PeMoZa submission to TAC 2008

Fabio Massimo Zanzotto
DISP, University of Rome “Tor Vergata”, Roma, Italy
zanzotto@nfo.uniroma2.it

Marco Pennacchiotti
Computerlinguistik, Universitat des Saarlandes, Sda#en, Germany
pennacchi otti @oli.uni-sh.de

Alessandro Moschitti
DISI, University of Trento, Povo di Trento, Italy
nmoschitti @lisi.unitn.it

February 2, 2009

Abstract

In this paper we describe the PeMoZa system patrticipatitigedourth
Recognizing of Textual Entailment (RTE) challenge. Theonajovelties
with respect to our systems of the RTE3 challenge is the eafm on com-
bining different data sets, coming from different challesgnd from auto-

matically acquired corpora.

1 Introduction

The design of our RTE4 system capitalizes our previous épess in Recog-
nizing of Textual Entailment challenges (RTE2 [1] and RTBEB.[ It is based on
a machine learning model that automatically derives firdeo(logic) rules from
annotated examples. In contrast with the previous challeipd, 1, 6], the partici-
pants were not provided with a development set. This mataur study on the
use of data coming from the different challenges to imprineedccuracy of our
system. In such work we considered (a) previous work showfiadailure on the
use of data merged from different challenges and (b) theo&apibn of automati-
cally acquired datasets.

In this paper, we introduce the model in Sec. 2 and presengxperiments
and the results in Sec. 3.
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Figure 1: A syntatically analyzed textual entailment pair

2 Learning first-order rewrite rules from examples

Our model is based on a feature space, which can represdfurfies syntactic
rewrite rules as described in [12]. This section descrilef space (Sec. 2.1) as
well as the kernel function which implicitly defines such spéSec. 2.2.1).

2.1 First-order syntactic rewrite rules feature space

In the feature space of first-order syntactic rewrite rul®$@R), each featurg,
represents a syntactic first-order or grounded rewrite gukeor example, the rule:
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is represented with the feature I’,7" >. A (T, H) pair p activates a featurg,
if it unifies with the rulep. For example, the above featufg is activated for the
example in Fig. 1.

2.2 Kernels for the FOSR feature space

Since the full FOSR feature space has an exponential nunftbeatores, we use
the kernel trick to optimize computations. It consists ifimlag the scalar product
K (i1,12) between two instances andi, in such space, instead of first defining the
function F mapping instances in the feature space, J&:; ) and F(i2) and then
computing the distance. This is possible because kernehimes, e.g. SVMs,
only useK (i1, i2) and not directly the feature values.
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Our kernel is defined as follows. L&t(T, H) be the set of features that the
example(T, H) activates. For example, the set of featufgd , H,) activated by
the example in Fig. 1isF(T1, H;) =
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The kernel functionk' ((7", H'), (T”, H")) that we need to model is then:
K(T',H'),(T",H")) = |F7(T",H') n F(T", H")|

The problem of computing this kernel is exponential in thenber of variables
between T and H [12]. We will then use the approximated andiefft version
proposed in [11].

In the rest of the section we propose a kernel function to detfie ground
and first-order spaces. We first introduce the tree kernetioms in Section 2.2.1.
Then, we describe how we use this function to define kernelh&FOSR feature
space (Section 2.2.2).
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Figure 2: A syntactic parse tree.

2.2.1 Tree Kernel Functions

Tree kernels represent trees in terms of their substrigifirgments) which are
mapped into feature vector spaces, €., A kernel function measures the simi-
larity between two trees by counting the number of their camrfragments. For
example, Figure 2 shows some substructures for the pamseotrthe sentence
"book a flight". The main advantage of tree kernels is that, to compute the
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substructures shared by two tregsand», the whole fragment space is not used.
In the following, we report the formal definition presentad3].

Given the set of fragment§fy, f2,..} = F, the indicator function/;(n) is
equal to 1 if the targef; is rooted at node and O otherwise. A tree kernel is then

defined as:
K(rum)= Y Y. A(ng,ng) )

n1EN7 n2€NL,

whereN,, andN., are the sets of thg’s andr’s nodes, respectively an(n, ny) =

Zlﬂ I;(n1)I;(n2). This latter is equal to the number of common fragments tbote
in then; andny nodes and\ can be evaluated with the following algorithm:

1. if the productions at; andn. are different them\(nq,n9) = 0;

2. if the productions at; andny are the same, and, andns have only leaf
children (i.e. they are pre-terminal symbols) th&fn,,nq) = 1,

3. if the productions at; andn, are the same, and; andny are not pre-
terminals then

nec(ny)

A(ni,ng) = [T 1+ A, el,)) )

J=1

wherenc(ny) is the number of the children of, and¢/, is the j-th child of the
noden. Note that, since the productions are the sama€p;) = nc(ns).

Additionally, we add the decay factor by modifying steps (2) and (3) as
follows?:

2. A(ny,n2) = A,

nec(ny)

3. nl,ng /\ H 1+A ))

The computational complexity of Eq. 1d3(|N-, | x |N.,|) although the average
running time tends to be linear [10].

The next section shows a technique to assign the same pldeehto similar
text and hypothesis pair.

170 have a similarity score between 0 and 1, we also apply thmaiization in the kernel space,

. TK(r1,7m2)
ie. K'(11,m2) = VTE(r1,r)XTK(12,72)




2.2.2 Matching First-order Features

Defining kernel functions implementing the FOSR featurecepa not trivial. Tree
kernels applied to two texts or two hypotheses match idehtiagments. When
variables are added to trees as in the FOSR feature spadaptied fragments
are matched only if the basic fragments and the assigneéhiiders match. For
example, let us compare the pair in Fig. 1 with the followirzgrp

TQ = H2
S S
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nne(El ver  Ne[2] nNe(2l ver  ne[2
| | | | | |
Wanadoo bought ynp[2] Wanadoo owns \np[2]
| |
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The two pairs share many common features such as:
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Yet, a simple use of the tree kernel function can lead to nisse common fea-
tures. In(71, Hy) [Ylis [3 while in (T3, H,) it is [2. To detect this feature with
simple tree kernel functions we need to find a correct mappatgyeen placehold-
ers in(7y, Hy) and in (T, Hs). It is straightforward to note that the correspon-
dence$1lH1] and[3H2] allow more substructures (i.e. large part of the trees) to be
identical.

Although, there may be several approaches to accomplistiask, we apply a
basic heuristic which is very intuitive:
Choose the placeholder assignment that maximizes the éreelkfunction over
all possible correspondences
More formally, let A and A’ be the placeholder sets ¢f', H) and (1", H'), re-
spectively, without loss of generality, we considldf > | A’| and we align a subset
of Ato A’. The best alignment is the one that maximizes the syntactidexical
overlapping of the two subtrees induced by the aligned sahohors. By calling
C the set of all bijective mappings frost C A, with |S| = |A’|, to A/, an ele-
mentc € C is a substitution function. We define the best alignmgpt. the one
determined by

Cmaz = argmazecc(TK (t(T,c),t(T",i)) + TK (t(H,c),t(H', 1)),
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where (1)t(-, ¢) returns the syntactic tree enriched with placeholdersaosul by
means of the substitution (2) 7 is the identity substitution and (3)K (11, 72) is
a tree kernel function (e.g. the one specified by Eq. 1) apppbehe two trees
andrs.

At the same time, the desired similarity value to be used énl¢garning al-
gorithm is given byT'K (¢(T', ¢z ), t(T7,4)) + TK (t(H, ¢maz), t(H', ), i.€. by
solving the following optimization problem:

K,(T,H),(T",H'")) = mazcec(TK (t(T,c),t(T",i)) + TK (t(H,c),t(H', 1)),
3

As a final remark, it should be noted that, (&) ((7', H), (T’, H')) is a sym-
metric function since the set of derivatidéhare always computed with respect to
the pair that has the largest anchor set and (b) it is not d kalinel as thenax
function does not in general produce valid kernels. Howewe}7], it is shown
that when kernel functions are not positive semidefinite lik this case, SVMs
still solve a data separation problem in pseudo Euclideanesp The drawback is
that the solution may be only a local optimum. Neverthelsash a solution can
still be valuable as the problem is modeled with a very ri@ides space.

3 Preliminary analysis

We study how effectively using data from different challeagand automatically

acquired corpora. Our preliminary analysis demonstrdtats(g) naively merging

data is not effective and (b) the use of automatically aeguzorpora decreases
accuracy.

3.1 Experimental Setup

For our experiments, we used the following sets:

news a corpus of 1600 examples obtained using the methods deddior build-
ing the LCC corpus, both for the negative and positive exasf#i]? We randomly
divided the corpus in two parts: 800 training and 800 teséixgmples. Each set
contains an equal number of 400 positive and negative pairs.

RTE1,RTE2, andRTES3: the corpora from the first three RTE challenges [4, 1, 6].
We used the standard split between development and testirege the former is
used for training.

2For negative examples, we adopt the headline - first paragraipaction methodology.



Training Corpus| Accuracy
RTE2 60.62
RTE1 51.25
RTE3 57.25
news 53.25
RTE2+RTE1 58.5
RTE2+RTE3 59.62
RTE2+news 56.75

Table 1:Accuracy of different training corpora over RTE2 test

We use the Charniak Parser [2] for parsing sentences, and-IBNM9] ex-
tended with the syntactic first-order rule kernels describg12, 11]. Additionally,
we used the lexical overlap similaritye: model) score described in (Corley and
Mihalcea, 2005).

3.2 Experimental Results

For the exploratory experiments, we used the FORS feataeggescribed in Sec-
tion 2. The first goal of the experiment is to check the qualityhe automatically
acquired corpus. We then independently experiment witmthes corpora with
the standard training-test splits as reported above. Theracy of the system is
94.875% on thenews corpus. Thenews corpus is very easy to separate: pilot
experiments show that when increasing the size ofihes corpus the accuracy
reaches nearly 100%. This suggests that positive exampdegeay differently
from negative ones. Indeed, we note that the lexical ovariahbe negative ex-
amples is extremely low. This makes such dataset not regisesentative for the
entailment phenomenon.

As a second step, we tested the use of RTE corpora from diffetallenges.
Some experiments (e.g. [5]) show that RTE corpora are ysoatlhomogeneous
making difficult their joint exploitation. Following suchmk, we used RTE2 test
set and different training sets obtained as combinatioh@fémaining RTE sets.
Results are reported in Table 1. The best result is achieyachiming and testing
on RTE2 (second row). As expected, the models learnt on RRERAES perform
worse than on RTE2. RTEL is extremely different from RTEZ2ocading to our
FOSR feature space. Itis interesting to notice that all #peemented extensions
of the RTE2 training lead to a drop in accuracy, suggestiagribne of the corpora
is homogeneous to RTE2. Yet, the performance drop ofithes corpus (RTE2
+ news) is much larger than when using the other two RTE carficg. RTE2 +
RTE1 and RTE2 + RTE3). This suggests thatvs is very different from RTE and



Run Training Accuracy Average Precision

1 RTE1+RTE2+RTE3 0.563 0.5619
2 RTE2+RTE3 0.59 0.6287
2 RTE3 0.586 0.603

Table 2:Result submission
cannot be used to improve our systems.

3.3 Submission results

The results of the submission are presented in Tab. 2. Herentidel used is

the FORS feature space combined with the lexical featureespas expected the
results are lower than those obtained in the other yearg sugcexpected RTE4
test data different from previous the one developed previhallenges. The best
result has been obtained excluding RTE1 from the learnihg se
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