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Abstract 
The update task of multi-document 
summarization aims at automatically generating 
the summaries of some event developing with 
time going. Based on our previous system of 
multi-document summarization, we summarize 
the document sets with or without history. In our 
previous system, the design of features is the 
important part. Here, in order to adapt to the 
updating task we introduce a new ‘filtering’ 
feature. With history, filtering features are 
calculated to exclude those sentences which are 
similar to the “history”. The principle of 
designing filtering features is to distinguish the 
current documents from the previous documents, 
and reflect the main idea of current documents. 
In this work, we combine two kinds of similarity 
metrics and two computing strategies to get the 
filtering feature value. The experimental results 
will show which combination is more effective 
to catch the developing process of an event. 

1. Introduction 
The TAC1 2008 update summarization task is 
similar to that in DUC 2007 [Hoa 2007], which 
aims at generating short (not more than 100 
words) fluent multi-document summaries of 
news articles under the assumption that the user 
has already read some earlier articles. The 
earlier articles are called the “history” in this 
paper. The only difference is that TAC 2008 
divides the articles of one topic into two sets 
while DUC 2007 divides into three sets. For 

 
1http://www.nist.gov/tac/ 

each topic, the first document set is summarized 
just like the main summarization task in DUC 
2007, except that the document number and the 
summary length limit are different. The second 
document set needs to be summarized with 
consideration of its history, that is, the first 
document set. Our previous system for DUC 
main task is designed with feature-based 
sentence-extractive framework. In this paper, we 
adopt the same system framework and introduce 
a new ‘filter’ feature to adapt to the update task. 

In our feature-based system, various 
features in the sentence are used to judge 
whether the sentence should be appropriately 
included in the summary. Feature weights can be 
tuned with machine learning methods [Li 2007] 
or manually [Li 2006], which depends on 
whether the training data is available. Then for 
the update summarization task, the key is to 
design a new feature to reflect that the summary 
is summarized with the history known. That is, 
the function of the feature is to avoid selecting 
those sentences which are similar to the history. 
Thus, we call the feature as ‘filtering’ feature, 
which is the focus of this paper. 

The rest of the paper is organized as 
follows. Section 2 briefly describes our system 
design and some features used in previous 
system. Section 3 emphasizes on the design of 
the ‘filtering’ feature, which includes four kinds 
of designing methods. Section 4 presents the 
evaluation results of different designing 
methods. Section 5 shows the future work and 
concludes the paper. 



 
2. System overview 
In this section, we first formalize the update task 
of summarization. For a given topic, all the 
articles are separated into several sets T1, T2, …, 
Tn. The articles in T1, T2, …, Ti-1 are seen as the 
history of Ti (i≥2). When the articles in T1 need 
to be summarized, there is no history. Then, the 
summarization task is just like the main 
summarization task of DUC. However, the 
articles in Ti (i≥2) are summarized with the 
assumption that the content in the history has 
been known. No matter whether the articles 
summarized have history, we adopt a uniform 
feature-based summarization framework. For 
the possible effect of history on the 
summarization result, we design a “filtering” 
feature for every sentence. When summarizing 
T1, the values of filter feature are the same (=0) 
for all the sentences in T1. When summarizing 
other set Ti (i≥2), the filtering feature is 
calculated to represent the different degrees of 
each sentence overlapping with the history. 
   Our summarization system is designed with 
the extractive framework. Important sentences 
are extracted and re-organized to form a 
summary. Thus, the whole system is mainly 
divided into three modules: text preprocessing, 
sentence extraction and post-processing. In text 
preprocessing, query and documents are 
segmented into sentences, and then we conduct 
POS tagging and named entity recognition for 
each sentence, preparing for the next feature 
extraction. The focus of sentence extraction 
module is on which feature to extract and how 
to rank the importance of each sentence with 
reference to their features. In the 
post-processing module, sentences with higher 
scores are extracted to compose of the summary 
with MMR method. In the following subsections, 
we will overview the ranking method and the 

features used in the system. 

2.2 Ranking method 

Here we rank the sentences with a linear 
combination of features. That is, each sentence 
is assigned a score which cumulates the impacts 
of each feature. The impact of each feature is 
represented by its weight, which are tuned by 
experience. The formula is as follows. 

        sScore i iw f= ∑
Where s means a sentence, fi means the feature 
value while wi indicates the weight of the 
feature fi set experimentally.  

2.2 Features Overview 

The sentences are ranked and assigned an 
importance score according to various features. 
This subsection mainly overviews the features 
which are designed for a query-focused 
summarization system without considering 
history.  
(1) Word Matching Feature 
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(2) Name Entity Matching Feature 
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where |)()(| qentitysentity ∩  is the number 
of the named entities in both s and q. Here 
four classes of named entities (person, 
organization, location, date) are involved. 

(3) Semantics Matching Feature 
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where the function  is the 

lesk similarity function introduced in 
[Satanjeev 2002], which is WordNet-based 
[Christiane 1998]and scales the semantic 
relation between two words. 
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(4) Document Centroid Feature 
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where  is the tf-idf score of in 

the whole data set [Radev 2000]. 
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(5) Named Entity Number Feature 
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where is the number of named 
entities in s. 
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(6) Stop Word Penalty Feature 
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where  is the number of the 
stop words in s. 
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(7) Sentence Position Feature 
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where n is the total number of the sentences and 
s is the ith sentence in the document. 
 
3. Filtering Feature 
This year, the focus of our system is how to 
choose a new feature to adapt to the update task. 
This feature is optional which depends on 
whether the articles summarized have a 
“history”. When the articles with history are 
summarized using a sentence extraction method, 
more overlapped with the history a sentence is, 

less chance the sentence is selected. That is, a 
sentence which is similar to the history content 
should be filtered. Thus, we design a filtering 
feature for measuring the similar degree. 
   When a sentence is compared with the 
history, firstly we need consider the similarity of 
the sentence with each sentence in the history. 
Then it is also considered with which strategy 
the similarity values are used as the filtering 
feature value. 
   We calculate the similarity between two 
sentences with two kinds of metrics introduced 
as follows. 
(1) Complex similarity metric 
The first takes into consideration the unigrams, 
bigrams and syntactic functions of the words.      
 The unigram factor is considered with the 
formula: 
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Where UA and UB represent the length of two 
sentences A and B respectively. UAB represents 
the number of common words occurring in both 
sentences.  
 The bigram value is calculated with the 
following formula: 
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Where BIAB means the number of common 
bigrams occurring in both sentences. In order to 
strengthen the effect of common bigrams, the 
BIAB is squared. BIA and BIB represents the 
number of bigrams respectively in sentence A 
and sentence B.  
 The syntactic functions of words are 
considered with: 
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Where VBAB means the number of common 



verbs occurring in both sentences, NNAB means 
the number of common nouns in both sentences, 
VBA and VBB respectively represent the verbs in 
two sentences while NNA and NNB represent the 
nouns. 
 Finally, these three factors are combined 
linearly to get the similarity metric: 

,A BS Uni Bi Synα β γ= ⋅ + ⋅ + ⋅  

Where α, β and γ are the weights of these three 
factors respectively. SA,B is the similarity value 
of two sentences A and B. 
2) Simple similarity metric  
The second metric adopts the simple cosine 
distance formula. Each sentence is represented 
by a vector of tf*idf of the words. Then the 
similarity is computed as:  
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Where VA and VB are two sentence vectors 
respectively. 
    Because a sentence is computed the 
similarity value with each sentence in the 
history documents, it is another problem how to 
get the final filtering feature with these 
similarity values. Here we use two kinds of 
strategies: Maximum and Average. The 
maximum strategy means that the filtering 
feature takes the maximal value of the similarity 
values. That is, 

,maxfilter s history ss history
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Where s-history means a sentence in the history 
documents, and Ss-history,s represents the 
similarity value between s-history and the 
current sentence s. 
    Using the average strategy, the filtering 
feature takes the average of the similarity values. 
The formula is: 

,filter s history s
s history
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−
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With combining the two similarity metrics with 
the two computation strategies, we can get four 
kinds of results as in Table 1. Three of them are 
our submitted runs which are named Run1, 
Run2, Run3. The remaining one is called Run4. 

 Maximum strategy Average strategy

Complex 

similarity 

Run1 Run3 

Simple 

similarity 

Run2 Run4 

Table 1: four kinds of results 

4 Evaluations 

TAC 2008 test datasets comprises 
approximately 48 topics. Each topic has a topic 
statement (title and narrative) and 20 relevant 
documents which have been divided into 2 sets: 
Document Set A and Document Set B. 
 NIST assessors created 4 reference 
summary for each set of articles. All submitted 
systems are either manually or automatically 
evaluated, including linguistic quality, 
responsiveness, ROUGE-2, ROUGE-SU4[Lin 
2004], and Pyramid. Each system is required to 
submit no more than three runs. 
 We submitted three runs: Run1, Run2 and 
Run3. The reason we submitted these three runs 
is, that our intuition is the maximum strategy is 
better and we favor the maximum strategy. Both 
Run1 and Run2 adopt the maximum strategy. 
The maximum strategy represents that the 
importance of a sentence will be reduced only if 
it is similar to any sentence in the history, while 
the average strategy stresses that the sentence 
will be ignored when it is similar to the history 
on the whole.  
 Table 2 illustrates the automatic evaluation 
results of our system and the best submitted 
system. From this table, it is surprising to find 



that the average strategy gets a better result than 
the maximum strategy for the simple similarity 
metric. It is the same of the manual evaluation 
results, which are listed in Table 3. 
 

 R-2 R-SU4 

Top1 

system 

0.10382 (0.09530- 

0.11302) 

0.13625 (0.12875- 

0.14402) 

Run1 0.08312 (0.07480- 

0.09194) 

0.11893 (0.11240- 

0.12609) 

Run2 0.08047 (0.07307 - 

0.08797)  

0.11732 (0.11019- 

0.12521) 

Run3 0.08278 ( 0.07463 - 

0.09089)  

0.11621 (0.10943- 

0.12291) 

Table 2: Automatic Evaluation in TAC 2008 

 
 Pyramid Ling. 

quality 

resp 

Top 1 

system 

0.336 3.333 2.667 

Run1 0.287 2.031 2.344 

Run2 0.284 2.031 2.417  

Table 3: Manual Evaluation in TAC 2008 

 
Then we experiment the filtering feature which 
combines the complexity similarity metric with 
the average strategy. The rouge results are 
illustrated in Table 4, compared with Run1 which 
adopts the maximum strategy. It follows that that 
the results of Run4 are obviously better than Run1, 
Run2 and Run3. It proves that the filtering feature 
is designed more reasonably when considering 
more factors and using the average strategy. 

 R-2 R-SU4 

Run1 0.08312 (0.07480- 

0.09194)  

0.11893 (0.11240- 

0.12609) 

Run4 0.08957 (0.08023 

-0.10001) 

0.12699 (0.11857 - 

0.13645) 

Table 4: Maximum strategy vs Average strategy for 

the complex similarity metric 

 

5 Conclusions and Future Work 
In this paper, we introduce a filtering feature 

for the update summarization system. In order to 
get the filtering feature, we adopt two similarity 
metrics and two kinds of computation strategies. 
The experimental results show that a filtering 
feature should consider more factors not limited 
to the simple statistics of words. It is also 
concluded that it is better to take the average 
strategy to select sentences. 

In our future work, we will focus on 
considering more factors to design the filtering 
feature. And some machine learning methods 
will be experimented on the update task. 
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