
An approach using Named Entities for Recognizing Textual Entailment

Julio Javier Castillo, Laura Alonso i Alemany
Faculty of Mathematics Astronomy and Physics

Department of Computer Science
National University of Cordoba, Argentina

{cj, alonso}@famaf.unc.edu.ar

Abstract. This paper describes the Sagan
system in the context of the Fourth Pascal
Recognizing Textual Entailment (RTE-4)
Evaluation Challenge.
Sagan applies a Support Vector Machine
classifier to examples characterized by four
features based on: edit distance, distance
in WordNet and Longest Common Substring
between text and hypothesis. Additionally, we
created a filter applying hand-crafted rules
based on Named Entities to detect cases
where no entailment was found.
Despite this simple approach, results are
promising. Applying the Named Entity filter
yields a small improvement in precision.

1. Introduction

The objective of the Recognizing

Textual Entailment Challenge task is to
automatically determine whether or not a
hypothesis(H) can be inferred from a text (T).

This year, RTE-4 has posed two different
tracks: one involving the traditional two-way
distinction between entailment and non-
entailment, and another where a three-way
distinction was intended, between entailment,
contradiction and unknown, when no
information to accept or reject the hypothesis
is provided in the text.

The Sagan1 system applies a Support Vector
Machine approach to the problem of
recognizing textual entailment. Only four
simple features are used to characterize the
relationship between text and hypothesis for
both training and test cases:

1
In honour to Carl Sagan.

- Levenshtein distance between T and H

(over stems).
- Lexical similarity (based on Levenshtein

distance).
- Semantic distance as calculated via

WordNet.
- Longest common substring.

Additionally, we have developed a filter
that detects cases where no entailment
relation is found. This filter applies simple,
hand-crafted rules about Named Entities
found in the text and hypothesis. It has
coverage of about 10% of the cases, and
yields a small improvement in the
performance of the system.

Two runs were submitted to TAC’08: one
with the system including the Named
Entity filter, and another without it, to assess
the impact of the filter in the overall
performance of the system.

The rest of the paper is as follows. We
describe the architecture of our system in
Section 2.The results of experimental
evaluation are discussed in Section 3. Finally,
we present some conclusions and lines for
future work to improve our system’s
performance.

2. System description

The Sagan system is based on a SVM
approach to recognizing textual entailment for
English. Two runs were submitted to the TAC
2008 Challenge, differing only on the
treatment of Named Entities. Figure 1 shows
the general architecture of our system.

Preprocessing

NERDevSet RTE 3

– 3 ways

Entailment

Result

SVM3

CONTRADICTIONUNKNOWNYES

Is Ti NE entailed

by Hi ?

SVM2

NoYes

TestSet RTE4

Levenshtein distance

Wornet

Longest Common

Substring

RUN 2

RUN 2

RUN 1

Figure 1. The Sagan System for Recognizing Textual Entailment for English.

Our system is an extension of our preliminary
system that we presented [7] in the Answer
Validation Exercise (AVE) 2008, part of
CLEF’08.

Text-hypothesis pairs are characterized with
four main features: the Levenshtein distance
between each other, lexical distance based on
Levenshtein, a semantic distance based on

WordNet and their Longest Common
Substring. Then, a Support Vector Machine is
used to classify test pairs in three classes:
entailment, contradiction or unknown. The
SVM was trained with the tree-way corpus
piloted in the RTE3 Pascal Challenge2.

2 http://nlp.stanford.edu/RTE3-pilot/

Text-hypothesis pairs are stemmed with Porter’s
stemmer3 [3] and PoS tagged with the tagger in
the OpenNLP4 framework.

Additionally, a NER-based filter was added to
the system. This performs NER in text-
hypothesis pairs and applies a series of hand-
crafted rules to discard that an entailment
relation is actually found in the pair. If that is
the case, a specialized SVM2 is applied to
classify the pair between contradiction and
unknown. The two runs submitted to TAC for
evaluation differed on their use for this filter:
RUN1 did use the filter, RUN2 did not use it.

2.1 NER filter

Sagan applies a filter based on Named
Entities. The purpose of the filter is to identify
those pairs where the system is sure that no
entailment relation occurs. These pairs are
classified by a specialized SVM2 as
contradiction or unknown.

This module applies hand-crafted rules to
the output of the automated NER analysis
within OpenNLP. NER recognition was
enhanced by using an acronym database5.

The form of the rules is as follows: for
each type of NE (person, organization,
location, etc.), if there is a NE of this type
occurring in H that does not occur in T, then the
pair does not convey an entailment and will
therefore should be classified as either
contradiction or unknown.

In a study on the RTE3 and RTE4 training
corpus, these rules applied to approximately 10
percent of the text-hypothesis pairs. The
accuracy of the filter, as evaluated in TAC’08, is
0.71, with 66 cases correctly classified out of 92
where rules applied.
An error analysis revealed that misclassified
cases were indeed difficult cases, as in the
following example (pair 807-RTE 4):

Text:
Large scores of Disney fans had hoped Roy
would read the Disneyland Dedication
Speech on the theme park's fiftieth
birthday next week, which was originally

3 http://tartarus.org/~martin/PorterStemmer/

4 http://opennlp.sourceforge.net/
5Acronym database :
http://badc.nerc.ac.uk/help/abbrevs.html

read by Walt on the park's opening day,
but Roy had already entered an annual
sailing race from Los Angeles to
Honolulu.

Hypothesis:
Disneyland theme park was built fifty
years ago.

We plan to extend this module so it can also
be used to filter cases where an
entailment between text and hypothesis can
be reliably identified via hand-crafted rules.

2.2. Lexical Distance

We use the standard Levenshtein distance
[10] as a simple measure of how different two
text strings are. This distance quantifies the
number of changes (character based) to
generate one text string from the other, for
example, how many changes are necessary to
introduce in the hypothesis H to obtain the
text T. For identical strings, the distance is 0.

Additionally using Levenshtein distance we
define a lexical distance, and the procedure is
as follows:

• Each string T and H are divided in a list

of tokens.
• The similarity between each pair of

tokens in T and H is performed
using the Levenshtein distance.

• The string similarity between two lists of
tokens is reduced to the problem of
“bipartite graph matching”, performed
using the Hungarian algorithm over this
bipartite graph. Then, we find the
assignment that maximizes the sum of
ratings of each token. Note that each
graph node is a token of the list.

Finally the final score is calculated by:

))(),((HLenghtTLenghtMax

TotalSim
finalscore =

Where:
 TotalSim is the sum of the similarities with
the optimal assignment.
 The maximum value of TotalSim is equal to
Max (Length (Text), Length (H)).
 Length (T) is the number of tokens in T.
 Length (H) is the number of tokens in H.

2.3. WordNet Distance

WordNet is used to calculate the semantic
similarity between a T and a H. The following
procedure is applied:

1. Tokenization
2. Stemming
3. PoS tagging
4. Word sense disambiguation using the

Lesk algorithm [8], based on Wordnet
definitions.

5. A semantic similarity matrix between
words in T and H is defined. Words are
used only in synonym and hyperonym
relationship. The Breadth First Search
algorithm is used over these tokens,
similarity is calculated using two factors:
length of the path, and orientation of the
path.

6. To obtain the final score, we use
matching average.

The semantic similarity between two words

(step 5) is computed as:

)()(

)),((
2),(

tDepthsDepth

tsLCSDepth
tsSim

+
×=

Where:
 s,t are source and target words that we are
comparing (s is in H and t is in T).
 Depth(s) is the shortest distance from the root
node to the current node.
 LCS(s,t): is the least common subsumer of s
and t.

The matching average (step 6) between two
sentences X and Y is calculated as follows:

)()(

),(
2

YLengthXLength

YXMatch
erageMatchingAv

+
×=

2.4. Longest Common Substring

Given two strings, T of length n and H of length
m, the Longest Common Sub-string (LCS)
method [9] will find the longest strings which
are substrings of both T and H. It is founded on
dynamic programming.

))(),(min(

)),((
),(

HLengthTLength

HTMaxComSubLength
HTlcs =

In all practical cases,
min(Length(T),Length(H)) will be equal
to Length(H) .

Before performing LCS, texts were tokenized
and stemmed.

3. Experimental Evaluation

Two runs were submitted to TAC’08 for
evaluation, one using the Named Entity filter
(Run 1) and the other not using it (Run 2).
Two baselines are provided to better assess the
performance of the system in both runs: a
uniform baseline that randomly assigns
entailment, contradiction or unknown to test
cases and a weighted baseline that randomly
assigns these three categories but following the
probabilities that are found in the gold standard
test set RTE 4, that is: 0.5 for entailment, 0.35
for unknown and 0.15 for contradiction.

For 2-way classification, the uniform random
baseline was 0.5, Run1 obtained 0.576 and
Run2 obtained 0.571, that is, the impact of the
Named Entity filter introduced a very slight
increase in the performance of the system. The
performance of both runs was close to the
baseline, although clearly above it.

For 3-way classification, the accuracy of the
uniform random baseline was 0.33, while the
accuracy of the weighted baseline was 0.39.
Both Run1 and Run2 performed significantly
better than the baselines: 0.538 and 0.546,
respectively. In this case, the Named Entity
filter introduced a slight decrease in
performance.
Table 1 shows the results of both runs, and
table 2 shows the results separated by run and
task.

 Acc – 2 way Acc – 3 way
RUN 2 0.571 0.546
RUN 1 0.576 0.538
Weighted
Random

0.50 0.390

Uniform
Random

0.50 0.333

Table 1: General 2 and 3ways classification
evaluation of the Sagan system.

 Accuracy
Task RUN 1 – 3 ways – With

Preprocessing NER
module

RUN 1 –2 ways - With
Preprocessing NER
module

RUN 2 – 3 ways –
Without NER
module

RUN 2 – 2 ways -
Without NER
module

IR 0,6333 0,6900 0,6467 0,6833
QA 0,4700 0,4850 0,4650 0,4750
SUM 0,5950 0,6250 0,6000 0,6200
IE 0,4500 0,4900 0,4633 0,4900

Table 2: Results of Sagan system separated by task and run.

4. Conclusion and Future Work

We presented at TAC 2008 our RTE system
that is based on a SVM classifier. We have
used Levenshtein distance, lexical similarity,
semantic similarity with Wordnet and Longest
Common Substring. Additionally, we have
assessed a small impact of a Named Entity rule-
based filter in the performance of the system.

In spite of the simplicity of the approach, we
have obtained a reasonable 0.576 of accuracy
for first run in 2-way task, and 0.546 of
accuracy for second run in 3-way task.

Future work is oriented to analyze and
enhance our Named Entity filter. We will also
experiment with different classifiers, such as
Bayesian Binary Regression (BBR), and will
use different training sets, possibly from
previous RTE and AVE. To enhance the system,
we will work with lexical and semantic
similarity, adding features and testing the
improvements they may yield.

References

[1] Alvaro Rodrigo, Anselmo Peñas, Jesus Herrera,

Felisa Verdejo. Experiments of UNED at the
Third Recognizing Textual Entailment
Challenge. Proceedings of the ACL-PASCAL
Workshop on Textual Entailment and
Paraphrasing. 2007.

[2] Prodromos Malakasiotis and Ion

Androutsopoulos. Learning Textual Entailment
using SVMs and String Similarity Measures.
ACL-PASCAL Workshop on Textual
Entailment and Paraphrasing, 45th Annual
Meeting of the Association for Computational
Linguistics (ACL 2007), Prague, Czech
Republic, 2007.

[3] Julie Beth Lovins. Development of a stemming

algorithm. Mechanical Translation and
Computational Linguistics, March 1968.

[4] Corinna Cortes and V. Vapnik, Support-Vector
Networks, Machine Learning, 20, 1995.

[5] Peñas A., Rodrigo A., Sama V., and Verdejo

F. Overview of the Answer Validation
Exercise 2006, In Working notes for the
Cross Language Evaluation Forum
Workshop (CLEF 2006), Alicante, España,
September 2006.

[6] Peñas A., Rodrigo A., Sama V., and Verdejo F.

Overview of the Answer Validation Exercise
2007, In Working notes for the Cross
Language Evaluation Forum Workshop
(CLEF 2007), Budapest, Hungary, September
2007.

[7] Castillo, Julio Javier. The Contribution of

FaMAF at QA@CLEF 2008. Answer
Validation Exercise. In Working notes for
the Cross Language Evaluation Forum
Workshop (CLEF 2008), September, Aarhus,
Denmark, September 2008.

[8] M. Lesk. Automatic sense disambiguation

using machine readable dictionaries: How to
tell a pine cone from a ice cream cone. In
Proceedings of SIGDOC ’86, 1986.

[9] Gusfield, Dan. Algorithms on Strings, Trees

and Sequences: Computer Science and
Computational Biology. Cambridge
University Press, year 1999.

[10]V. Levenshtein. Binary Codes Capable of

Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707,
February 1966.

