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Abstract. This   paper   describes   the   Sagan 
system in the context of the Fourth Pascal 
Recognizing Textual Entailment (RTE-4) 
Evaluation Challenge. 
Sagan applies a Support Vector Machine 
classifier to examples characterized by four 
features based on:   edit   distance,   distance   
in WordNet and Longest Common Substring 
between text and hypothesis. Additionally, we 
created a filter applying hand-crafted rules 
based on Named Entities to detect cases 
where no entailment was found. 
Despite this simple approach, results are 
promising. Applying the Named Entity filter 
yields a small improvement in precision. 
 
1. Introduction 

 
The  objective  of  the  Recognizing  

Textual Entailment  Challenge  task  is  to  
automatically determine whether or not a 
hypothesis(H) can be inferred from a text (T). 

 
This year, RTE-4 has posed two different 
tracks:  one involving the traditional two-way 
distinction between entailment and non-
entailment, and another where a three-way 
distinction was intended, between entailment, 
contradiction and unknown, when no 
information to accept or reject the hypothesis 
is provided in the text. 

 
The Sagan1 system applies a Support Vector 
Machine approach to the problem of 
recognizing textual entailment. Only four 
simple features are used to characterize the 
relationship between text and hypothesis for 
both training and test cases: 
 

 

                                                 
1
In honour  to Carl Sagan. 

 

 
- Levenshtein distance between T and H 

(over stems). 
- Lexical similarity (based on Levenshtein 

distance). 
- Semantic   distance   as   calculated   via 

WordNet. 
- Longest common substring. 
 
Additionally,  we  have  developed  a  filter 
that detects  cases  where  no  entailment  
relation  is found. This filter  applies  simple,  
hand-crafted rules  about  Named  Entities  
found  in  the  text and hypothesis. It has 
coverage of about 10% of the cases, and 
yields a small improvement in the 
performance of the system. 
 
Two runs were submitted to TAC’08: one 
with the  system  including  the  Named  
Entity  filter, and another without it, to assess 
the impact of the  filter  in  the  overall  
performance  of  the system. 
 
The rest of the paper is as follows. We 
describe the architecture of our system in 
Section 2.The results of experimental 
evaluation are discussed in Section 3.  Finally, 
we present some conclusions and lines for 
future work to improve our system’s 
performance. 
 
2. System description 
 
The Sagan system is based on a SVM 
approach to recognizing textual entailment for 
English. Two runs were submitted to the TAC 
2008 Challenge, differing only on the 
treatment of Named Entities. Figure 1 shows 
the general architecture of our system. 
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Figure 1. The Sagan System for Recognizing Textual Entailment for English. 

 
Our system is an extension of our preliminary 
system that we presented [7] in the Answer 
Validation Exercise (AVE) 2008, part of 
CLEF’08. 
 
Text-hypothesis pairs are characterized with 
four main features: the Levenshtein distance 
between each other, lexical distance based on 
Levenshtein, a semantic distance based on 

WordNet and their Longest Common 
Substring. Then, a Support Vector Machine is 
used to classify test pairs in three classes: 
entailment, contradiction or unknown. The 
SVM was trained with the tree-way corpus 
piloted in the RTE3 Pascal Challenge2. 
 

                                                 
2  http://nlp.stanford.edu/RTE3-pilot/ 



Text-hypothesis  pairs are stemmed with Porter’s 
stemmer3 [3] and PoS tagged with the tagger in 
the OpenNLP4 framework. 
 
Additionally, a NER-based filter was added to 
the   system.   This   performs   NER   in   text- 
hypothesis pairs and applies a series of hand- 
crafted   rules   to   discard   that   an   entailment 
relation is actually found in the pair. If that is 
the case, a specialized SVM2 is applied to 
classify   the   pair   between   contradiction and 
unknown. The two runs submitted to TAC for 
evaluation differed on their use for this filter: 
RUN1 did use the filter, RUN2 did not use it. 
 
2.1 NER filter 
 

Sagan   applies   a   filter   based   on   Named 
Entities. The purpose of the filter is to identify 
those pairs where the system is sure that no 
entailment   relation   occurs.   These   pairs   are 
classified by a specialized SVM2 as 
contradiction or unknown. 
 
This  module  applies  hand-crafted  rules  to  
the output  of  the  automated  NER  analysis  
within OpenNLP. NER recognition was 
enhanced by using an acronym database5. 
 
The  form  of  the  rules  is  as  follows:  for  
each type of NE (person,  organization,  
location, etc.), if there is a NE of this type 
occurring in H that does not occur in T, then the 
pair does not  convey  an  entailment  and  will  
therefore should  be  classified  as  either  
contradiction  or unknown. 
 
In a study on the RTE3 and RTE4 training 
corpus, these rules applied to approximately 10 
percent of the text-hypothesis pairs. The 
accuracy of the filter, as evaluated in TAC’08, is 
0.71, with 66 cases correctly classified out of 92 
where rules applied. 
An  error  analysis  revealed  that  misclassified 
cases  were  indeed  difficult  cases,  as  in  the 
following example (pair 807-RTE 4): 

Text: 
Large scores of Disney fans had hoped Roy 
would read the Disneyland Dedication 
Speech on the theme park's fiftieth 
birthday next week, which was originally 

                                                 
3 http://tartarus.org/~martin/PorterStemmer/ 

4 http://opennlp.sourceforge.net/ 
5Acronym database : 
http://badc.nerc.ac.uk/help/abbrevs.html 

read by Walt on the park's opening day, 
but Roy had already entered an annual 
sailing race from Los Angeles to 
Honolulu. 

Hypothesis: 
Disneyland theme park was built fifty 
years ago. 

 

We plan to extend this module so it can also 
be used   to   filter   cases   where   an   
entailment between text and hypothesis can 
be reliably identified via hand-crafted rules. 
 
2.2. Lexical Distance 
 
We use the standard Levenshtein distance 
[10] as a simple measure of how different two 
text strings are. This distance quantifies the 
number of  changes  (character  based)  to  
generate  one text  string  from  the  other,  for  
example,  how many changes are necessary to 
introduce in the hypothesis H to obtain the 
text T. For identical strings, the distance is 0. 
 
Additionally using Levenshtein distance we 
define a lexical distance, and the procedure is 
as follows: 
 
• Each string T and H are divided in a list 

of tokens. 
• The similarity between each pair of 

tokens in   T   and   H   is   performed   
using the Levenshtein distance. 

• The string similarity between two lists of 
tokens   is   reduced   to   the   problem of 
“bipartite graph matching”, performed 
using the Hungarian algorithm over this 
bipartite graph. Then, we find the 
assignment that maximizes the sum of 
ratings of each token. Note that each 
graph node is a token of the list. 

 
Finally the final score is calculated by: 
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Where: 
  TotalSim is the sum of the similarities with 
the optimal assignment. 
  The maximum value of TotalSim is equal to 
Max (Length (Text), Length (H)). 
 Length (T) is the number of tokens in T. 
 Length (H) is the number of tokens in H. 



2.3. WordNet Distance 
 

WordNet is used to calculate the semantic 
similarity between a T and a H. The following 
procedure is applied: 

1. Tokenization 
2.   Stemming 
3. PoS tagging 
4. Word sense disambiguation using the 

Lesk algorithm [8], based on Wordnet 
definitions. 

5. A semantic similarity matrix between 
words in T and H is defined. Words are 
used only in synonym and hyperonym 
relationship. The Breadth First Search 
algorithm is used over these tokens, 
similarity is calculated using two factors: 
length of the path, and orientation of the 
path. 

6. To obtain the final score, we use 
matching average. 

 
The semantic similarity between two words 

(step 5) is computed as: 
 

)()(

)),((
2),(

tDepthsDepth

tsLCSDepth
tsSim

+
×=  

Where: 
    s,t are source and target words that we are 
comparing (s is in H and t is in T). 
   Depth(s) is the shortest distance from the root 
node to the current node. 
    LCS(s,t): is the least common subsumer of s 
and t. 
 

The matching average (step 6) between two 
sentences X and Y is calculated as follows: 
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2.4. Longest Common Substring 
 

Given two strings, T of length n and H of length 
m, the Longest Common Sub-string (LCS) 
method [9] will find the longest strings which 
are substrings of both T and H. It is founded on 
dynamic programming. 
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In all practical cases, 
min(Length(T),Length(H)) will be equal 
to Length(H) . 
 
Before performing LCS, texts were tokenized 
and stemmed. 
 
3. Experimental Evaluation 
 
Two runs were submitted to TAC’08 for 
evaluation, one using the Named Entity filter 
(Run 1) and the other not using it (Run 2). 
Two baselines are provided to better assess the 
performance of the system in both runs: a 
uniform baseline that randomly assigns 
entailment, contradiction or unknown to test 
cases and a weighted baseline that randomly 
assigns these three categories but following the 
probabilities that are found in the gold standard 
test set RTE 4, that is: 0.5 for entailment, 0.35 
for unknown and 0.15 for contradiction. 
 
For 2-way classification, the uniform random 
baseline was 0.5, Run1 obtained 0.576 and 
Run2 obtained 0.571, that is, the impact of the 
Named Entity filter introduced a very slight 
increase in the performance of the system. The 
performance of both runs was close to the 
baseline, although clearly above it.  
 
For 3-way classification, the accuracy of the 
uniform random baseline was 0.33, while the 
accuracy of the weighted baseline was 0.39. 
Both Run1 and Run2 performed significantly 
better than the baselines: 0.538 and 0.546, 
respectively. In this case, the Named Entity 
filter introduced a slight decrease in 
performance. 
Table 1 shows the results of both runs, and 
table 2 shows the results separated by run and 
task. 
 
 Acc – 2 way Acc – 3 way 
RUN 2 0.571 0.546 
RUN 1 0.576 0.538 
Weighted 
Random 

0.50 0.390 

Uniform 
Random 

0.50 0.333 

Table 1: General 2 and 3ways classification 
evaluation of the Sagan system. 

 
 



 
 Accuracy 
Task RUN 1 – 3 ways – With 

Preprocessing NER 
module 

RUN 1 –2 ways - With 
Preprocessing NER 
module 

RUN 2 – 3 ways – 
Without NER 
module 

RUN 2 – 2 ways - 
Without NER 
module 

IR 0,6333 0,6900 0,6467 0,6833 
QA 0,4700  0,4850 0,4650 0,4750 
SUM 0,5950 0,6250 0,6000 0,6200 
IE 0,4500 0,4900 0,4633 0,4900 

Table 2: Results of Sagan system separated by task and run.
 
 
4. Conclusion and Future Work 

 

 
We  presented  at  TAC  2008  our  RTE system 
that  is  based  on  a  SVM  classifier.  We have 
used Levenshtein distance, lexical similarity, 
semantic similarity with Wordnet and Longest 
Common Substring.  Additionally,   we   have 
assessed a small impact of a Named Entity rule-
based filter in the performance of the system. 

In spite of the simplicity of the approach, we   
have obtained a reasonable 0.576 of accuracy 
for first run in 2-way task, and 0.546 of 
accuracy for second run in 3-way task. 

Future work is oriented to analyze and 
enhance our Named Entity filter. We will also 
experiment with different classifiers, such as 
Bayesian Binary Regression (BBR), and will 
use different training sets, possibly from 
previous RTE and AVE. To enhance the system, 
we will work with lexical and semantic 
similarity, adding features and testing the 
improvements they may yield. 
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