will	be	converted	to	the	same	form	as	the	output	for	the	Slot	Filling	variant.	Results	will	be	
pooled	across	all	CSKB	and	CSSF	submissions,	and	assessors	will	judge	the	validity	of	each	result.	
Finally,	a	scoring	script	will	report	a	variety	of	statistics	for	each	submitted	run.	

																																																								
9	In	principle,	multiple-hop	queries	could	include	more	than	two	relations,	but	we	currently	limit	ourselves	to	
two.	

	 11	

In	creating	evaluation	queries,	LDC	will	exercise	a	range	of	SF,	sentiment,	and	event	predicates	and	
strive	to	balance	even	distribution	across	predicate	types	with	productivity	of	those	slots.	This	
means	that	the	queries	in	the	composite	evaluation	will	not	necessarily	follow	the	distribution	of	
mention-level	occurrences	of	facts,	so	even	if	there	are	10	times	as	many	negative	sentiments	as	
positive	sentiments,	the	number	of	queries	asking	for	positive	sentiment	vs	negative	sentiment	will	
be	about	the	same.	Systems	that	have	been	optimized	for	the	component	evaluations	by	assuming	a	
particular	distribution	of	mention-level	phenomena	in	the	component	evaluation	documents,	may	
need	to	recalibrate	to	take	into	account	less	frequent	phenomena	(event	types,	cognitive	states,	
etc.).	

Single	hop	queries	will	in	many	cases	ask	for	multiple	slots	for	a	given	entity	regardless	of	whether	
fillers	for	those	slots	are	attested	in	the	document	collection.	Multiple	hop	queries	will	favor	entities	
and	slot	sequences	that	are	attested	in	the	document	collection	(although	here	too,	availability	of	
answers	is	not	guaranteed	at	any	hop	level).	

Because	coreference	of	strings	and	events	is	still	difficult	(for	both	humans	and	automatic	systems),	
Cold	Start	2017	will	mitigate	errors	and	inter-annotator	disagreement	about	how	to	coreference	
events	and	strings	(especially	cross-document	coreference)	by	avoiding	queries	that	involve	an	
event	or	string	as	the	predicate	subject.	Cold	Start	2017	queries	will	always	have	an	entity	as	the	
predicate	subject	at	each	hop	level.		This	means	that	all	event	queries	will	be	of	the	form:	Find	all	
events	that	have	entity	X	in	role	Y	(e.g.,	“Find	all	conflict.attack	events	that	have	the	entity	“Homer	
Simpson”	in	the	role	“attacker”,	but	not	“Find	all	targets	of	conflict.attack	events	where	Homer	is	
the	attacker”).	

Single-hop	queries	will	request	some	event	or	string	object	in	slot0;	two-hop	queries	will	request	
an	entity	object	in	slot0,	and	an	entity,	event,	or	string	object	in	slot1.		The	targeted	distribution	of	
predicates	across	queries	that	are	assessed	in	the	final	evaluation	is	given	in	the	following	table.	

Approximate	distribution	of	predicate	types	across	Cold	Start	evaluation	queries	

	 Single-hop	queries	 Two-hop	queries	

Slot0	 event	 SF	(string	object)	 SF	 SF	 SF	 sentiment	 sentiment	 sentiment	

Slot1	 --	 --	 SF	 sentiment	 event	 SF	 sentiment	 event	

	 3/12	 1/12	 3/12	 1/12	 1/12	 1/12	 1/12	 1/12	

Cold	Start	KB	Task	Output	
The	Cold	Start	knowledge	base	is	represented	as	a	directed	labeled	multigraph:	entities,	events,	and	
other	predicate	arguments	(i.e.,	“string”	arguments,	that	are	neither	entities	nor	events)	are	
represented	as	nodes	in	the	knowledge	graph,	while	binary	relations	between	the	
entities/events/strings	are	represented	as	edges	labeled	with	SF,	sentiment,	and	event	predicate	
names.		Generally,	the	subject	and	the	object	of	the	predicate	are	both	nodes	in	the	KB	(except	that	
the	type,	link,	and	*mention	predicates	take	a	quoted	string	as	object).	The	KB	is	grounded	to	the	
document	collection	via	various	*mention	predicates	that	connect	each	entity,	event,	or	string	node	
to	its	mentions	in	the	document	collection.		The	Cold	Start	KB	is	connected	to	external	KBs	via	a	
link	predicate	that	indicates	coreference	between	an	entity	in	the	Cold	Start	KB	and	an	entity	node	
in	the	external	KB.	

	12	

CSKB	systems	must	produce	a	knowledge	base	as	output.		The	first	line	of	the	KB	output	file	must	
contain	a	unique	run	ID.	The	remainder	of	the	KB	output	file	is	a	set	of	assertions,	or	augmented	
triples	(subject,	predicate,	object).	Assertions	will	appear,	one-per-line,	in	tab-separated	format.	
The	KB	output	file	will	be	automatically	converted	to	RDF	statements	during	evaluation.	All	KB	
output	must	be	encoded	in	UTF-8.	

Each	triple	appears	in	the	KB	output	file	in	subject-predicate-object	order.	For	example,	to	indicate	
that	Entity4	has	Entity7	as	a	sibling,	the	triple	might	be:	

	 :Entity4 per:siblings :Entity7

If	Entity4	has	siblings	in	addition	to	Entity7,	these	relations	should	be	entered	as	separate	triples.			

Each	triple	in	the	CSKB	submission	will	include	a	set	of	augmentations	(again	using	tabs	as	
separators).		Except	for	the	type	predicate	(which	does	not	require	explicit	support	from	a	
document)	the	first	augmentation	will	describe	the	provenance	(a	justification)	of	the	triple,	and	
the	second	augmentation	will	provide	the	confidence	for	the	triple	and	justification.		If	there	is	more	
than	one	justification	for	a	triple,	each	justification	appears	in	a	separate	assertion	(line),	along	with	
its	confidence.	

At	least	one	assertion	for	each	unique	subject-predicate-object	triple	will	be	evaluated.	If	more	than	
one	assertion	of	a	given	triple	appears	in	the	output	(with	each	triple	having	different	provenance),	
LDC	will	assess	the	assertion	with	the	highest	confidence	value	(see	below),	and	will	assess	
additional	assertions	if	resources	allow.	If	more	than	one	such	assertion	shares	the	same	confidence	
value,	the	assertion	that	appears	earlier	in	the	output	will	be	considered	to	have	higher	confidence.	

Nodes	

The	KB	contains	three	different	kinds	of	nodes:	Entity,	Event,	and	String.		Each	node	specification	
begins	with	one	of	“:Entity”,	“:Event”,	or	“:String”,	followed	by	a	sequence	of	letters,	digits,	and	
underscores.		Examples	of	legal	entity,	event,	and	string	node	specifications	include	:Entity42,
:Event_056	,	and	:String74_R29,	respectively.		No	meaning	is	ascribed	to	this	sequence	by	the	
evaluation	software;	it	is	used	only	as	a	unique	identifier.	Any	subsequent	use	of	the	same	colon-
preceded	sequence	will	be	taken	as	a	reference	to	the	same	entity,	event,	or	string	node.	

Each	specific	individual	entity	or	event	that	appears	in	the	document	collection	must	be	
represented	by	exactly	one	entity	or	event	node.		Two	separate	entity	(or	event)	nodes	in	the	KB	
will	be	interpreted	as	representing	two	different	entities	(or	events).	

The	string	node	is	a	catch-all	structure	to	represent	SF	and	Event	predicate	arguments	that	are	not	
specific	individual	entities.		The	string	node	allows	the	KB	to	represent	multiple	justifications	for	
the	same	subject-predicate-object	triple	when	the	object	is	string-valued	(e.g.,	per:cause_of_death),	
even	when	the	literal	strings	are	different	(e.g.,	“cardiac	arrest”	vs.	“heart	attack”);	if	a	given	subject	
and	predicate	has	two	separate	string	nodes	as	objects,	they	will	be	interpreted	as	representing	two	
different	slot	fillers	for	that	subject	and	predicate.	However,	in	TAC	2017	there	is	no	requirement	
that	the	same	string	node	be	used	for	triples	having	different	subjects	or	predicates	(i.e.,	for	"John	
and	Mary	died	of	heart	disease",	the	KB	may	contain	two	different	string	nodes	for	"heart	disease",	
where	one	node	is	the	cause	of	death	of	John,	and	the	other	node	is	the	cause	of	death	of	Mary).10		

																																																								
10	The	KB	may	elect	to	represent	each	real-world	concept	or	value	by	exactly	one	node	(e.g.,	for	dates	and	
numeric	values),	but	such	a	global	grounding	of	nodes	to	the	real	world	is	not	a	requirement	in	TAC	2017	
(beyond	the	entities	and	events	that	are	defined	explicitly	in	the	2017	TAC	KBP	ontology).	A	richer	ontology	
of	concepts	and	values	is	left	for	future	work.	

	 13	

For	the	2017	evaluation,	the	string	object	only	needs	to	include	one	mention	for	each	document	
provided	as	justification	for	that	subject-predicate-object	triple.	

In	particular,	each	event	argument	that	is	not	a	specific	individual	entity	(e.g.,	unnamed	aggregates	
like	“3	people”)	must	be	represented	in	the	Cold	Start	KB	as	a	string	node.		When	the	event	
argument	is	not	a	valid	Cold	Start	entity	(i.e.,	a	specific	individual	PER,	ORG,	GPE,	LOC,	or	FAC),	the	
KB	may	represent	each	argument	string	as	a	separate	string	node,	even	if	it’s	clear	from	context	that	
the	strings	are	coreferential;	string	valued	event	arguments	are	ignored	in	the	composite	KB	
evaluation	(Cold	Start	2017	event	queries	will	always	have	an	entity	node	as	subject,	and	an	event	
node	as	object),	and	are	used	only	to	produce	the	EAL	output	files	for	the	component	EAL	
evaluation	(which	does	not	require	explicit	coreference	of	event	argument	strings).	

Predicates	

The	legal	predicates	are	the	Slot	Filling	predicates,	sentiment	predicates,	and	event	predicates	
shown	in	the	Appendix,	plus	type,	link,		mention,	nominal_mention,	pronominal_mention,	
normalized_mention	and	canonical_mention.		

SF	predicates	found	in	Table	1	must	have	entity	specifications	in	both	the	subject	and	object	
positions;	predicates	found	in	Table	2	must	specify	an	entity	node	in	the	subject	position,	and	a	
string	node	in	the	object	position;	the	string	node	in	the	object	position	will	exactly	correspond	
with	the	slot	fill	for	that	relation	in	the	Slot	Filling	task.		

type	

Each	entity,	event,	and	string	node	will	be	the	subject	of	exactly	one	type	triple.	The	object	of	that	
triple	will	be	one	of	the	allowable	types	listed	in	Table	1	below.	It	is	up	to	submitting	systems	to	
correctly	identify	and	report	the	type	of	each	entity	and	event;	all	string	nodes	must	have	type	
STRING.	
	

Table	1	Allowable	values	for	type	predicate	

Node		 	Allowable	type		

String	 STRING	

Entity	 PER	

ORG	

GPE	

LOC	

FAC	

Event	 	CONFLICT.ATTACK		

	CONFLICT.DEMONSTRATE		

	CONTACT.BROADCAST		

	14	

	CONTACT.CONTACT		

	CONTACT.CORRESPONDENCE		

	CONTACT.MEET		

	JUSTICE.ARREST-JAIL		

	LIFE.DIE		

	LIFE.INJURE		

	MANUFACTURE.ARTIFACT		

	MOVEMENT.TRANSPORT-ARTIFACT		

	MOVEMENT.TRANSPORT-PERSON		

	PERSONNEL.ELECT		

	PERSONNEL.END-POSITION		

	PERSONNEL.START-POSITION		

	TRANSACTION.TRANSACTION		

	TRANSACTION.TRANSFER-MONEY		

	TRANSACTION.TRANSFER-OWNERSHIP		

	

*mention	predicates	

Each	entity,	event,	and	string	node	will	be	the	subject	of	one	or	more	predicates	from	{mention,
nominal_mention, pronominal_mention, canonical_mention, normalized_mention};	the	term	
“*mention”	is	used	to	refer	to	these	predicates.		Together	with	the	provenance	information	(see	
below),	these	*mention	triples	indicate	how	the	knowledge	base	is	tied	to	the	document	collection.		
The	object	of	a	*mention	triple	is	the	double-quoted	mention	string;	document	ID	and	offset	appear	
under	provenance	information	(see	below).		

	

mention and nominal_mention and pronominal_mention	

Each	entity	will	be	the	subject	of	one	or	more	mention,	nominal_mention	or	pronominal_mention	
triples.	The	definition	of	what	constitutes	a	named,	nominal,	or	pronominal	entity	mention	for	Cold	
Start	is	described	in	the	Cold	Start	schema	above.	Each	named	entity	mention	in	the	collection	must	
be	submitted	as	the	object	of	a	mention	triple,	while	each	nominal	entity	mention	in	the	collection	
must	be	submitted	as	the	object	of	a	nominal_mention	triple.	For	example,	if	an	entity	is	mentioned	
by	name	five	times	in	a	document,	five	mention	triples	should	be	generated.	The	
pronominal_mentions	are	used	only	for	the	component	BeSt	evaluation,	and	are	not	referenced	or	

	 15	

evaluated	in	the	composite	KB	evaluation	or	any	of	the	other	component	evaluations	besides	BeSt;	
therefore,	the	KB	only	needs	to	include	pronominal	mentions	that	serve	as	provenance	for	
sentiment	assertions.		An	example	is	shown	below	to	demonstrate	the	usage	of	the	assertion:	

:Entity_0007 type PER

:Entity_0007 canonical_mention "Dzhokhar Tsarnaev" NYT_ENG_20131113.0264:434-450 1.0

:Entity_0007 mention "Dzhokhar Tsarnaev" NYT_ENG_20131113.0264:434-450 1.0

:Entity_0007 pronominal_mention "he" NYT_ENG_20131113.0264:546-547 1.0

	

Each	event	will	be	the	subject	of	one	or	more	mention	triples.		The	definition	of	what	constitutes	an	
event	mention	is	described	in	the	Cold	Start	schema	above.		Each	mention	of	the	event	(i.e.,	each	
event	nugget	or	ERE	event	trigger	for	the	event)	must	be	submitted	as	the	object	of	a	mention	triple.		
Event	mentions	need	to	be	exhaustive	in	order	to	support	evaluation	of	the	component	Event	
Nugget	Detection	and	Coreference	task.	

Each	string	node	will	be	the	subject	of	one	or	more	more	mention	triples.	The	string	node	only	
needs	to	include	one	mention	for	each	document	provided	as	justification	for	that	subject-
predicate-object	triple.	

	

canonical_mention		

For	each	document	that	mentions	an	entity	or	event,	one	of	the	mentions	(or	nominal_mentions	if	
it’s	an	entity)	must	be	identified	as	the	canonical	mention	for	that	entity/event	in	that	document;	it	
is	the	string	that	will	be	seen	by	the	assessor	if	that	entity/event	appears	as	a	slot	fill,	supported	by	
that	document	(in	Slot	Filling	task	terms,	it	is	the	content	of	Column	5	of	a	CSSF	2017	submission,	
and	its	provenance	will	serve	as	Column	7	of	the	CSSF	submission).13	This	implies	that	a	document	
attesting	to	a	relation	must	contain	mentions	or	nominal_mentions	of	both	the	subject	and	the	
object	of	the	relation.	Canonical	mentions	are	expressed	using	a	canonical_mention	triple.	The	
arguments	for	canonical_mention are	the	same	as	for	mention.	Note	that	there	is	no	requirement	
that	submissions	select	a	single,	global	canonical	mention	for	an	entity.	While	such	a	mention	might	
be	useful,	here	we	require	that	a	canonical	mention	be	provided	within	each	document	for	the	
assessor	to	use	during	assessment.		

Each	canonical_mention	is	also	a	mention (or nominal_mention or pronominal_mention	if	the	
node	is	an	entity).		As	a	convenience,	if	a	submitted	KB	does	not	contain	a	mention	(or	
nominal_mention/pronominal_mention)	triple	for	each	canonical_mention	triple,	the	missing	
relations	will	be	inferred	(perhaps	incorrectly)	as	mentions	(albeit	with	a	warning).	This	shortcut	is	
provided	to	make	submitted	KBs	easier	to	view,	and	does	not	relieve	submitters	from	the	
requirement	to	provide	each	of	the	required	mentions,	nominal_mentions,	and	canonical_mentions.		

	

																																																								
13	In	the	Slot	Filling	task	of	KBP	2009-2014	(and	in	the	Slot	Filling	variant	of		Cold	Start),	all	slot	fills	are	
strings.	Assessors	verify	the	validity	of	a	slot	fill	by	looking	for	that	string	in	the	specified	document,	using	the	
provenance	information	provided	in	the	system	response.	In	a	submitted	KB,	slots	that	are	filled	with	entities	
or	events	hold	not	strings,	but	pointers	to	the	KB	structure	for	the	appropriate	entity/event.		Thus,	a	
canonical	mention	must	be	identified	by	the	Cold	Start	KB	for	each	entity	in	each	document,	so	that	the	
assessor	can	be	presented	with	a	string	that	represents	the	entity	during	assessment.	

	16	

normalized_mention		

In	order	to	allow	normalized	dates	(and	other	normalized	strings	in	future)	in	the	KB,	a	string	node	
for	a	normalized	string	value	must	be	the	subject	of	a	normalized_mention	predicate.	An	example	of	
the	usage	of	a	normalized_mention	assertion	is	shown	below:	

:String_0001 type STRING

:String_0001 mention "April 15" NYT_ENG_20131113.0264:624-631 1.0

:String_0001 normalized_mention "2013-04-15" NYT_ENG_20131113.0264:624-631 1.0

The	string	provided	as	the	object	of	normalized_mention	would	not	be	verified	against	text	in	the	
source	document;	however,	it	is	a	requirement	that	for	a	given	string	node	the	provenance	of	the	
normalized_mention	assertion	should	be	the	same	as	the	provenance	of	another	(non-normalized)	
mention	of	that	string.	

link	

Each	entity	may	be	the	subject	of	up	to	one	link	predicate.	The	object	of	the	predicate	is	a	quoted	
string	of	the	form	“ExternalKBID:ExternalNodeID”	and	indicates	that	the	Cold	Start	entity	is	the	
same	as	the	entity	with	ID	“ExternalNodeID”	in	an	external	reference	KB.		For	TAC	2017,	the	
external	reference	KB	is	the	same	as	that	used	in	2015-2017	for	the	TAC	Trilingual	EDL	track,	
namely	LDC2015E42	(TAC	KBP	Knowledge	Base	II	–	BaseKB).		The	link	predicate	is	ignored	in	the	
composite	KB	evaluation	and	is	used	only	for	the	EDL	component	evaluation.			

The	following	example	shows	how	to	use	link	(assuming	the	external	KB	is	the	reference	KB	in	
LDC2015E42:	TAC	KBP	Knowledge	Base	II	-	BaseKB):	

DEMO

:Entity_0001 type GPE

:Entity_0001 canonical_mention "Boston" NYT_ENG_20131113.0264:402-407 1.0

:Entity_0001 mention "Boston" NYT_ENG_20131113.0264:402-407 1.0

:Entity_0001 link "LDC2015E42:m.050v43"

	

This	will	produce	the	following	EDL	output:	

DEMO :Entity_0001_M00001 Boston NYT_ENG_20131113.0264:402-407 m.050v43 GPE NAM 1.0

	

SF,	sentiment,	and	event	predicates	

The	KB	must	include	all	triples	involving	SF	predicates,	sentiment	predicates,	and	event	predicates	
in	the	Appendix.	

Event	Realis	

The	KB	must	specify	realis	for		

• event	predicates,	and	
• *mention	predicates	that	have	an	event	node	as	subject.	

Realis	may	take	one	of	the	following	values:	

• actual	

	 17	

• generic	
• other	

In	order	to	support	the	Event	Nugget	and	Event	Argument	and	Linking	component	evaluations	of	
the	KB,	the	KB	must	specify	the	realis	of	event	mentions	and	event	argument	assertions,	and	
include	events	and	argument	assertions	of	all	three	realis	values.		The	realis	of	an	event	mention	in	
the	Cold	Start	KB	follows	the	definition	of	realis	in	Rich	ERE,	while	the	realis	of	an	event	argument	
assertion	follows	the	definition	in	the	Event	Argument	and	Linking	task	(EAL).			

From	the	perspective	of	a	Cold	Start	KB	user,	both	completed	and	planned	events	are	of	interest,	
but	not	generic	events;	therefore,	when	a	Cold	Start	query	requesting	an	event	is	applied	to	the	KB,	
it	will	consider	only	event	nodes	that	have	an	“actual”	or	“other”	mention,	where	the	query	entity	is	
an	“actual”	or	“other”	argument	for	the	event.		This	means,	for	example,	that	the	query	"Find	all	
attack	events	that	have	Homer	as	an	attacker"	means	"Find	all	ACTUAL	or	OTHER	events	that	have	
Homer	as	an	ACTUAL	or	OTHER	attacker".		GENERIC	events	(that	have	been	mis-classified	as	
ACTUAL	or	OTHER	in	the	KB)	will	be	assessed	as	Wrong.	

Events	that	have	“generic”	realis	in	the	KB	are	ignored	in	the	composite	query-based	evaluation,	
and	are	used	only	for	the	component	event	nugget	and	event	argument	evaluations.	

The	realis	value	should	be	appended	at	the	end	of	the	predicate	name,	using	"."	to	separate	the	two.	
For	example,	

:Event_0001 type CONFLICT.ATTACK

:Event_0001 mention.actual "bombing" NYT_ENG_20131113.0264:418-424 1.0

:Event_0001 canonical_mention.actual "bombing" NYT_ENG_20131113.0264:418-424 1.0

:Event_0001 conflict.attack:attacker.actual :Entity_0007 NYT_ENG_20131113.0264:492-
681;NYT_ENG_20131113.0264:546-547;NIL 1.0	

	

Provenance	

Each	assertion	(except	for	type	assertions)	must	contain	a	single	justification	(provenance)	
immediately	after	the	subject-predicate-object	triple.	Provenance	is	a	set	of	justification	spans;	each	
span	may	comprise	at	most	200	UTF-8	characters.		Each	justification	span	will	include	a	document	
ID,	followed	by	a	colon,	followed	by	two	dash-separated	offsets	(begin	and	end	offsets).	The	offsets	
that	show	the	provenance	of	an	extracted	relation	are	used	to	narrow	the	assessor’s	focus	within	
the	documents	when	assessing	the	correctness	of	that	relation.	

Provenance	spans	for	a	single	justification	must	come	from	a	single	document.	This	is	a	new	
restriction	in	2017,	to	allow	justifications	to	be	countable	based	on	the	justification	documents.	

Provenance	spans	can	be	partitioned	into	four	different	groups:	

• FILLER_STRING	(must	have	exactly	1	span)	
• PREDICATE_JUSTIFICATION	(may	have	1-3	spans;	multiple	spans	are	separated	by	a	

comma)	
• BASE_FILLER	(must	have	exactly	1	span)	
• ADDITIONAL_JUSTIFICATION	(may	have	any	number	of	spans;	multiple	spans	are	

separated	by	a	comma)	

Provenance	for	the	assertion	consists	of	some	subset	of	the	four	span	groups	above,	depending	on	
the	predicate	and	object;	multiple	groups	are	separated	by	semicolon.	

	18	

a) If	the	predicate	is	type:	
- No	provenance	should	be	provided	

b) Otherwise,	if	the	predicate	is	any	of	the	*mention	predicates:	
- Provenance	consists	of	only	PREDICATE_JUSTIFICATION,	containing	exactly	one	

span,	representing	the	exact	location	of	the	mention	in	the	document	collection	
c) Otherwise,	if	the	predicate	is	a	sentiment	predicate:	

- Provenance	consists	of	only	PREDICATE_JUSTIFICATION,	containing	exactly	one	
span	

- The	provenance	must	be	a	mention	of	the	entity	that	is	the	target	of	the	sentiment,	
and	must	be	the	mention	closest	to	where	the	sentiment	is	expressed	

- N.B.:	The	target	of	the	sentiment	could	be	either	the	subject	or	object	of	the	
predicate,	depending	on	the	predicate:	

- for	likes	and	dislikes	predicates,	the	target	of	the	sentiment	is	the	object	
- for	is_liked_by	and	is_disliked_by	predicates,	the	target	of	the	sentiment	is	the	

subject	
d) Otherwise,	if	the	predicate	is	an	SF	predicate	with	a	non-string	object:	

- Provenance	consists	of	only	PREDICATE_JUSTIFICATION,	containing	1-3	spans	
e) Otherwise,	if	the	predicate	is	an	SF	predicate	with	a	string	object:	

- Provenance	consists	of	FILLER_STRING;PREDICATE_JUSTIFICATION	
- FILLER_STRING	must	be	one	of	the	mentions	of	the	string	object	
- PREDICATE_JUSTIFICATION	contains	1-3	spans	

f) Otherwise,	if	the	predicate	is	an	event	predicate	with	a	non-string	object	
- Provenance	consists	of	

PREDICATE_JUSTIFICATION;BASE_FILLER;ADDITIONAL_JUSTIFICATION	
- PREDICATE_JUSTIFICATION	contains	1-3	spans	
- ADDITIONAL_JUSTIFICATION	may	be	"NIL"	or	any	number	of	spans	

g) Otherwise,	if	the	predicate	is	an	event	predicate	with	a	string	object	
- Provenance	consists	of	

FILLER_STRING;PREDICATE_JUSTIFICATION;BASE_FILLER;ADDITIONAL_JUSTIFIC
ATION	

- FILLER_STRING	must	be	one	of	the	mentions	of	the	string	object	
- PREDICATE_JUSTIFICATION	contains	1-3	spans	
- ADDITIONAL_JUSTIFICATION	may	be	"NIL"	or	any	number	of	spans	

For	predicates	with	a	string	object,	the	first	justification	span	(FILLER_STRING)	must	represent	the	
document	ID	and	offsets	of	the	string	fill.	(Slot	Filling	variant	participants	are	already	providing	this	
information	in	Column	7	of	their	submissions.)	This	is	the	text	that	will	be	shown	to	assessors	
instead	of	a	canonical_mention	for	the	string	node.	

Confidence	Measure	

To	promote	research	into	probabilistic	knowledge	bases	and	confidence	estimation,	each	assertion	
in	the	KB	(or	slot	fill	in	the	CSSF	submission)	must	have	an	associated	confidence	score.	Confidence	
scores	will	be	used	to	compute	a	variant	of	Mean	Average	Precision	(MAP)	in	the	composite	KB	
evaluation.	Confidence	scores	will	be	used	to	induce	a	total	order	over	the	relations	being	evaluated	
(ties	are	broken	when	two	scores	are	equal	by	assuming	that	the	assertion	appearing	earlier	in	the	
submission	has	a	higher	score).	Any	submitted	confidence	score	must	be	a	positive	real	number	
between	0.0	(exclusive,	representing	the	lowest	confidence)	and	1.0	(inclusive,	representing	the	
highest	confidence),	and	must	include	a	decimal	point	(no	commas,	please)	to	clearly	distinguish	it	
from	a	document	offset.	Confidence	scores,	if	present,	will	appear	at	the	end	of	each	output	line,	
separated	from	the	provenance	information	with	a	tab.	If	no	confidence	score	is	provided	for	an	

	 19	

assertion,	the	confidence	will	be	inferred	to	be	1.0	for	the	purposes	of	evaluation.		Confidence	
scores	may	not	be	used	to	qualify	two	incompatible	fills	for	a	single	slot;	submitter	systems	must	
decide	amongst	such	possibilities	and	submit	only	one.		For	example,	if	the	system	believes	that	
Bart’s	only	sibling	is	Lisa	with	confidence	0.7	and	Milhouse	with	confidence	0.3,	it	should	submit	
only	one	of	these	possibilities.	If	both	are	submitted,	it	will	be	interpreted	as	Bart	having	two	
siblings.	

Comments	

Output	files	may	contain	comments,	which	begin	at	any	occurrence	of	a	pound	sign	(#)	and	
continue	through	(but	do	not	include)	the	end	of	the	line.	Comments	and	blank	lines	will	be	ignored.	
The	first	line	of	a	KB	variant	output	file	must	contain	the	unique	run	ID	(i.e.,	it	may	not	be	blank).	
Submitters	may	like	to	add	a	comment	to	this	line	giving	further	details	about	the	run.	

Slot	Filling	Task	Output	
Output	for	the	Slot	Filling	variant	will	be	in	the	form	of	a	tab-separated	file.	The	columns	of	the	
submitted	file	are	as	follows:	

Column	1	 Query	ID.	For	the	first	round,	this	is	taken	directly	from	the	<query>	XML	
tag.	For	the	second	round,	this	is	drawn	from	the	<query>	tag	of	the	query	
generated	from	the	first	round	output.	

Column	2	 The	name	of	the	slot	being	filled.	

Column	3	 A	unique	run	ID	for	the	submission.	

Column	4	 Provenance	for	the	relation	between	the	query	entity	and	slot	filler,	
consisting	of	up	to	3	docid:startoffset-endoffset	triples	separated	by	
commas.	Individual	spans	may	comprise	at	most	200	UTF-8	characters.	
Unlike	the	2014	Slot	Filling	task,	there	is	no	requirement	to	generate	NIL	
entries	when	no	information	about	the	target	entity	is	available.	

Column	5	 A	slot	filler	(possibly	normalized,	e.g.,	for	dates).	This	is	used	both	to	
populate	the	<name>	entry	of	the	next	round	query,	and	by	the	assessor	to	
judge	the	slot	fill.	The	string	should	be	extracted	from	the	filler	provenance	
in	Column	7,	except	that	any	embedded	tabs	or	newline	characters	should	
be	converted	to	a	space	character	and	dates	must	be	normalized	
(therefore,	slot	fillers	should	not	be	translated	across	languages).	If	a	
nominal	mention	is	returned	as	a	slot	filler,	only	the	head	word	of	the	
nominal	phrase	should	be	returned	(consistent	with	the	EDL	definition	of	
nominal	mentions).	For	dates,	systems	must	normalize	document	text	
strings	to	standardized	month,	day,	and/or	year	values,	following	the	
TIMEX2	format	of	yyyy-mm-dd	(e.g.,	document	text	“New	Year’s	Day	
1985”	would	be	normalized	as	“1985-01-01”);	if	a	full	date	cannot	be	
inferred	using	document	text	and	metadata,	partial	date	normalizations	
are	allowed	using	“X”	for	the	missing	information.	

Column	6	 A	filler	type,	selected	from	{PER,	ORG,	GPE,	STRING}.	The	STRING	filler	is	

	20	

used	for	string-valued	slots	shown	in	Table	2.	

Column	7	 Provenance	for	the	slot	filler	string.	This	is	either	a	single	span	
(docid:startoffset-endoffset)	from	the	document	where	the	canonical	slot	
filler	string	was	extracted,	or	(in	the	case	when	the	slot	filler	string	in	
Column	5	has	been	normalized)	a	set	of	up	to	two	comma-separated	
docid:startoffset-endoffset	spans	for	the	base	strings	that	were	used	to	
generate	the	normalized	slot	filler	string.	The	documents	used	for	the	slot	
filler	string	provenance	must	be	a	subset	of	the	documents	provided	in	
Column	4.		This	column	serves	two	purposes.	First,	LDC	will	judge	Correct	
vs.	Inexact	with	respect	to	the	document(s)	provided	in	the	slot	filler	
string	provenance.	Second,	this	column	is	used	to	fill	the	<docid>,	<beg>	
and	<end>	entries	in	second	round	queries.	If	more	than	one	provenance	
triple	is	provided	here,	the	first	one	will	be	used	to	fill	the	second	round	
query.	

Column	8	 Confidence	score.	

	

The	process	for	constructing	a	Slot	Filling	variant	submission	is	as	follows:	

• Download	the	following	from	the	NIST	Web	site:	
o The	Cold	Start	evaluation	documentsCS-GenerateQueries.pl	script	
o CS-PackageOutput.pl	script	
o CS-ValidateSF.pl	script	

• Send	an	email	to	tac-manager@nist.gov	to	request	the	following:	
o The	CSSF	evaluation	queries	

• Configure	your	system	to	produce	results	only	from	the	Cold	Start	evaluation	documents.	
• Run	the	CS-GenerateQueries.pl	script	on	the	evaluation	queries	to	produce	the	first	round	

queries	your	system	will	run	on.	Note	that	the	raw	evaluation	queries	might	differ	from	the	
format	given	above,	so	you	should	not	assume	that	you	can	use	them	as	input	to	your	
system	without	running	this	script.	

• Run	your	system,	producing	a	slot-filling	submission	for	the	first	round	queries.	
• Run	the	CS-ValidateSF.pl	script	on	your	first	round	output	to	verify	that	it	is	formatted	

correctly.	
• Run	the	CS-GenerateQueries.pl	script	on	the	evaluation	queries	and	your	first	round	

output	to	produce	the	second	round	queries.	
• Run	your	system	on	the	second	round	queries	to	produce	a	second	output	file.	
• Run	the	CS-PackageOutput.pl	script	on	the	two	output	files	to	produce	your	submission.	
• Run	the	CS-ValidateSF.pl	script	on	your	submission	to	verify	that	it	is	formatted	correctly.	
• Upload	the	submission	to	NIST.	

Slot	filling	systems	that	participated	in	the	2014	Slot	Filling	task	will	need	to	handle	the	following	
differences	to	successfully	participate	in	the	2017	CSSF	task:	

• Only	the	slot	specified	by	the	<slot>	entry	is	to	be	filled;	all	other	slots	should	be	ignored.	
The	<slot>	entry	is	added	to	the	queries	received	from	NIST	by	running	the	CS-
GenerateQueries.pl	script.	

• Participants	will	need	to	do	one	round	of	slot	filling,	run	the	CS-GenerateQueries.pl	script	
to	create	the	second	round	queries,	then	run	slot	filling	again	on	the	new	queries.	The	

	 21	

results	of	rounds	one	and	two	are	to	be	concatenated	before	submission	using	the	CS-
PackageOutput.pl	script.	

• CSSF	requires	that	participants	be	able	to	fill	all	slots	in	both	directions.	For	example,	the	
2014	Slot	Filling	task	required	detection	of	the per:cities_of_residence slot.	CSSF	also	
requires	systems	to	be	able	to	detect	the	inverse	of	that	slot,	gpe:residents_of_city.	

• Each	slot	filler	must	be	assigned	a	type,	selected	from	{PER,	ORG,	GPE,	STRING}.	This	field	
represents	an	additional	output	column	not	found	in	the	2014	Slot	Filling	or	CSSF	tasks.	

• NIL	entries,	indicating	that	no	information	about	a	particular	slot	is	available,	are	not	
required	in	CSSF.	

• Nominal	mentions	of	slot	fillers	may	be	return	if	no	named	entity	mention	is	available	in	the	
document	collection.		(Returning	nominal	entity	mentions	is	not	required,	but	may	improve	
system	recall	if	done	correctly.)	

• To	conform	with	requirements	in	the	Cold	Start	KB	task,	provenance	for	each	SF	relation	is	
limited	to	only	3	spans	(instead	of	4),	and	each	span	may	have	up	to	200	UTF-8	characters	
(instead	of	150).	

Here	are	example	lines	from	a	Slot	Filling		submission:	

		Q4 org:city_of_headquarters myrun1 Doc42:3-8,Doc8:3-11 Baltimore GPE Doc8:3-11 1.0
 Q5 per:siblings myrun1 Doc124:283-288,Doc885:173-179 Lisa PER Doc124:283-286 0.7

 Q6 per:age myrun1 Doc124:180-181,Doc885:173-179 10 STRING Doc124:180-181 0.9	

Evaluation	

The submitted Cold Start KBs are evaluated by both a composite query-based evaluation, and a
set of component evaluations. The composite KB evaluation applies a set of Cold Start
evaluation queries to each KB and assesses the correctness of the events, sentiment sources and
targets, and SF slot fillers found.

Because	the	composite	evaluation	may	hide	many	factors	contributing	to	the	performance	of	the	
end-to-end	KB	system,	each	submitted	KB	also	undergoes	a	set	of	component	evaluations.		The
component evaluations are implemented by projecting out the individual components from the
submitted KB, such that each component output file is	formatted	in	the	same	way	as	a	submission	
to	the	KBP	track	for	that	component, and evaluating each output file as though it had been
submitted directly to the standalone track for that component.

Except	for	the	SF	task,	all	component	tasks	are	evaluated	using	gold	standard	annotations	on	a	
common	set	of	approximately	500	"core"	documents.		

Component	Evaluations	

The	following	component	files	are	projected	from	each	Cold	Start	KB	for	the	component	
evaluations:		

1. Entity	discovery	and	linking	(EDL):	An	EDL	file	consisting	of	name	and	nominal	mentions	
and	links	for	PER,	ORG,	GPE,	FAC,	and	LOC	entities	from	the	"core"	documents	used	to	
evaluate	submissions	to	the	EDL	track.		Links	can	be	to	either	a	node	in	the	reference	KB	
(TAC	KBP	Knowledge	Base	II	-	BaseKB)	or	(if	the	entity	does	not	exist	in	the	reference	KB)	a	

	22	

NIL	node	corresponding	to	an	entity	node	in	the	submitted	KB.	Evaluation	of	the	Entity	
Discovery	and	Linking	component	of	submitted	Cold	Start	KBs	will	be	identical	to	scoring	
for	the	2017	TAC	Trilingual	Entity	Discovery	and	Linking	task.		Please	see	TAC	KBP2017	
Entity	Discovery	and	Linking	Task	Description	for	complete	details	on	scoring.			

2. Slot	Filling:	An	SF	file	consisting	of	slot	fillers	and	justifications	found	in	the	KB	by	applying	
Cold	Start	evaluation	queries	that	involve	only	SF	predicates.	The	component	SF	evaluation	
is	identical	to	the	composite	KB	evaluation,	except	that	the	SF	evaluation	includes	only	CS	
queries	that	involve	only	SF	slots.		Because	SF	systems	are	allowed	to	submit	only	one	
justification	per	relation,	only	the	top	ranked	justification	per	relation	will	be	considered	for	
the	SF	component	evaluation	of	KBs.	

3. Event	Nugget	Detection	and	Coreference:	An	EN	file	consisting	of	event	mentions	and	
within-document	coreference	from	the	"core"	documents.	Evaluation	of	the	Event	Nugget	
component	of	submitted	Cold	Start	KBs	will	be	identical	to	scoring	for	the	2017	TAC	Event	
Nugget	Detection	and	Coreference	task.			Please	see	TAC	KBP2017	Event	Nugget	Detection	
and	Coreference	Task	Description	for	complete	details	on	scoring.	

4. Event	Argument	and	Linking:	A	set	of	"arguments"	files,	each	file	consisting	of	event	
argument	assertions	(including	justifications)	from	a	"core"	document;	a	set	of	"linking"	
files,	each	file	consisting	of	coreference	of	assertions	in	the	corresponding	"arguments"	file.		
Evaluation	of	the	Event	Argument	component	of	submitted	Cold	Start	KBs	will	be	identical	
to	scoring	for	the	2017	TAC	Event	Argument	and	Linking	task.			Please	see	TAC	KBP2017	
Event	Argument	and	Linking	Task	Description	for	complete	details	on	scoring.	

5. Sentiment:	A	set	of	predicted	ERE	xml	files,	each	file	consisting	of	name,	nominal,	and	
pronominal	mentions	and	coreference	for	PER,	ORG,	GPE,	FAC,	and	LOC	entities	from	a	
"core"	document;	a	set	of	BeSt	xml	files,	each	file	consisting	of	sentiment	(including	
provenance)	from	a	source	towards	a	target	entity	in	the	corresponding	predicted	ERE	file.	
Evaluation	of	the	sentiment	component	of	submitted	Cold	Start	KBs	will	be	identical	to	
scoring	for	the	2017	TAC	Belief	and	Sentiment	task,	except	that	only	sentiment	towards	
entities	will	be	evaluated.			Please	see	TAC	KBP2017	Belief	and	Sentiment	Task	Description	
for	complete	details	on	scoring.	

	

Composite	Evaluation	Assessment	

Cold	Start	2017	assessment	and	scoring	will	proceed	as	follows:	The	responses	for	each	evaluation	
query	(from	both	CSKB	and	CSSF	systems	and	from	human-generated	results)	will	be	pooled,	and	
each	response	will	be	assessed	by	a	person.	The	result	of	following	the	first	relation	will	be	assessed	
as	if	it	were	a	Slot	Filling	query.	The	second	relation	in	the	query	will	also	be	assessed	as	a	Slot	
Filling	query,	but	only	if	the	fill	for	the	first	relation	is	correct.	If	the	fill	for	the	first	relation	is	not	
correct,	each	fill	for	the	second	relation	is	automatically	counted	as	Wrong.	For	example,	if	the	
query	asks	for	the	ages	of	the	siblings	of	“Bart	Simpson,”	and	the	submitted	knowledge	base	gives	
“Lisa	age	8”	and	“Milhouse	age	10”	as	siblings,	then	only	the	reported	age	of	Lisa	will	be	assessed	
(Milhouse	is	not	Bart’s	sibling),	and	the	reported	age	of	Millhouse	will	automatically	be	counted	as	
Wrong.	

Cold	Start	uses	pseudo-slot	scoring	to	evaluate	multiple-hop	queries,	in	which	each	evaluation	query	
is	treated	as	if	it	selects	a	single	indivisible	slot.	For	example,	an	evaluation	query	that	asks	for	the	
children	of	the	siblings	of	an	entity	will	be	scored	as	if	it	were	a	query	about	a	virtual	

	 23	

per:nieces_and_nephews	slot.15	The	guidelines	in	TAC	KBP	2015	Slot	Descriptions	specify	whether	
each	of	the	component	slots	of	a	pseudo-slot	is	single-valued	(e.g.,	per:date_of_birth)	or	list-
valued	(e.g.,	per:employee_of,	per:children).	A	pseudo	slot	is	single-valued	if	each	of	its	
component	slots	is	single-valued,	and	list-valued	otherwise.	In	contrast	to	the	Slot	Filling	task,	Cold	
Start	KB	submissions	may	contain	multiple	fills	for	single-valued	slots.	If	such	are	present	in	the	
submission,	LDC	will	assess	the	slot	fill	with	the	highest	confidence	value,	and	will	assess	additional	
slot	fills	if	resources	allow.	If	more	than	one	such	slot	fill	shares	the	same	confidence	value,	the	slot	
fill	that	appears	earlier	in	the	output	will	be	considered	to	have	higher	confidence.	

Each	CSSF	slot	filler	response	(or	CSKB	object	of	each	component	relation	that	makes	up	a	single	
evaluation	query	response)	is	assessed	as	Correct,	ineXact,	or	Wrong.	A	response	is	inexact	if	it	
either	includes	only	a	part	of	the	correct	answer	or	includes	the	correct	answer	plus	extraneous	
material.	Inexact	answers	are	counted	as	Wrong	for	the	purposes	of	scoring.	If	the	relation	object	is	
an	event,	the	canonical_mention	should	be	an	ERE	event	trigger	but	(given	the	difficulty	of	
determining	exact	extents	of	event	mentions),	assessors	in	2017	will	be	lenient	when	assessing	the	
extent	of	an	otherwise	correct	event	mention.		

For	each	query,	all	system	responses	in	which	the	slot	filler	is	assessed	as	Correct	or	ineXact	will	be	
partitioned	into	equivalence	classes,	where	slot	fillers	in	the	same	equivalence	class	represent	the	
same	entity,	event,	or	value	(as	in	the	case	of	dates).		Each	Correct	or	ineXact	response	will	receive	
an	annotation	for	filler	mention	type	(either	NAM	or	NOM),	and	each	equivalence	class	will	receive	
an	annotation	for	equivalence	class	mention	type	(NAM	if	the	assessor	can	find	a	named	mention	
for	the	filler	anywhere	in	the	provenances	in	any	of	the	responses;	otherwise,	NOM	if	only	nominal	
mentions	appear	in	the	provenances	of	all	responses).	

Pseudo-slots	will	be	scored	just	as	slots	in	the	Slot	Filling	task,	with	the	additional	constraint	that	
both	the	slot	fill	and	the	path	leading	to	that	fill	must	be	correct	for	the	entirety	to	be	judged	
correct.	To	receive	credit	for	identifying	Maggie	Simpson	as	Patty	Bouvier’s	niece,	the	knowledge	
base	must	not	only	include	Maggie	as	the	slot	fill,	but	must	also	represent	Maggie	as	Marge’s	child,	
and	Marge	as	Patty’s	sibling:16	

	 Evaluation	query:	 Nieces	and	nephews	of	Patty	Bouvier	(per:siblings,	per:children)	
	 Ground	Truth:	 :PattyBouvier per:siblings :MargeSimpson
 :MargeSimpson per:children :MaggieSimpson
	 Submission:	 	 :PattyBouvier per:siblings :MargeSimpson

 :MargeSimpson per:children :MaggieSimpson	Þ	correct	

A	KB	that	indicated	that	Maggie	was	Patty’s	niece	because	she	was	Patty’s	sister	Selma’s	child	
would	be	scored	as	incorrect:	

	 Evaluation	query:	 Nieces	and	nephews	of	Patty	Bouvier	(per:siblings,	per:children)	
	 Ground	Truth:	 :PattyBouvier per:siblings :MargeSimpson
 :MargeSimpson per:children :MaggieSimpson
	 Submission:	 	 :PattyBouvier per:siblings :SelmaBouvier

:SelmaBouvier per:children :MaggieSimpson	Þ	incorrect	

																																																								
15	A	pseudo-slot	is	similar	to	the	concept	of	a	role	chain,	which	is	supported	by	some	knowledge	
representation	systems	based	on	description	logic,	including	OWL	2.	
16	In	each	of	these	examples,	only	the	subject,	predicate	and	object	are	shown,	and	only	a	subset	of	the	
relevant	knowledge	base	is	presented.	Each	entity	is	named	after	the	mention	that	gave	rise	to	it.	

	24	

In	addition,	the	object	of	the	final	relation	in	a	pseudo-slot	may	be	rated	as	redundant	if	it	is	
equivalent	to	another	fill	for	the	pseudo-slot.	Redundant	answers	are	counted	as	Wrong	for	the	
purposes	of	scoring:	

	 Evaluation	query:	 Nieces	and	nephews	of	Patty	Bouvier	(per:siblings,	per:children)	
Ground	Truth:	 :PattyBouvier per:siblings :MargeSimpson	

 :MargeSimpson per:children :MaggieSimpson
 :MaggieSimpson per:alternate_names "Margaret Simpson"
	 Submission:	 	 :PattyBouvier per:siblings :MargeSimpson
 :MargeSimpson per:children :MaggieSimpson	Þ	correct

:MargeSimpson per:children :MargaretSimpson	Þ	redundant	

However,	objects	of	relations	other	than	the	final	relation	will	never	be	rated	as	redundant:	

Evaluation	query:	 Nieces	and	nephews	of	Patty	Bouvier	(per:siblings,	per:children)	
Ground	Truth:	 :PattyBouvier per:siblings :MargeSimpson	

 :MargeSimpson per:children :LisaSimpson
 :MargeSimpson per:children :BartSimpson
 :MargeSimpson per:alternate_names "Marjorie Simpson"
	 Submission:		 	 :PattyBouvier per:siblings :MargeSimpson
 :PattyBouvier per:siblings :MarjorieSimpson
 :MargeSimpson per:children :LisaSimpson	Þ	correct

:MarjorieSimpson per:children :BartSimpson	Þ	correct	
Here,	Marge	Simpson	and	Marjorie	Simpson	represent	the	same	person	in	the	ground	truth,	but	two	
distinct	entities	in	the	KB.	However,	because	the	query	is	about	Marge’s	children	and	not	about	
Marge	herself,	both	responses	to	the	evaluation	query	are	assessed	as	correct.	

Since	in	Cold	Start	the	facts	being	evaluated	come	from	sequences	of	triples,	confidence	scores	
would	need	to	be	combined	if	we	wanted	to	generate	confidence	scores	for	a	derived	pseudo-
relation.	Three	general	score	combination	functions	are	min,	max	and	product.		The	proper	way	to	
combine	scores	of	course	depends	on	the	meaning	of	those	scores;	for	now,	Cold	Start	will	select	the	
product	function	as	a	reasonable	confidence	combination	function.		

Composite	Evaluation	Scoring	

Given	the	above	approach	to	assessment,	basic	scoring	for	a	given	system	proceeds	as	follows:		

• Each	response	assessed	as	Wrong	or	ineXact,	is	counted	as	Spurious	
• Each	response	for	Round	2	whose	Round	1	parent	filler	is	assessed	as	Wrong	or	ineXact,	is	

counted	as	Spurious.	This	scoring	policy	assumes	that	the	Cold	Start	system	output	is	
intended	for	fully	automatic	downstream	analytics;	hence,	a	hop1	response	is	Wrong	if	the	
hop0	parent	response	is	Wrong.	

• Responses	assessed	as	Correct	or	Inexact	are	grouped	into	equivalence	classes.		For	queries	
with	an	entity	as	the	predicate	object,	if	the	system	has	a	NAM	entity	mention	in	the	
equivalence	class,	or	if	the	system	has	only	NOM	entity	mentions	and	the	equivalence	class	
is	annotated	as	NOM,	then	the	responses	in	the	equivalence	class	are	counted	as	Right;	
otherwise,	if	the	system	has	only	NOM	entity	mentions	in	the	equivalence	class	and	the	
equivalence	class	is	annotated	as	NAM,	then	the	responses	in	the	equivalence	class	are	
counted	as	Ignore	(i.e.,	treated	as	if	it	was	never	returned	by	the	system)	and	removed	from	
the	equivalence	class.	Thus,	named	entity	mentions	are	preferred	and	a	named	mention	
must	be	returned	if	one	exists.	

	 25	

• Reference	=	number	of	single-valued	pseudo-slots	with	a	correct	response	+	number	of	
equivalence	classes17	for	all	list-valued	pseudo-slots	

	

After	each	pooled	response	has	been	assessed	and	(if	assessed	as	Correct	or	Inexact)	put	into	an	
equivalence	class,	NIST	will	score	a	submitted	KB	by	computing	a	variant	of	mean	average	precision	
(MAP)	for	the	KB.		Average	precision	(AP)	for	a	given	query	and	submitted	run,	is	computed	in	the	
following	way:	
	

0.	Let	k	be	the	maximum	number	of	justifications	assessed	per	relation	asserted	in	the	KB.		For	TAC	
2017,	it	is	expected	that	k=3	for	KB	submissions.		(SF	submissions	will	have	k=1.)	We	will	also	
require	that	for	a	given	filler,	at	most	one	justification	is	returned	per	document	(ResolveQueries	
will	consider	only	the	highest	confidence	justification	for	that	document).	

1.	For	each	candidate	filler	(node)	returned	for	the	query,	let	the	node	confidence	be	the	aggregate	
of	the	confidences	of	its	justifications	--	up	to	k	justifications	j1,	j2,...jk	per	node,	having	confidence	
c1,	c2,..ck.		If	the	node	has	a	parent	(i.e.,	the	filler	is	a	hop_1	filler),	its	node	confidence	is	the	product	
of	the	node	confidence	of	its	parent	entity,	and	the	aggregate	of	the	confidences	of	its	justifications.	
There	are	many	possible	ways	of	aggregating	justification-level	confidence	values	to	produce	a	
node-level	confidence	value,	and	which	aggregation	function	will	depend	largely	on	how	confidence	
values	are	used	in	each	use	case.		For	TAC	2017,	the	confidence	of	a	node	with	justifications	having	
confidence	(c1,	c2,…,ck),	assuming	the	confidences	are	sorting	in	decreasing	order,	will	be	a	
normalized	weighted	sum	of	the	confidence	values,	weighted	based	on	the	rank	of	the	justification:	

(c1/1	+	c2/2	+….	+	ck/k)/(1	+	½	+	…	+	1/k).			

	

2.	Rank	the	candidate	fillers	by	their	node	confidence.	

	

3.	Go	down	the	list	of	nodes,	and	assign	a	value	v	to	each	node,	0	<=	v	<=	1;	The	value	v	is	how	
correct	this	node	is,	and	is	found	by	matching	this	node	with	at	most	one	equivalence	class,	and	
finding	the	number	of	justifications	associated	with	this	matched	equivalence	class.		To	compute	the	
value	v	for	the	node:	

The	node	f	contains	a	set	of	triples	(j,	c,	e),	where	j	is	a	justification	for	this	filler,	e	is	the	equivalence	
class	assigned	by	LDC	to	this	justification	(0	if	the	justification	is	Wrong),	and	c	is	the	confidence	
that	the	system	associated	with	the	justification.		For	each	equivalence	class,	compute	the	value	of	
the	filler	f,	given	the	equivalence	class.		There	are	various	alternatives	for	computing	the	value	of	f,	
depending	on	the	use	case.		For	2017,	the	value	of	a	node	f	is	the	fraction	of	known	justification	
documents	(for	the	matched	equivalence	class)	that	are	found	in	the	correct	justifications	for	f.	
	
Value(f	|	e)	=	(number	of	justification	documents	in	f	that	have	equivalence	class	e)	/	min(k	,	
number	of	different	known	justification	documents	for	equivalence	class	e)	
	
Match	the	filler	f	to	the	equivalence	class	e	with	highest	Value(f	|	e)	,	under	the	constraint	that	the	
equivalence	class	has	not	already	been	matched	earlier	(by	a	higher	ranked	filler).		The	value	v	of	

																																																								
17	See	TAC	KBP	2015	Slot	Descriptions	and	TAC	KBP	2015	Assessment	Guidelines	for	further	information	on	
how	and	when	two	slot	fills	are	treated	as	equivalent.	

	26	

the	filler	is	zero	if	the	filler	cannot	be	matched	to	an	equivalence	class,	either	because	all	
justifications	in	the	filler	are	Wrong,	or	because	all	equivalence	classes	in	the	filler	have	already	
been	matched	to	some	other	higher	ranked	filler(s).		The	value	v	measures	the	number	of	correct	
justifications	documents	that	the	KB	provides	for	the	matched	equivalence	class;	v	is	a	recall	
measure	over	justification	documents.	
	

4.	We	then	compute	AP	as	usual,	except	that	a	"Correct"	item	in	the	ranked	list	does	not	always	get	
counted	as	"1",	but	has	some	value	0	<=	v	<=	1.		As	is	customary	for	AP,	we	sum	over	all	retrieved	
nodes	for	the	query	and	divide	by	N	=	the	number	of	known	equivalence	classes	("relevant	items")	
for	the	query.		If	the	list	has	fewer	than	N	item,	we	pad	the	list	to	make	it	of	length	N	and	treat	the	
additional	item	as	having	value	0.	

	

The	above	protocol	assumes	hop_0	and	hop_1	fillers	are	evaluated	together	for	a	given	query,	but	
we	will	also	compute	AP	for	only	hop_0	queries	or	only	hop_1	queries.	Note	also	that	Step	3	
penalizes	a	system	for	merging	two	nodes	(since	purity	decreases,	and	hence	the	value	decreases),	
or	for	returning	some	incorrect	justifications	along	with	the	correct	justifications.	It	also	penalizes	a	
system	for	splitting	a	correct	node	into	multiple	nodes,	since	each	equivalence	class	can	be	matched	
to	(and	contribute	value	to)	at	most	one	candidate	filler	node.	

	

As	in	2016,	each	Cold	Start	evaluation	query	in	2017	may	have	more	than	one	entry	point,	and	the	
number	of	entry	points	may	differ	arbitrarily	between	Cold	Start	evaluation	queries.		The	primary	
metric	for	the	composite	evaluation	of	2017	Cold	Start	KB	systems	will	be	a	macro-average	score,	
Mean	MAP	(MMAP):	

• MMAP:	For	a	given	query,	compute	AP	for	each	entry	point	as	outlined	above.		The	MAP	
score	for	a	query	is	the	mean	of	the	AP	scores	of	each	of	its	constituent	entry	points.		The	
MMAP	score	for	the	system	is	the	mean	of	its	query-level	MAP	scores.		The	MMAP	metric	
gives	equal	weight	to	each	query,	and	(within	each	query)	equal	weight	to	each	of	its	entry	
points.	

Submissions	
A	four-week	window	from	Thursday	June	29	to	Thursday	July	27	will	be	available	for	downloading	
the	TAC	KBP	2017	Evaluation	Source	Corpus,	producing	Cold	Start	KB	and	SF	system	output,	and	
submitting	results.	Systems	should	not	be	modified	once	the	corpus	has	been	downloaded.		Starting	
Thursday,	July	13,	participants	in	the	SF	task	may	email	NIST	to	request	the	SF	evaluation	queries,	
but	teams	participating	in	both	the	SF	and	CSKB	tasks	must	submit	all	CSKB	runs	before	requesting	
the	SF	evaluation	queries	from	NIST.		

For	each	task	(SF	and	CSKB),	a	team	may	submit	up	to	5	runs	for	each	of	the	following	4	language	
conditions:	

1. Monolingual	English:	entity	mentions,	slot	fills	and	provenances	are	extracted	only	from	
English	documents.		Evaluation	queries	will	contain	entry	points	only	from	English	
documents.	

2. Monolingual	Spanish:	entity	mentions,	slot	fills	and	provenances	are	extracted	only	from	
Spanish	documents.	Evaluation	queries	will	contain	entry	points	only	from	Spanish	
documents.	

	 27	

3. Monolingual	Chinese:	entity	mentions,	slot	fills	and	provenances	are	extracted	only	from	
Chinese	documents.	Evaluation	queries	will	contain	entry	points	only	from	Chinese	
documents.	

4. Cross-lingual:	entity	mentions,	slot	fills	and	provenances	are	extracted	from	any	
combination	of	English,	Spanish,	and	Chinese	documents.	Evaluation	queries	will	contain	
entry	points	from	any	of	these	languages,	and	the	slot	filler	and	justifications	can	come	from	
a	language	different	from	the	entry	point.	Because	justification	spans	for	a	single	
justification	must	come	from	the	same	document,	the	cross-lingual	nature	of	this	evaluation	
condition	is	due	to	the	exercise	of	cross-lingual	EDL.		

If	a	team	submits	a	run	involving	more	than	one	language	under	the	Cross-lingual	condition,	it	must	
also	submit	at	least	one	run	under	the	monolingual	condition	for	each	language	involved	(with	a	
description	of	which	monolingual	run	configurations	were	used	for	each	cross-lingual	run).	

Submitted	runs	must	be	ranked	(1-5).	The	run	ID	included	in	each	team's	submission	file	must	be	a	
concatenation	of	the	team's	TAC	KBP	2017	team	ID,	the	task	(KB	or	SF),	the	language	condition	
(ENG,	CMN,	SPA,	or	XLING),	and	a	rank	(1-5);	thus	"Acme_KB_XLING_1"	would	be	the	top-ranked	
run	for	the	Acme	team	for	the	CSKB	task	under	the	cross-lingual	condition.	

The	top-ranked	submission	must	be	made	as	a	‘closed’	system;	in	particular,	it	must	not	access	the	
Web	during	the	evaluation	period.	All	submissions	must	obey	the	following	external	resource	
restrictions:	

• Structured	knowledge	bases	(e.g.,	Wikipedia	infoboxes,	DBPedia,	Freebase)	may	not	be	used	
to	directly	fill	slots	or	directly	validate	candidate	slot	fillers.	

• Structured	knowledge	base	entries	for	target	entities	may	not	be	edited,	either	during,	or	
after	the	evaluation.	

In	addition,	because	Cold	Start	focuses	on	the	condition	where	the	knowledge	base	is	initially	
empty,	we	ask	that	each	participating	site	submit	at	least	one	run	that	consults	external	entity	
knowledge	bases	only	after	entities	and	relations	have	been	extracted	from	the	document	
collection.		Details	about	submission	procedures	will	be	communicated	to	the	track	mailing	list.	
Tools	to	validate	formats	will	be	available	on	the	TAC	Web	site	
(http://www.nist.gov/tac/2016/KBP/ColdStart/tools.html).	

	

Appendix	
	

	28		

Relation	 Inverse(s)	
per:children per:parents
per:other_family per:other_family
per:parents per:children
per:siblings per:siblings
per:spouse per:spouse
per:employee_or_member_of {org,gpe}:employees_or_members*
per:schools_attended org:students*
per:city_of_birth gpe:births_in_city*
per:stateorprovince_of_birth gpe:births_in_stateorprovince*
per:country_of_birth gpe:births_in_country*
per:cities_of_residence gpe:residents_of_city*
per:statesorprovinces_of_residence gpe:residents_of_stateorprovince
per:countries_of_residence gpe:residents_of_country*
per:city_of_death gpe:deaths_in_city*
per:stateorprovince_of_death gpe:deaths_in_stateorprovince*
per:country_of_death gpe:deaths_in_country*
org:shareholders {per,org,gpe}:holds_shares_in*
org:founded_by {per,org,gpe}:organizations_founded*
org:top_members_employees per:top_member_employee_of*
{org,gpe}:member_of org:members
org:members {org,gpe}:member_of
org:parents {org,gpe}:subsidiaries
org:subsidiaries org:parents
org:city_of_headquarters gpe:headquarters_in_city*
org:stateorprovince_of_headquarters gpe:headquarters_in_stateorprovince*
org:country_of_headquarters gpe:headquarters_in_country*
	

Table	2.	Entity-valued	SF	slots.	Slots	with	asterisks	represent	inverse	relations	that	will	need	to	be	
added	by	participants	from	previous	years	Slot	Filling	task	(2014	and	earlier).	The	type	qualifier	of	
each	relation	(per,	org	or	gpe)	is	the	type	of	its	subject,	while	the	type	qualifier	for	its	inverse	is	the	
type	of	its	object.	A	set	of	types	means	that	any	of	those	types	is	acceptable	for	that	slot.	All	submitted	
slot	names	must	use	only	a	single	type	specification.	

	

per:alternate_names org:alternate_names
per:date_of_birth org:political_religious_affiliation
per:age org:number_of_employees_members
per:origin org:date_founded
per:date_of_death org:date_dissolved
per:cause_of_death org:website
per:title
per:religion
per:charges
	

Table	3.	String-valued	SF	slots.	

	

	 29	

	
	
	
	
	

Sentiment	Predicates	

Subject	 Predicate	 Object	 Inverse	Predicate	

PER,ORG,GPE,	
LOC,FAC	

{per,org,gpe,loc,fac}:dislikes	 PER,ORG,GPE,	
LOC,FAC	

{per,org,gpe,loc,fac}:is_disliked_by	

PER,ORG,GPE,	
LOC,FAC	

{per,org,gpe,loc,fac}:is_disliked_by	 PER,ORG,GPE,	
LOC,FAC	

{per,org,gpe,loc,fac}:dislikes	

PER,ORG,GPE,	
LOC,FAC	

{per,org,gpe,loc,fac}:is_liked_by	 PER,ORG,GPE,	
LOC,FAC	

{per,org,gpe,loc,fac}:likes	

PER,ORG,GPE,	
LOC,FAC	

{per,org,gpe,loc,fac}:likes	 PER,ORG,GPE,	
LOC,FAC	

{per,org,gpe,loc,fac}:is_liked_by	

	
	

	30	

Event	Predicates	(event	as	subject)	

Subject	
Predicate	 Object	 Inverse	Predicate	

	CONFLICT.ATTACK		
	conflict.attack:attacker		 	

PER,ORG,GPE,STRIN
G		

	{per,gpe,org}:conflict.attack_attacker		

	CONFLICT.ATTACK		
	conflict.attack:instrument		 	STRING		 	none		

	CONFLICT.ATTACK		
	conflict.attack:target		 	

PER,ORG,GPE,FAC,ST
RING		

	{per,gpe,org,fac}:conflict.attack_target		

	CONFLICT.ATTACK		
	conflict.attack:time		 	STRING		 	none		

	CONFLICT.ATTACK		
	conflict.attack:place		 	

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:conflict.attack_place		

	
CONFLICT.DEMONSTRA
TE		

	conflict.demonstrate:entity		 	PER,ORG,STRING		 	{per,org}:conflict.demonstrate_entity		

	
CONFLICT.DEMONSTRA
TE		

	conflict.demonstrate:time		 	STRING		 	none		

	
CONFLICT.DEMONSTRA
TE		

	conflict.demonstrate:place		 	
GPE,LOC,FAC,STRIN
G		

	
{gpe,loc,fac}:conflict.demonstrate_plac
e		

	CONTACT.BROADCAST		
	contact.broadcast:audience		 	

PER,ORG,GPE,STRIN
G		

	
{per,org,gpe}:contact.broadcast_audien
ce		

	CONTACT.BROADCAST		
	contact.broadcast:entity		 	

PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:contact.broadcast_entity		

	CONTACT.BROADCAST		
	contact.broadcast:time		 	STRING		 	none		

	CONTACT.BROADCAST		
	contact.broadcast:place		 	

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:contact.broadcast_place		

	CONTACT.CONTACT		
	contact.contact:entity		 	

PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:contact.contact_entity		

	CONTACT.CONTACT		
	contact.contact:time		 	STRING		 	none		

	CONTACT.CONTACT		
	contact.contact:place		 	

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:contact.contact_place		

	
CONTACT.CORRESPON
DENCE		

	
contact.correspondence:ent
ity		

	
PER,ORG,GPE,STRIN
G		

	
{per,org,gpe}:contact.correspondence_
entity		

	
CONTACT.CORRESPON
DENCE		

	
contact.correspondence:tim
e		

	STRING		 	none		

	
CONTACT.CORRESPON
DENCE		

	
contact.correspondence:pla
ce		

	
GPE,LOC,FAC,STRIN
G		

	
{gpe,loc,fac}:contact.correspondence_p
lace		

	CONTACT.MEET		
	contact.meet:entity		 	

PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:contact.meet_entity		

	CONTACT.MEET		
	contact.meet:time		 	STRING		 	none		

	CONTACT.MEET		
	contact.meet:place		 	

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:contact.meet_place		

	JUSTICE.ARREST-JAIL		
	justice.arrest-jail:agent		 	

PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:justice.arrest-jail_agent		

	 31	

	JUSTICE.ARREST-JAIL		
	justice.arrest-jail:crime		 	STRING		 	none		

	JUSTICE.ARREST-JAIL		
	justice.arrest-jail:person		 	PER,STRING		 	per:justice.arrest-jail_person		

	JUSTICE.ARREST-JAIL		
	justice.arrest-jail:time		 	STRING		 	none		

	JUSTICE.ARREST-JAIL		
	justice.arrest-jail:place		 	

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:justice.arrest-jail_place		

	LIFE.DIE		
	life.die:agent		 	

PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:life.die_agent		

	LIFE.DIE		
	life.die:instrument		 	STRING		 	none		

	LIFE.DIE		
	life.die:victim		 	PER,STRING		 	per:life.die_victim		

	LIFE.DIE		
	life.die:time		 	STRING		 	none		

	LIFE.DIE		
	life.die:place		 	

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:life.die_place		

	LIFE.INJURE		
	life.injure:agent		 	

PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:life.injure_agent		

	LIFE.INJURE		
	life.injure:instrument		 	STRING		 	none		

	LIFE.INJURE		
	life.injure:victim		 	PER,STRING		 	per:life.injure_victim		

	LIFE.INJURE		
	life.injure:time		 	STRING		 	none		

	LIFE.INJURE		
	life.injure:place		 	

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:life.injure_place		

MANUFACTURE.ARTIFA
CT		

	manufacture.artifact:agent		 PER,ORG,GPE,STRIN
G		

{per,org,gpe}:manufacture.artifact_age
nt		

MANUFACTURE.ARTIFA
CT		

	
manufacture.artifact:artifac
t		

	FAC,STRING		 	fac:manufacture.artifact_artifact		

MANUFACTURE.ARTIFA
CT		

manufacture.artifact:instru
ment		

	STRING		 	none		

MANUFACTURE.ARTIFA
CT		

	manufacture.artifact:time		 	STRING		 	none		

MANUFACTURE.ARTIFA
CT		

	manufacture.artifact:place		 GPE,LOC,FAC,STRIN
G		

	gpe,loc,fac}:manufacture.artifact_place		

MOVEMENT.TRANSPOR
T-ARTIFACT		

	movement.transport-
artifact:agent		

PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:movement.transport-
artifact_agent		

MOVEMENT.TRANSPOR
T-ARTIFACT		

	movement.transport-
artifact:artifact		

	FAC,STRING		 	fac:movement.transport-
artifact_artifact		

MOVEMENT.TRANSPOR
T-ARTIFACT		

	movement.transport-
artifact:destination		

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:movement.transport-
artifact_destination		

MOVEMENT.TRANSPOR
T-ARTIFACT		

	movement.transport-
artifact:instrument		

	STRING		 	none		

MOVEMENT.TRANSPOR
T-ARTIFACT		

	movement.transport-
artifact:origin		

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:movement.transport-
artifact_origin		

MOVEMENT.TRANSPOR
T-ARTIFACT		

	movement.transport-
artifact:time		

	STRING		 	none		

MOVEMENT.TRANSPOR
	movement.transport-
person:agent		

PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:movement.transport-

	32	

T-PERSON		 person_agent		

MOVEMENT.TRANSPOR
T-PERSON		

	movement.transport-
person:destination		

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:movement.transport-
person_destination		

MOVEMENT.TRANSPOR
T-PERSON		

	movement.transport-
person:instrument		

	STRING		 	none		

MOVEMENT.TRANSPOR
T-PERSON		

	movement.transport-
person:origin		

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:movement.transport-
person_origin		

MOVEMENT.TRANSPOR
T-PERSON		

	movement.transport-
person:person		

	PER,STRING		 	per:movement.transport-
person_person		

MOVEMENT.TRANSPOR
T-PERSON		

	movement.transport-
person:time		

	STRING		 	none		

	PERSONNEL.ELECT		
	personnel.elect:agent		 PER,ORG,GPE,STRIN

G		
	{per,org,gpe}:personnel.elect_agent		

	PERSONNEL.ELECT		
	personnel.elect:person		 	PER,STRING		 	per:personnel.elect_person		

	PERSONNEL.ELECT		
	personnel.elect:position		 	STRING		 	none		

	PERSONNEL.ELECT		
	personnel.elect:time		 	STRING		 	none		

	PERSONNEL.ELECT		
	personnel.elect:place		 	

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:personnel.elect_place		

	PERSONNEL.END-
POSITION		

	personnel.end-
position:entity		

	ORG,GPE,STRING		 	{org,gpe}:personnel.end-
position_entity		

	PERSONNEL.END-
POSITION		

	personnel.end-
position:person		

	PER,STRING		 	per:personnel.end-position_person		

	PERSONNEL.END-
POSITION		

	personnel.end-
position:position		

	STRING		 	none		

	PERSONNEL.END-
POSITION		

	personnel.end-
position:time		

	STRING		 	none		

	PERSONNEL.END-
POSITION		

	personnel.end-
position:place		

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:personnel.end-
position_place		

	PERSONNEL.START-
POSITION		

	personnel.start-
position:entity		

	ORG,GPE,STRING		 	{org,gpe}:personnel.start-
position_entity		

	PERSONNEL.START-
POSITION		

	personnel.start-
position:person		

	PER,STRING		 	per:personnel.start-position_person		

	PERSONNEL.START-
POSITION		

	personnel.start-
position:position		

	STRING		 	none		

	PERSONNEL.START-
POSITION		

	personnel.start-
position:time		

	STRING		 	none		

	PERSONNEL.START-
POSITION		

	personnel.start-
position:place		

GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:personnel.start-
position_place		

TRANSACTION.TRANSA
CTION		

transaction.transaction:ben
eficiary		

PER,ORG,GPE,STRIN
G		

{per,org,gpe}:transaction.transaction_b
eneficiary		

TRANSACTION.TRANSA
CTION		

transaction.transaction:give
r		

PER,ORG,GPE,STRIN
G		

{per,org,gpe}:transaction.transaction_g
iver		

TRANSACTION.TRANSA
CTION		

transaction.transaction:reci
pient		

PER,ORG,GPE,STRIN
G		

{per,org,gpe}:transaction.transaction_r
ecipient		

TRANSACTION.TRANSA
CTION		

transaction.transaction:tim
e		

	STRING		 	none		

	 33	

	
	
	
	
	
	
	

Event	Predicates	(event	as	object)	

Subject	
Predicate	 Object	 Inverse	Predicate	

PER,ORG,GPE		
	{per,org,gpe}:conflict.attack_attacker		 	CONFLICT.ATTACK		 	conflict.attack:attacker		

GPE,LOC,FAC		
	{gpe,loc,fac}:conflict.attack_place		 	CONFLICT.ATTACK		 	conflict.attack:place		

PER,ORG,GPE,F
AC		

	{per,org,gpe,fac}:conflict.attack_target		 	CONFLICT.ATTACK		 	conflict.attack:target		

PER,ORG		
	per,org:conflict.demonstrate_entity		 	

CONFLICT.DEMONSTRAT
E		

	conflict.demonstrate:entity		

TRANSACTION.TRANSA
CTION		

	
transaction.transaction:plac
e		

	
GPE,LOC,FAC,STRIN
G		

	
{gpe,loc,fac}:transaction.transaction_pl
ace		

TRANSACTION.TRANSF
ER-MONEY		

	transaction.transfer-
money:beneficiary		

	
PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:transaction.transfer-
money_beneficiary		

TRANSACTION.TRANSF
ER-MONEY		

	transaction.transfer-
money:giver		

	
PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:transaction.transfer-
money_giver		

TRANSACTION.TRANSF
ER-MONEY		

	transaction.transfer-
money:money		

	STRING		 	none		

TRANSACTION.TRANSF
ER-MONEY		

	transaction.transfer-
money:recipient		

	
PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:transaction.transfer-
money_recipient		

TRANSACTION.TRANSF
ER-MONEY		

	transaction.transfer-
money:time		

	STRING		 	none		

TRANSACTION.TRANSF
ER-MONEY		

	transaction.transfer-
money:place		

	
GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:transaction.transfer-
money_place		

TRANSACTION.TRANSF
ER-OWNERSHIP		

	transaction.transfer-
ownership:beneficiary		

	
PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:transaction.transfer-
ownership_beneficiary		

TRANSACTION.TRANSF
ER-OWNERSHIP		

	transaction.transfer-
ownership:giver		

	
PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:transaction.transfer-
ownership_giver		

TRANSACTION.TRANSF
ER-OWNERSHIP		

	transaction.transfer-
ownership:recipient		

	
PER,ORG,GPE,STRIN
G		

	{per,org,gpe}:transaction.transfer-
ownership_recipient		

TRANSACTION.TRANSF
ER-OWNERSHIP		

	transaction.transfer-
ownership:thing		

	FAC,ORG,STRING		 	{fac,org}:transaction.transfer-
ownership_thing		

TRANSACTION.TRANSF
ER-OWNERSHIP		

	transaction.transfer-
ownership:time		

	STRING		 	none		

TRANSACTION.TRANSF
ER-OWNERSHIP		

	transaction.transfer-
ownership:place		

	
GPE,LOC,FAC,STRIN
G		

	{gpe,loc,fac}:transaction.transfer-
ownership_place		

	34	

GPE,LOC,FAC		
	{gpe,loc,fac}:conflict.demonstrate_place		 	

CONFLICT.DEMONSTRAT
E		

	conflict.demonstrate:place		

PER,ORG,GPE		
	
{per,org,gpe}:contact.broadcast_audience		

	CONTACT.BROADCAST		 	contact.broadcast:audience		

PER,ORG,GPE		
	{per,org,gpe}:contact.broadcast_entity		 	CONTACT.BROADCAST		 	contact.broadcast:entity		

GPE,LOC,FAC		
	{gpe,loc,fac}:contact.broadcast_place		 	CONTACT.BROADCAST		 	contact.broadcast:place		

PER,ORG,GPE		
	{per,org,gpe}:contact.contact_entity		 	CONTACT.CONTACT		 	contact.contact:entity		

GPE,LOC,FAC		
	{gpe,loc,fac}:contact.contact_place		 	CONTACT.CONTACT		 	contact.contact:place		

PER,ORG,GPE		
	
{per,org,gpe}:contact.correspondence_en
tity		

	
CONTACT.CORRESPONDE
NCE		

	
contact.correspondence:entit
y		

GPE,LOC,FAC		
	
{gpe,loc,fac}:contact.correspondence_plac
e		

	
CONTACT.CORRESPONDE
NCE		

	
contact.correspondence:place		

PER,ORG,GPE		
	{per,org,gpe}:contact.meet_entity		 	CONTACT.MEET		 	contact.meet:entity		

GPE,LOC,FAC		
	{gpe,loc,fac}:contact.meet_place		 	CONTACT.MEET		 	contact.meet:place		

PER,ORG,GPE		
	{per,org,gpe}:justice.arrest-jail_agent		 	JUSTICE.ARREST-JAIL		 	justice.arrest-jail:agent		

PER		
	per:justice.arrest-jail_person		 	JUSTICE.ARREST-JAIL		 	justice.arrest-jail:person		

GPE,LOC,FAC		
	{gpe,loc,fac}:justice.arrest-jail_place		 	JUSTICE.ARREST-JAIL		 	justice.arrest-jail:place		

PER,ORG,GPE		
	{per,org,gpe}:life.die_agent		 	LIFE.DIE		 	life.die:agent		

GPE,LOC,FAC		
	{gpe,loc,fac}:life.die_place		 	LIFE.DIE		 	life.die:place		

PER		
	per:life.die_victim		 	LIFE.DIE		 	life.die:victim		

PER,ORG,GPE		
	{per,org,gpe}:life.injure_agent		 	LIFE.INJURE		 	life.injure:agent		

GPE,LOC,FAC		
	{gpe,loc,fac}:life.injure_place		 	LIFE.INJURE		 	life.injure:place		

PER		
	per:life.injure_victim		 	LIFE.INJURE		 	life.injure:victim		

PER,ORG,GPE		
	{per,org,gpe}:manufacture.artifact_agent		 MANUFACTURE.ARTIFAC

T		
	manufacture.artifact:agent		

FAC		
	fac:manufacture.artifact_artifact		 	

MANUFACTURE.ARTIFAC
T		

	manufacture.artifact:artifact		

GPE,LOC,FAC		
	{gpe,loc,fac}:manufacture.artifact_place		 	

MANUFACTURE.ARTIFAC
T		

	manufacture.artifact:place		

PER,ORG,GPE		
	{per,org,gpe}:movement.transport-
artifact_agent		

	
MOVEMENT.TRANSPORT
-ARTIFACT		

	movement.transport-
artifact:agent		

FAC		
	fac:movement.transport-artifact_artifact		 	

MOVEMENT.TRANSPORT
-ARTIFACT		

	movement.transport-
artifact:artifact		

GPE,LOC,FAC		
	{gpe,loc,fac}:movement.transport-
artifact_destination		

	
MOVEMENT.TRANSPORT
-ARTIFACT		

	movement.transport-
artifact:destination		

GPE,LOC,FAC		
	{gpe,loc,fac}:movement.transport-
artifact_origin		

	
MOVEMENT.TRANSPORT
-ARTIFACT		

	movement.transport-
artifact:origin		

PER,ORG,GPE		
	{per,org,gpe}:movement.transport-
person_agent		

	
MOVEMENT.TRANSPORT
-PERSON		

	movement.transport-
person:agent		

GPE,LOC,FAC		
	{gpe,loc,fac}:movement.transport- 	 	movement.transport-

	 35	

person_destination		 MOVEMENT.TRANSPORT
-PERSON		

person:destination		

GPE,LOC,FAC		
	{gpe,loc,fac}:movement.transport-
person_origin		

	
MOVEMENT.TRANSPORT
-PERSON		

	movement.transport-
person:origin		

PER		
	per:movement.transport-person_person		 	

MOVEMENT.TRANSPORT
-PERSON		

	movement.transport-
person:person		

PER,ORG,GPE		
	{per,org,gpe}:personnel.elect_agent		 	PERSONNEL.ELECT		 	personnel.elect:agent		

PER		
	per:personnel.elect_person		 	PERSONNEL.ELECT		 	personnel.elect:person		

GPE,LOC,FAC		
	{gpe,loc,fac}:personnel.elect_place		 	PERSONNEL.ELECT		 	personnel.elect:place		

ORG,GPE		
	{org,gpe}:personnel.end-position_entity		 	PERSONNEL.END-

POSITION		
	personnel.end-
position:entity		

PER		
	per:personnel.end-position_person		 	PERSONNEL.END-

POSITION		
	personnel.end-
position:person		

GPE,LOC,FAC		
	{gpe,loc,fac}:personnel.end-
position_place		

	PERSONNEL.END-
POSITION		

	personnel.end-position:place		

ORG,GPE		
	{org,gpe}:personnel.start-position_entity		 	PERSONNEL.START-

POSITION		
	personnel.start-
position:entity		

PER		
	per:personnel.start-position_person		 	PERSONNEL.START-

POSITION		
	personnel.start-
position:person		

GPE,LOC,FAC		
	{gpe,loc,fac}:personnel.start-
position_place		

	PERSONNEL.START-
POSITION		

	personnel.start-
position:place		

PER,ORG,GPE		
	
{per,org,gpe}:transaction.transaction_ben
eficiary		

	
TRANSACTION.TRANSAC
TION		

	
transaction.transaction:benef
iciary		

PER,ORG,GPE		
	
{per,org,gpe}:transaction.transaction_giv
er		

	
TRANSACTION.TRANSAC
TION		

	transaction.transaction:giver		

GPE,LOC,FAC		
	
{gpe,loc,fac}:transaction.transaction_plac
e		

	
TRANSACTION.TRANSAC
TION		

	transaction.transaction:place		

PER,ORG,GPE		
	
{per,org,gpe}:transaction.transaction_reci
pient		

	
TRANSACTION.TRANSAC
TION		

	
transaction.transaction:recipi
ent		

PER,ORG,GPE		
	{per,org,gpe}:transaction.transfer-
money_beneficiary		

	
TRANSACTION.TRANSFE
R-MONEY		

	transaction.transfer-
money:beneficiary		

PER,ORG,GPE		
	{per,org,gpe}:transaction.transfer-
money_giver		

	
TRANSACTION.TRANSFE
R-MONEY		

	transaction.transfer-
money:giver		

GPE,LOC,FAC		
	{gpe,loc,fac}:transaction.transfer-
money_place		

	
TRANSACTION.TRANSFE
R-MONEY		

	transaction.transfer-
money:place		

PER,ORG,GPE		
	{per,org,gpe}:transaction.transfer-
money_recipient		

	
TRANSACTION.TRANSFE
R-MONEY		

	transaction.transfer-
money:recipient		

PER,ORG,GPE		
	{per,org,gpe}:transaction.transfer-
ownership_beneficiary		

	
TRANSACTION.TRANSFE
R-OWNERSHIP		

	transaction.transfer-
ownership:beneficiary		

PER,ORG,GPE		
	{per,org,gpe}:transaction.transfer-
ownership_giver		

	
TRANSACTION.TRANSFE
R-OWNERSHIP		

	transaction.transfer-
ownership:giver		

GPE,LOC,FAC		
	{gpe,loc,fac}:transaction.transfer- 	 	transaction.transfer-

	36	

ownership_place		 TRANSACTION.TRANSFE
R-OWNERSHIP		

ownership:place		

PER,ORG,GPE		
	{per,org,gpe}:transaction.transfer-
ownership_recipient		

	
TRANSACTION.TRANSFE
R-OWNERSHIP		

	transaction.transfer-
ownership:recipient		

FAC,ORG		
	{fac,org}:transaction.transfer-
ownership_thing		

	
TRANSACTION.TRANSFE
R-OWNERSHIP		

	transaction.transfer-
ownership:thing		

	
	
	
	

Change	History	
• Version	1.0	

o Original	draft	version,	based	on	the	2016	specification	
	

