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Abstract. This paper describes the systems of THU QUANTA in Text Analysis 
Conference (TAC) 2008. We participated in the Question Answering (QA) track, 
and the Recognizing Textual Entailment (RTE) track. For question answering track, 
we enhanced the traditional question answering system by sentiment lexicon based 
opinion analysis. The rigid list questions are divided into two categories based on 
their answer types. And two snippet extraction approaches are proposed to answer 
squishy list questions. For RTE track, we design different strategies to recognize 
true entailment and false entailment. The similarity between hypothesis and text is 
measured to recognize true entailment. We detect the exact entity and relation 
mismatch to recognize the false entailment. The evaluation results show that the 
proposed approaches are very effective for the QA and RTE tasks. 

1   Introduction 

In this year’s Text Analysis Conference, we participated in two tracks: the Question 
Answering (QA) track and the Recognizing Textual Entailment (RTE) track. This paper 
reports on our two developed systems for these two tracks. 

The TAC 2008 QA track is different from previous TREC QA. It focuses on finding 
answers to opinion questions. We develop the opinion question answering system by 
enhancing our past participated system QUANTA[3] with lexicon based sentiment 
analysis. We not only consider the topic relevance, but also pay attention to the sentiment 
match between question and answers. By analyzing the rigid list questions, we divide all 
the rigid list questions into two categories: the Opinion Holder Rigid List questions and 
Other Types Rigid List questions. Opinion Holder Rigid List questions refer to the 
questions whose answers are blog nicknames or blog holders. Other Types Rigid List 
questions refer to the questions whose answers are same to traditional factoid questions, 
such as person names, cities etc. The different strategies are designed for these two types 
of rigid list questions. We also propose two snippet extraction approaches to answer 



squishy list questions. The evaluation results show that our methods are very effective. 
We rank 1st in this year’s opinion question answering task.  

This is our first participation on RTE track. We design a two-way strategy for this task. 
The main idea is that it is different to recognize true entailment and false entailment. Then 
we propose two separated approaches for recognizing true entailment and false entailment. 
For true entailment, we believe that the hypothesis can be transferred to the text by some 
transformation rules. This means that the text and hypothesis are similar in some levels of 
text linguistic representation. Therefore, we employ linguistic similarity to recognize the 
true entailment. For false entailment, we believe that there must be some mismatches 
between the text and the hypothesis. Therefore, we focus on “exact” entity and relation 
mismatch recognition to determine the false entailment. The “exact” means that the entity 
or relation plays a crucial rule in the textual entailment. If this “exact” mismatches, the 
false entailment can be determined. In this year’s RTE track, the best result we achieved is 
65.9% in accuracy. 

2   Question Answering Track 

Unlike past QA tracks, the TAC 2008 QA Track focuses on finding answers to short 
series of opinion questions. It includes two types of questions: rigid list questions and 
squishy list questions. We propose an opinion question answering framework by 
combining traditional topic based QA method and lexicon based sentiment analysis. Our 
QA system is augmented by sentimental lexicon based opinion analysis as follows: In 
question analysis stage, the questions are classified into two sentimental types, including 
positive and negative cases. After document retrieval, the sentimental determination is 
performed to filter out the sentiment mismatch documents. For snippet selection, we 
propose a unified model to combine the topic and the lexicon based sentiment to extract 
snippets with topic relevance and sentiment match. The official evaluation results show 
that our proposed approaches are effective. We achieved 0.156 for rigid list questions, 
0.172 for squishy list questions and 0.168 for Average per-series score. Our rigid list 
question score and average per-series score both rank 1st among the 17 submit runs. 
The architecture of our Question Answering system is similar to traditional question 
answering system. Several components are implemented in this framework: Blog 
Processing and Indexing, Question Analysis, Query Generation, Document Retrieval, and 
Answer Extraction for each type of question. The detailed introduction for each 
component and the official results are described as follows: 

2.1   Blog Processing and Indexing 

Since the Blog06 corpus is different from the AQUINT news corpus. It contains much 
noise. The blog corpus is tidied by several steps: filter bad chars directly; employ html 



parser to extract the main text and eliminate the html tags; judge the char-set of the blog 
post and discard non-English documents. These works are quite essential for 2008 QA 
task, because blog data is the only corpus for this year’s question answering track.  

We use the public information retrieval tool Lucene to index the document corpus. 

2.2   Question Analysis 

We followed our past participated QA task to analyze the questions, including anaphora 
resolution, question normalization, question classification, and other syntactic and 
semantic analysis. In this year, for the opinion questions, the sentiment analysis is also 
employed: 
1. Opinion holder, opinion object and opinion verb recognition. 

We use a semantic role labeler (based on Propbank) to get all the predicates and 
corresponding Semantic roles from the parse tree of the normalized question. If a 
predicate is found in the semantic word list and has both semantic role A0 and semantic 
role A1, the predicate together with its A0 and A1 will be returned as opinion verb, 
opinion holder and opinion object respectively. 
   We also use some patterns (e.g . “reason for XXX”, ”opinion about XXX”) to extract 
opinion objects. 
2. Sentiment classification  

All questions are classified into positive opinion question and negative opinion 
question categories based on their sentiment. We just identify the opinion words to finish 
this procedure. If the question contains “dislike”, “negative” and other negative opinion 
words, we classify this question into negative opinion question category. If the question 
contains “like”, “positive” and other positive opinion words, we classify this question into 
positive opinion question category. When the sentiment category is determined, we will 
just consider the same or similar category’s documents and snippets for answer extraction. 

2.3   Query Generation and Expansion 

There are many sentence features can be used to generate queries, such as NP chunks, 
topic words, named entities and so on. The wikipedia’s redirection function can be used to 
expand those features so as to find more relevant documents. After experiments on the 
TAC QA 2008 sample run data, we find that any single query generation strategy can 
hardly produce satisfactory results. The main reason is the questions are so different from 
each other. For some question, using the name entities as query can be very effective, for 
others, there could be no name entities found. A query generation strategy helps to find 
reasonable number of documents on some questions and no (or too many) documents on 
others. Meanwhile, the error of parser and NER and the noise caused by wiki also add 
uncertainty to query generation and expansion. 



Considering robustness and efficiency, we generated a four-layer hierarchical query set 
for each question. The four query generation methods are listed as follows: 
1)  Only contain a single term------the question topic . 
2)  All the NP chunks, proper noun and digits having IDF score under a predefined 
threshold are collected as terms. All the terms are expanded through Wikipedia redirection 
data. The IDF scores are pre-computed by Google.  
3)  Named Entities are collected as terms. All the terms are expanded through wikipedia.  
4)  Named Entities are collected as terms without expansion. 

2.4   Document Retrieval 

Four queries are designed for each question. So after search, each question will have four 
returned document lists. We repeatedly collect the top N documents from these lists. That 
is to say, we collect first document from list 1, second from list 2…forth from list 4 and 
back to list 1…until we get N documents, or all the lists are empty. 
In this year’s QA TAC, we get the documents in two ways: the first gets top 500 
documents by the designed method above. And the second is to include the top 1000 
documents from official search results. We compute the union for these two methods. 

2.5   Rigid list Answer Extraction 

Since cross-topic opinion mining is quite complicated and difficult, answering all types 
of opinion questions in a unified structure is not reasonable and not possible. 

In this point of view, we broadly divide rigid list questions into Opinion Holder Rigid 
List questions (OHRL questions in short) and Other Type Rigid List questions (OTRL 
questions in short) and solves these two types of questions using different schemes. The 
answer for OTRL question refers to blog nickname or blog holder, and the answer for 
OTRL question is the same as traditional factoid answers, including person name, book 
name, movie name and so on. If the questions ask for “blog”, “blogger” or “who”, this 
question belongs to the OHRL question, otherwise, it belongs to OTRL question. 
Furthermore, according to the target of the questions, OHRL questions can be divided into 
direct-OHRL questions and indirect-OHRL questions. Direct-OHRL questions aim to find 
opinion holders who directly express some opinions on a given topic, such as “Who are 
the people who enjoyed the movie "I Walk the Line"?”, while indirect-OHRL questions 
focus on blogger names, like “What Bloggers expressed a positive attitude towards 
Mahmoud Ahmadinejad?” In another word, once someone’s blog contains some relevant 
opinion about a given target, no matter it is copied or quoted, the blogger’s name should 
be returned as an answer of the indirect-OHRL questions. Thus, answering indirect-
OHRL questions is a bit easier than answering direct-OHRL questions. There are two 
kinds of answers of direct-OHRL questions. One is the author of an article and the other is 



the speaker of a quoted statement. We will give more details about this in the following 
section. 

Experiment results show that this “divide and conquer” method is very successful in 
solving rigid list opinion questions. We get top ranked F score at Rigid List Questions in 
17 systems with OHRL Question F score to be 0.131 and OTRL F score 0.193. 

2.5.1   Answer Extraction for Opinion Holder Rigid List questions 

Our OHRL Question-Answering System consist several separate modules working in a 
sequential manner. In this way, we can easily share key modules in answering different 
kinds of questions and perform expensive operations on the dataset. In general, our QA 
system contains Question Processing Module, Document Retrieval Module, Answer 
Candidate Selection Module, Candidate Scoring & Resorting Module and Answer 
Generation Module. To accommodate the needs of OHRL Question-Answering, we adjust 
all modules except Question Processing and Document Retrieval Module. 
1) Answer Snippet Candidate Selection Module 

This module aims to locate relevant snippets from the retrieval results. As we know, 
when people express some opinion on a topic, the topic words ore relevant pronouns are 
usually very close to the opinion words. Besides that, opinion sentence on the same target 
always comes together. Based on this, we use a simple strategy to retrieve relevant 
snippets. For the first step, a document is split into sentences with topic words and 
pronouns marked. Then those sentences are grouped into several parts and sentences 
without any topic words or pronouns are removed. Then we score snippets by the 
occurrence of topics words and opinion words and select the top ranked snippets as the 
answer candidates. 
2) Snippet Candidate Scoring & Re ranking Module 

This is the cardinal module of the whole system. We compute several scores based on 
the occurrence of topic and opinion words. 

a) title topic score = num of topic words in title / count of title words 
b) title opinion score=num of opinion words in title * weight/ count of title words 
c) snippet topic score = num of topic words in snippets / count of snippet words 
d) snippet opinion score = num of opinion words in snippets * weight/ count of 

opinion words 
We have tried several opinion dictionaries, including Hownet, Wordnet and Mpqa, to 

compute the opinion score and none of them works well because common opinion 
dictionaries contain too much noise compared to a given topic. For example, “big” 
expresses negative opinions when it comes together with “burden”, though in most cases 
it is a positive word. To overcome this difficulty, we use a small opinion dictionary built 
by ourselves together with Hownet to compute the opinion score. We assign words of 
small opinion dictionary heavier weight to balance the accuracy and recall. 



If a snippet’s title topic score and title opinion score are higher than a specified 
threshold, this snippet is directly put into the answer pool. Otherwise, a final score is 
computed by: 

score(snippet) = a * title_topic_score + b * title_opinion_score +  
c*snippet_topic_score + d * snippet_opinion_score          (1) 

a, b, c, d are concluded from sample questions. We discard snippets whose score is 
less than a specified threshold. Then we select the top N ranked snippets into the answer 
pool. 
3) Answer Generation Module 

As we have mentioned above, there are three types of answers: bloggers, answers and 
text opinion holders. Since there are no available corpuses, it is impossible to train a 
statistic-based extractor to get opinion holders. So we rely on heuristic rules to extract 
exact answers. We write more than 30 regular expressions to extract blogger and authors 
from the ordinary html files. Besides that, we write 6 six simple rules to extract opinion 
holders. For example, we extract Tom as the opinion holder of the sentence “Tom said, ‘ I 
love it’ “ . 
If the question is an indirect-OHRL question, we only have to extract the bloggers directly. 
To those direct-OHRL questions, we firstly extract opinion holders from nearby sentences. 
If we can’t find any exact answers, we use the author-extractor to extract answers. 

2.5.2   Answer Extraction for Other Type Rigid List questions 

The answers for the Other Type Rigid List questions refer to the traditional factoid 
answers, such as person name, movie name etc. We process these questions by following 
steps: 
1) Snippet Selection, we split the article into snippets with same number of sentences. 
And then, all snippets are scored according to BM25 function. If the snippet score exceed 
a predefined threshold, this snippet is extracted as candidate snippet. 
2) Answer Candidate Generation: All candidate snippets are split into N grams as answer 
candidates. We mark the support snippet list for each candidate. 
3) Candidate Filtering: According to different question, we filter candidates in different 
way. If we can easily access a name list from the external knowledge, such as 
movies/actors from IMDB, we use the list to filter the candidates. If the name list is not 
easy to fetch, we find the topic words and the answer type words for the question. We 
calculate the information distance between candidates and answer type under the 
condition of topic 

log ( , , ) max{log ( , ), log ( , )}( , )
log ( ) min{log ( , ), log ( , )}

f x y c f x c f y cd x yc f c f x c f y c
−

=
−

      (2) 
where x is candidate, y is answer type, c is topic, f(x) denotes the number of x[2]  



Finally, we sort the candidate as a ranked list, and choose the top 50 candidates as the 
essential candidates set. 
4) Sentiment Checking: for each essential candidate, we calculate the opinion score for its 
support texts based on sentiment lexicon Hownet.  We count the number of opinion 
words near the candidate words. Here, we just consider the opinion words with the same 
polar to the question. We set different weights for opinion words based on the distance 
between opinion words and topic words. We calculate the opinion score for each support 
text. A threshold is defined according to the experiment in example questions, If the 
highest score of the candidate's support text is above this threshold, then we add the 
candidate to our final answer list, and the article, which contains the respond support text, 
is recognized as the support document. 

2.5   Squishy List Answer Extraction 

In this section, we describe our approaches to answer squishy list questions. We use two 
snippet extraction approaches to accomplish this task. One is the fixed number sentence 
based snippet extraction, and the other is question topic and its pronoun based snippet 
extraction. 

2.6.1   Fixed Number Sentence based Snippet Extraction 

The articles are split into snippets, which contain n (a fixed number, like n = 4) successive 
sentences with overlap. We will calculate the opinion score and topic score for each 
snippet:  
1) Topic score 

For topic score, we mainly consider two aspects: topic relevance score and 
informative score: the snippet must have much relationship with the topic, and the snippet 
should contain useful information. We use pattern and keyword based approach to 
estimate the topic relevance score. We construct several patterns, like definition patterns, 
why patterns, as features to rank the snippets. The keywords are extracted and expanded 
from the question words. We also collect some related lists as keywords, for example, 
given question “What reasons did people give for liking Ed Norton's  movies?”, we 
collect all the Norton’s movie from IMDB as this question’s keywords. The position of 
keywords is also considered. If the keyword exists in the title or first sentence in the 
document, the topic score will be enhanced. To estimate the informative score, we 
calculate the average idf score for each snippet. The final topic score combines the topic 
relevance score and average IDF score in linear weight. 
2) Opinion score 

We design a sentiment lexicon based approach to compute the opinion score. Here 
the Hownet is employed as the sentiment lexicon. We first check the number of opinion 



words existing in a predefined context window size. And then compute the snippet 
opinion score by adding opinion scores for all opinion words. 

 
The final snippet score is computed by the following function: 
 

 _ ( ) * _ ( ) * _ ( )final score S topic score S opinion score Sα β= +  (3) 
We set a threshold to extract the top ranked snippets as the answers for each squishy 

list questions 

2.6.2 Question Topics and Pronouns based Snippet Extraction 

1). Topic words Extraction 
We first construct the topic words, pronoun words for each question. The topic words are 
the topic of series questions and its expansions.  
2). Pronoun Words Extraction 
To get the pronoun words, we first classify each topic into group, female, male, and other 
categories. Group corresponds to pronoun words “they”, “them”, female to “her”, “she”, 
male to “he”, “him”, ‘his”, and other to “it”, “its”. Meanwhile, we extract the pronoun 
words from Wikipedia. For example, for topic “Nancy Grace”, the first sentence in 
Wikipedia is “Nancy Ann Grace (born October 23, 1959) is an American legal 
commentator, television host, and former prosecutor.” “commentator”, “host” and 
“prosecutor” are also extracted as pronoun words.  
3). Opinion lexicon construction 

As described above, we construct a small opinion lexicon by collecting the most used 
opinion words. For example, we collect the positive opinion words, including "good", 
"cool", "innovative", "wonderful", "great",  "excellent", "amazing", "interesting", "like", 
"love", "pretty" etc, and negative words including “hate", "worse", "sad", "bother", 
"stupid", "angry", "bitch", "idiot", "annoying", "weird", "disgust", "disappoint", "frustrate", 
"sick", "nasty" etc. they are all common used words to express opinions. 
4).Snippet Extraction 

We first find the sentence, which contains both opinion word and topic word as the 
initial snippet. If the following sentence contain the topic words or pronoun words, the 
next sentence are also injected into the snippet. And the next sentence is recursively 
checked and injected. We will extracted all the snippet and rank them by the snippet’s 
length. 

We submit two runs for squishy list questions: the first totally uses the first strategy, 
the fixed number sentence strategy. For the second run, we use the question topic and 
pronoun based sentence extraction approach for the question, whose topic is same as the 
question series, and other questions are processed by the fixed number sentence extraction 
strategy. 



2.7   Evaluation Results 

The evaluation results from the official evaluation from TAC 2008 are shown in the 
following table. Among 17 submitted runs, our results are competitive. 

Table 1. the evaluation results for Quanta 
 Best Worst median Quanta1 Quanta2 

Rigid  0.156 0.000 0.063 0.156 0.154 

Squishy  0.186 0.018 0.091 0.136 0.172 

per-series  0.168 0.011 0.093 0.149 0.168 

3   Recognizing Textual Entailment Track 

Textual entailment recognition task is to decide whether the text can entail the hypothesis. 
In this proposal, we propose a textual entailment recognition framework from two 
polarities. The assumption is that it is different to recognize the true entailment and false 
entailment. Therefore, different strategies are employed for True entailment recognition 
and False entailment recognition. 

3.1   True Entailment Recognition 

For the true entailment, we believe that the hypothesis can be transferred to the text by 
some transformation rules. There rules mentions all levels of linguistic analysis, including 
word transformation, phrase transformation, syntactic transformation and semantic 
transformation. Therefore, we compare the similarity between the hypothesis and the text 
in these levels of representation to recognize the True entailment: 
1)  Word match 

The word similarity is calculated by the extended Local Lexical Matching method, 
enhanced by several WordNet relations. 
2) Named Entity Match 

Named Entity similarity is calculated for phrase transformation. Two kinds of Named 
Entity Recognition Tools, including Stanford NER and Sharp, are used to recognize eight 
types of Named Entities. And the Entities are extended by Wikipedia Redirection data set. 
We define five match relations: 1. Match;  2. Named Entity match, but Type not match 
(the NER tools’ error) ; 3, Type Match, but Named Entity not match; 4, Mismatch; 5 Only 
appears in Hypothesis. We define different weight score for each match relation. 
3) Syntactic Match 



Two approaches are designed to compute the similarity in syntactic level. The first 
method is proposed based on the tree alignment approach [1], and we also consider the 
number of negation verbs. The second method calculates the path similarity in the 
syntactic tree. 
4) Semantic Match 

For semantic similarity, we first use a semantic role labeler to tag the predicate and 
all the args. We compare the verb similarity by WordNet distance, and then to recognize 
the augment similarity. The semantic match score is calculated as follows: 
                    (4) _ _ *SRL score predicate score arg score= _
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verb match
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Where n is the number of args and argi is the ith arg for predicate 
5) Recognizing the true entailment 
It is possible to set a threshold to recognize true entailment for each level similarity 
method. And we also use the machine learning tool weka to combine all the similarity 
values. The past RTE data sets are used to train a classifier to recognize the true 
entailment. 

3.2   False Entailment Recognition 

For the false entailment, we believe that there must be some mismatches between the text 
and the hypothesis. Therefore, we focus on “exact” entity and relation mismatch 
recognition to determine the false entailment. The “exact” means that the entity or relation 
plays a crucial rule in the textual entailment. If this “exact” mismatches, the false 
entailment can be determined. After similarity methods discussed in previous section, 
several levels of exact mismatch are used to detect false entailment, including word level, 
phrase level, sentence level, and syntactic relation level: 
1) Number Mismatch 

If the number appears in the Hypothesis, but doesn’t appear in the Text, we predict 
that the entailment is false. For example, we predict #621 is false because the number 
“7.5” doesn’t exist in Text. Meanwhile, we consider the number relations. For example, if 
the hypothesis contains “over 1000” and the text contains a numeric value above 1000, 
like 1024, we don’t predict it as false entailment. 
2) Time & Date Mismatch 



Time & Date entity is a exact entity in RTE task. If the time and date mismatch, we 
predict it is false entailment. 
3) Location Mismatch 

For each location entity in H, if there is no corresponding entity in T, we predict it is 
false entailment. In some cases, one location can be expressed in different entities. 
Therefore we also use Wikipedia, country-nationality (China--Chinese) list and country-
capital (China--Beijing) list to expand the location entities in T. 
4) Quantifier Mismatch 

We use the universal quantifiers (e.g. “all”, ”every”, ”each”) and negative words (e.g. 
“no”, ”none of”, ”never”) as exact entities. If a noun (or noun phrase) appears both in H 
and T and this noun (or noun phrase) is modified by universal quantifier (negative word) 
in H but not in T, we predict it is false entailment. The intuition behind this feature is that 
the constituents modified by universal quantifiers (e.g. “all”, ”every”, ”each”) or negative 
words are hard to satisfy. 
5) “Say” relation mismatch 

This relation mismatch means that somebody says something happens in Text, but in 
Hypothesis, it is said that somebody happens. Then we recognize this as false entailment.  
6) “Locate” relation mismatch 

For some special location description words, like “locate”, “base”, “from” exist in 
Text. We first align the objects, and then compare the subjects for these location markers 
in text and hypothesis. If the subjects mismatch, we predict it is false entailment. 
7) Negation and subjunctive mismatch[5] 

The text is first split into several small sentences. And then we compare each small 
sentence with hypothesis. If their similarity value is higher than a predefined threshold, 
we then check if only one has negation or subjunctive words. If only small sentence or 
only hypothesis has negation or subjunctive words, then we conclude negation and 
subjunctive mismatch, and predict it is a false entailment. 

3.3   Submissions and Evaluation Results 

Table 2. two-way evaluation results for Quanta 
 Accuracy Average precision 

QUANTA1 0.659 0.6225 
QUANTA2 0.623 0.5926 

Table 3. three-way evaluation results for Quanta 
 2-way Accuracy 3-way Accuracy Avg precision 
QUANTA 0.633 0.588 0.6332 

We submit two results for two-way RTE task. The first submission QUANTA1 just uses 
the word match, named entity match and task description as features to recognize true 
entailment and uses all the mismatches to recognize false entailment. The second 



submission QUANTA2 use all the match feature and task description features to 
recognize true entailment and uses all the mismatches to recognize false entailment. The 
training data set is the two-way task data in RTE 3. For the three-way RTE task, we just 
change the Negation and Subjunctive mismatch as “CONTRADICTION”, and other false 
entailments are denoted as “UNKNOWN”. The training data set is the annotated three-
way task data in RTE 3. 

4   Conclusion 

In this paper, we describe our systems in TAC 2008 QA and RTE track. The question 
answering system is based on our past participated system, and enhanced by sentiment 
lexicon based opinion analysis. The Recognizing textual entailment system use different 
strategies to recognize true entailment and false entailment. The similarity methods are 
first employed to recognize true entailment and the exact entity and relation mismatch 
rules are then used to recognize false entailment. But both systems are still preliminary, 
there are many aspects to be improved. 
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