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Abstract

The Monte Carlo Pseudo Inference Engine for Text

(MCPIET) addresses the RTE problem within a new

theoretic framework for robust inference and logical

pattern processing based on integrated deep and shal-

low semantics.

In this report we outline, in some detail, this new theo-

retic framework, and we will use it to shed some light

on the informativity and robustness characteristics for

the extreme cases of deep and shallow processing. Un-

surprisingly, it will turn out that there is a tradeoff be-

tween informativity and robustness.

We will be able to characterize an important new no-

tion of a degree of validity, and provide some evidence

to suggest that this concept plays a crucial role in the

robustness of shallow inference. At the same time our

framework still supports informationally rich semantic

representations and background theories, which play

the central role in the informativity of deep inference.

Within our new theory we can then pose, from a com-

pletely new perspective, the problem of deep/shallow

integration, and also propose a solution to it, which we

will call Monte Carlo Semantics.

1 Overview

Informativity is the ability of a system to take into account

all available relevant information.

Robustness is the ability of a system to proceed on reason-

able assumptions, where relevant information is missing.

Many current techniques for RTE can roughly be situated

anywhere along a spectrum between deep and shallow tech-

niques, and suffer from a tradeoff between informativity and

robustness.

Deep techniques, like the NUTCRACKER1 RTE-system (Bos

and Markert, 2005; Bos and Markert, 2006), are informative

but not very robust. Shallow techniques, like a bag-of-word

overlap measure, are robust but not very informative.

1
NUTCRACKER attempts to translate text into logic, and use theorem

provers to reason about text within a logic and a given theory of background
knowledge.

The great majority of systems are perhaps to be regarded

as intermediate-level techniques, situated somewhere between

deep and shallow. For example the LOGINF system (MacCart-

ney and Manning, 2007; Chambers et al., 2007; MacCartney

and Manning, 2008), works directly off the statistical Stanford

parser. Such intermediate-level systems provide intermediate

levels of both informativity and robustness.

Deep/Shallow integration tries to escape the informativ-

ity/robustness tradeoff altogether, by combining into a single

technique the informativity of deep methods and the robust-

ness of shallow methods.

Prior work by (Bos and Markert, 2005; Bos and Markert,

2006) suggests that this cannot be achieved by simply running

deep and shallow systems independently and expecting a ma-

chine learner to determine which of the two is right in any

given situation.

Rather, we believe, that this integration can best be

achieved, by first formulating a unified theory of textual in-

ference. Properties of informativity and robustness must be

understood within such a theory, and current deep and shal-

low techniques should turn out to be expressible within such a

unified theoretic framework. Deep/shallow integration might

then be achieved by formulating a single technique within the

unified theory in all its generality.

In the rest of this paper, we will outline the core of such

a unified theoretic framework, and we will report on our first

steps towards developing such an integrated single technique.

Our point of departure for this theoretic framework is tradi-

tional logic. Yet, within our essentially logical approach, we

advocate an important paradigm shift. Where logic is tradi-

tionally concerned with whether or not a given candidate en-

tailment “ϕ→ ψ” is valid, MCPIET uses a new Monte Carlo

technique to estimate, in a probabilistic sense, the degree of

validity for such a formula. It is this more flexible and relative

notion of a degree of validity which lends important robust-

ness characteristics to the logical approach. This is the core of

our contribution, and the rest of this paper will give an outline

of how it is defined, and why it is useful to RTE.

1.1 Deep, Shallow, and their Limitations

To illustrate the problem more concretely, let us consider some

of the examples in figure 1. For now, let � stand for valid, ⊥



(1) predicate/argument structures

(a) � >
The cat chased the dog.

→ The dog chased the cat.

(2) monotonicity properties, upwards entailing

(a)
Some (grey X) are Y

→ Some X are Y
≥ �

(b) � >
Some X are Y

→ Some (grey X) are Y

(c)
Some X are Y

→ Some (grey X) are Y
>

Some X are Y

→ Some (clean (grey X)) are Y

(3) monotonicity properties, downwards entailing

(a)
All X are Y

→ All (grey X) are Y
≥ �

(b) � >
All (grey X) are Y

→ All X are Y

(c)
All (grey X) are Y

→ All X are Y
>

All (clean (grey X)) are Y

→ All X are Y

(4) quantifiers and negations

(a) � >
Some X are Y

→ All X are Y

(b) ⊥ ≥ Some X are Y

→ No X are Y

(c) ⊥ ≥ All X are Y

→ Some X are not Y

(6) sentential connectives on clauses)

(a)
S is a man and every man is mortal

→ S is mortal
≥ �

(7) gradual standards of proof (tautology > contingency > contradiction)

(a)
Socrates is a man

→ Socrates is a man
>

Socrates is a man

→ Socrates is mortal

(b)
Socrates is a man

→ Socrates is mortal
>

Socrates is a man

→ Socrates is not a man

Figure 1: example inferences



for unsatisfiable. So χ ≥ � means that the candidate entail-

ment χ is valid (ENTAILMENT), and ⊥≥ χ means that χ is

unsatisfiable (CONTRADICTION). More generally, ϕ > ψ
means that ϕ is more valid than ψ. We will have much more

to say about what exactly that means.

In example (1.a.), information about the predicate-argument

structures of the texts is available. A shallow technique like

bag-of-words overlap might miss out on this information and

incorrectly decide that the entailment is true. Intermediate-

level or deep approaches would likely get this example right.

Hence the shallow method, in this example, fails on informa-

tivity, where deep methods would succeed.

Next, consider examples (2.c.) and (3.c.), substituting “ele-

phants” forX . All elephants are grey, but not all elephants are

clean. The antecedent fails to mention this, and it might well

be the case that the system does not have access to this kind

of information, in the face of an incomplete theory of real-

world knowledge and common sense. Hence, we are missing

relevant information. A deep technique would find that nei-

ther is the left-hand side candidate entailment provable nor is

the right-hand side entailment. It would then decide that they

are equally to be considered non-valid. But this is incorrect.

Given that all elephants are grey, if some elephants are intelli-

gent, then some grey elephants are intelligent, yet it is not true

that some clean grey elephants are intelligent. Intermediate-

level approaches or shallow approaches would easily get this

distinction right. Each adjective illegally inserted in this way

would contribute an additional penalty score to the entailment.

Even if we don’t know anything about elephants and under

what conditions they can be considered clean or grey, it is still

reasonable to assume that the insertion of only one adjective

into the wrong slot of a quantifier is preferable to the illegal

insertion of two such adjectives. – We could proceed on rea-

sonable assumptions where we are missing relevant informa-

tion, yet a traditional theorem prover will not do that. Hence,

the deep method, in this example, fails on robustness, where

shallow methods would succeed.

Intermediate-level systems comparing the symbolic struc-

tures of dependency parses seem to be both robust and infor-

mative, for both of these examples. Yet they would likely fail

on other examples such as (2.a.), (3.a.), and (4), requiring a

proper treatment of quantification. Examples such as (6) go

even further, and require a logic to build on these quantified

structures.

The LOGINF system (MacCartney and Manning, 2007;

Chambers et al., 2007; MacCartney and Manning, 2008), for

example, is an attempt to engineer theoretical properties such

as the ones exemplified in figure 1 into an intermediate-level

system. While LOGINF does have its limitations, we should,

perhaps, point out that our work provides a richer theory for

this kind of inference, while theirs currently works better in

practice. In fact, we believe that our theory and their system

complement each other quite well.

Concerning MCPIET, we can now say, quite simply, that

our goal is to get all of the theoretical properties right that are

exemplified in figure 1.

1.2 Degree of Validity

We have already mentioned that it is our new notion of a de-

gree of validity, which lends robustness characteristics like

(2.c.) and (3.c.) to our theory. To see what exactly is meant

by a degree of validity here, and how it relates to the problem

of missing information, let us consider example (7) about the

following three propositions:

ϕ : “Socrates is a man”,
¬ϕ : “Socrates is not a man”,
ψ : “Socrates is mortal”.

We are given some information, represented logically in a

theory T . It is simply a set of formulae which we can assume

to be valid a priori. If, on the basis of such an assumption, we

must conclude that some formula χ is also valid, we say that

χ is valid within theory T , written T |= χ.

The well-known deduction theorem now defines when ex-

actly a candidate entailment of the form “ϕ → ψ” is valid. It

states that T |= ϕ→ ψ whenever T ∪ {ϕ} |= ψ. In words: If

we assume that the antecedent ϕ is valid, on top of all the for-

mulae already in T , and we must conclude that ψ is also valid,

then we also know that the candidate entailment “ϕ → ψ” is

valid in T .

When evaluating a given candidate entailment, there are tra-

ditionally four cases to distinguish:

(i) T ∪ {ϕ} |= ψ and T ∪ {ϕ} �|= ¬ψ;

(ii) T ∪ {ϕ} �|= ψ and T ∪ {ϕ} |= ¬ψ;

(iii) T ∪ {ϕ} |= ψ and T ∪ {ϕ} |= ¬ψ;

(iv) T ∪ {ϕ} �|= ψ and T ∪ {ϕ} �|= ¬ψ.

Assuming the empty theory T = ∅, the first candidate en-

tailment in example (7), which is “ϕ → ϕ”, falls under case

(i). The third candidate entailment, which is “ϕ→ ¬ϕ”, falls

under case (ii).

It is also quite common to require that a given theory T ∪
{ϕ} be consistent, i.e. that case (iii) does not occur.

But what about the second candidate entailment? Here we

have “ϕ→ ψ”, which would have to fall under case (iv). Here

we are dealing with an incomplete theory.

In order to make the theory T ∪ {ϕ} complete, we could,

for example, add

χ : “Every man is mortal”

to T . We would then have {χ,ϕ} |= ψ and {χ,ϕ} �|= ¬ψ,

so the candidate entailment would fall under case (i). Or, we

could have added χ′, “No man is mortal”, to make it fall under

case (ii).



This is the major problem with NUTCRACKER, the major

weakness with applying traditional theorem provers for clas-

sical logic to NLP tasks such as RTE: Theories are not, in

practice, complete in that sense. They have to contain real-

world knowledge and common sense.

Some knowledge of this kind is available. For example

meaning postulates of the form “∀x : cat(x) → animal(x)”
could be derived from the WordNet noun hyponymy hierar-

chy, or “∀x, y, z : buy-from(x, y, z) ≡ sell-to(z, y, x)” could

be derived from a role-labelled verb lexicon. Knowledge of

more general kind might be automatically acquired from text.

Given very careful knowledge engineering, one might even be

able to ensure that the resulting theories are consistent. But

assuming them to be complete in the above sense would be

unrealistic at present.

In our opinion, such a completeness assumption, which

would hold that case (iv) does not occur, is not only wrong,

but, quite to the contrary, we would expect case (iv) to be in-

deed the most frequent one, with cases (i) and (ii) occuring

only as limit cases of theoretical interest.

Thus, instead of talking about the bivalent dichotomy be-

tween validity and non-validity, we talk about what we call

degree of validity. We write T |=t χ iff χ is valid in T to a

degree t from the rational-valued unit interval [0, 1].

For example, χ could be valid in T , to a degree of 0.7, writ-

ten T |=0.7 χ.

We now distinguish the following cases:

(i) T ∪ {ϕ} |=1.0 ψ and T ∪ {ϕ} |=0.0 ¬ψ;

(ii) T ∪ {ϕ} |=0.0 ψ and T ∪ {ϕ} |=1.0 ¬ψ;

(iii) T ∪ {ϕ} |=t ψ and T ∪ {ϕ} |=t′ ¬ψ, for 0 < t, t′ < 1.0.

Here, everything is arranged along a continuum of degrees

of validity. One can easily see, that this distinction is more

fine-grained than the traditional dichotomy. Case (i) is simply

the case of traditional validity, case (ii) is the case of tradi-

tional unsatisfiability, but in addition we have a new case (iii).

In this case (iii), we can now compare two given candidate

entailments for their degree of validity, let us call them candi-

date 1, T ∪{ϕ1} |=t1 ψ1, and candidate 2, T ∪{ϕ2} |=t2 ψ2.

It now may well be the case that we are missing knowledge,

so that neither of them is strictly provable, in a proof-theoretic

sense, that neither of them is a tautology, that neither of them

is traditionally valid. But we can still determine, on the basis

of the information we do have in T , which of them we would

rather prove than the other, which of them is closer to being a

tautology, which of them is valid to a higher degree. If t1 > t2,

we prefer candidate 1, if t2 > t1, we prefer candidate 2.

Remarks
In section 3, we will explain, in greater detail, how we arrive

at an actual number for the degree of validity of a given can-

didate entailment. For now, it is only important to note that,

once we can compare candidate entailments on the basis of a

degree of validity, we can, for example, sort the 800 candidate

entailments in a given RTE dataset. Knowing that we expect

50% of them to be valid, we can quite naturally determine a

cutoff to characterize when exactly a candidate entailment is

good enough to be considered valid.

We can still distinguish the case of strict logical validity,

so in section 3.1, we can set up traditional theorem proving

as a special case of inference under our theory, showing that

we can potentially gain the same level of informativity. Yet,

we will generally find the notion of strict logical validity too

restrictive a criterion to be useful in practice.

The more lenient criterion of using degrees of validity im-

poses a more useful structure on the truth classes in the case of

a theory which would traditionally be considered incomplete,

and thereby helps us to deal robustly with missing informa-

tion. This allows us, in section 3.2, to set up bag-of-words

overlap comparisons as another special case of textual infer-

ence, showing that we can potentially gain the same level of

robustness.

Finally, in section 4, we will turn to the general case, and

suggest a new technique to compute degrees of validity in this

general case. We are then in a position to explain, what ex-

actly was meant by the hedge potentially in the above two

paragraphs in sections 4 and 5.

2 Logical Preliminaries

From external modules dealing with syntax and semantic com-

position, we expect a translation of the pieces of text T and H
into formulae ϕ′ and ψ′ of a first-order predicate language.

We then translate these into propositional logic, assuming that

quantifications range over a finite domain of two individu-

als. For example “∀x : P(x) → Q(x)” would translate to

“(p1 → q1) ∧ (p2 → q2)”, and “∃x : P(x) ∧ Q(x)” would

translate to “(p1 ∧ q1) ∨ (p2 ∧ q2)”.

This leaves the problem of determining the degree of valid-

ity for the candidate entailment “ϕ → ψ”, now expressed as

a formula in propositional logic. We approach this problem

model-theoretically, i.e. by a process of considering its truth

values under different conditions.

Definition 1. (truth values)

V2
def= {0, 1}

Vℵ0

def= {v | v ∈ Q ∧ 0 ≤ v ≤ 1}.
So V2 is the set of two truth values used in classical

logic. However, we will also need to make use of ℵ0-valued

Łukasiewicz logic1 (Łukasiewicz and Tarski, 1930), which

will be defined in greater detail later. For now, simply note

that where classical logic assumes only the two truth values 0
and 1, a multi-valued logic could permit truth values like 0.7.

Definition 2. (propositional signature) We call Λ a propo-
sitional signature, iff Λ is a finite sequence of propositional

symbols Λ = 〈p1,p2, . . . ,pN 〉 for some N .



Definition 3. (basic propositional syntax) The following re-

cursive rules define by structured induction the notion of a ba-
sic propositional formula over V and Λ. For all v,p,ϕ, and

ψ:

• if v ∈ V, the value constant “v” is a formula;

• if p ∈ Λ, the proposition “p” is a formula;

• if ϕ and ψ are formulae, then so is the implication “(ϕ→
ψ)”;

• nothing else is a formula.

Definition 4. (extended propositional syntax) The following

recursive rules define by structured induction the notion of an

extended propositional formula over V and Λ. For all ϕ and

ψ:

• If ϕ is a basic propositional formula over V and Λ, it is

also an extended formula;

• If ϕ is a formula, then so is the negation “¬ϕ”;

• If ϕ and ψ are formulae, then so are the

– strong conjunction “(ϕ&ψ)”,

– strong disjunction “(ϕ∨ψ)”,

– weak conjunction “(ϕ ∧ ψ)”,

– weak disjunction “(ϕ ∨ ψ)”,

– equivalence “(ϕ ≡ ψ)”, and

– antivalence “(ϕ �≡ ψ)”;

• Nothing else is a formula.

Definition 5. 2 For any extended formula χ, we call χ′ its

corresponding basic formula, iff χ′ results from χ by struc-

tured induction on the following transformation rules. For any

formulae ϕ,ψ:

“¬ϕ” � “ϕ→ 0”,

“ϕ&ψ” � “¬(ϕ→ ¬ψ)”,
“ϕ∨ψ” � “¬ϕ→ ψ”,

“ϕ ∧ ψ” � “ϕ& (ϕ→ ψ)”,
“ϕ ∨ ψ” � “(ϕ→ ψ) → ψ”,

“ϕ ≡ ψ” � “(ϕ→ ψ) & (ψ → ϕ)”,
“ϕ �≡ ψ” � “¬(ϕ ≡ ψ)”.

This defines the language of propositional logic. Its atomic

symbols include a set of N propositional symbols Λ =
〈p1,p2, . . . ,pN 〉. These have truth values that are in some

sense variable. Furthermore, an atomic symbol could be a

value constant like 0, 1, or 0.7, which would always have the

truth values 0.0, 1.0, and 0.7, respectively.

Formulae are built out of such atomic symbols by combin-

ing them using operators like “→”, “∧”, “¬”, etc. We take the

implication operator “→” and the value constant 0 as basic, in

some sense, and define all other operators using only implica-

tions and the constant 0. Thus we will, from here on, always

assume w.l.o.g. that formulae are in this basic syntax.

Now everything that remains to be done is to assign truth

values to atomic symbols and a truth function to the operator

“→”, and we have defined the truth value of any formula of

propositional logic.

Definition 6. (valuation) We call w an N -dimensional valu-
ation iff w is a vector

�w = [ w1 w2 . . . wN ]T.

We sayw is bivalent, iff each wi ∈ V2, and thatw is ℵ0-valued

otherwise, provided each wi ∈ Vℵ0 . We denote the set of all

bivalent, N -dimensional valuations by W2,N and the set of all

ℵ0-valued, N -dimensional valuations by Wℵ0,N .

Definition 7. (classical propositional semantic) Let Λ =
〈p1, p2, . . . , pN 〉 be a propositional signature, and let w be a

bivalent, N -dimensional valuation. Now, for any formula χ,

the truth value of χ over w and Λ, denoted ‖χ‖Λ
w, is defined

by structured induction as follows. For any formulae ϕ,ψ:

‖ 0 ‖Λ
w

def= 0; ‖ 1 ‖Λ
w

def= 1;

‖pi ‖Λ
w

def= wi, for each i;

‖ϕ→ ψ‖Λ
w

def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if ‖ϕ‖Λ
w = 1 and ‖ψ‖Λ

w = 1,
0 if ‖ϕ‖Λ

w = 1 and ‖ψ‖Λ
w = 0,

1 if ‖ϕ‖Λ
w = 0 and ‖ψ‖Λ

w = 1,
1 if ‖ϕ‖Λ

w = 0 and ‖ψ‖Λ
w = 0.

Definition 8. (Łukasiewicz propositional semantic1) Let Λ =
〈p1, p2, . . . , pN 〉 be a propositional signature, and let w be a

valuation. Now, for any χ, the truth value of χ over w and Λ,

denoted ‖χ‖Λ
w, is defined by structured induction as follows.

For any formulae ϕ,ψ:

‖ v ‖Λ
w

def= v, for any v ∈ VM ;

‖pi ‖Λ
w

def= wi, for each i;

‖ϕ→ ψ‖Λ
w

def= min(1, 1 − ‖ϕ‖Λ
w + ‖ψ‖Λ

w).

We have already defined that truth value constants always

have particular truth values, so we would have ‖0.7‖ = 0.7
regardless of the choice of a signature or valuation.

However, propositional symbols need to have their truth

values assigned using a valuation. We might have Λ =
〈p1,p2〉. Then a valuation might be �w = [ 0.7 0.3 ]T. This

would assign to the propositional symbols the truth values

‖p1‖Λ
w = 0.7 and ‖p2‖Λ

w = 0.3.

If we use the implication operator to form a compound for-

mula, then the truth value of that is determined from the truth

values of the subformulae. For example ‖p1 → p2‖Λ
w =

min(1, 1 − 0.7 + 0.3) = 0.6.



Corollary 1. Classical semantic (definition 7) is a special
case of Łukasiewicz semantic (definition 8).

This is straightforward, by substituting truth values 0 and 1
into the formula for the implication in definition 8. The truth

values assigned to the implication by this formula will always

coincide with the truth values assigned by the classical truth

table.

Łukasiewicz logic is also complete w.r.t. modus ponens and

the following axioms:

ϕ→ (ψ→ ϕ);
(ϕ→ ψ) → (

(ψ→ χ) → (ϕ→ χ)
)
;

(¬ϕ→ ¬ψ) → (ψ→ ϕ);
(ψ ∨ϕ) → (ϕ ∨ψ);

Completeness proofs for this can be found throughout the rele-

vant literature on multi-valued logic, (Rose and Rosser, 1958)

being the earliest published proof of this kind3.

From this proof-theoretic perspective, it is easy to see that,

since all of these axioms are theorems of classical logic and

since modus ponens is an inference rule in classical logic,

Łukasiewicz logic will never prove a theorem not proved by

classical logic. So, both from a proof-theoretic and model-

theoretic perspective, it is clear that ℵ0-valued Łukasiewicz

logic is a generalization of bivalent logic.

Summary

It is perhaps important to stress, that we have had little to say

in this section which is substantially new. We have simply in-

troduced, for the convenience of the reader and for clarity of

notation and terminology, some very basic concepts of logic.

First, we mentioned a series of reductions of more complex

logical notations to simpler ones. We convert text into predi-

cate logic, predicate logic into propositional logic, and propo-

sitional logic into a basic syntax involving only implications

and the value constant 0.

In order to define the truth value of any formula, it is then

sufficient to provide a truth function for this implication op-

erator. Traditional logic uses the two truth values {0, 1} and

the well-known truth table for implication. We also introduced

Łukasiewicz logic as a generalization of this, which uses in-

finitely many truth values in the rational unit interval [0, 1]
and defines the implication operator as follows: ‖ϕ → ψ‖ =
min(1, 1 − ‖ϕ‖ + ‖ψ‖).

3 Robust Informative Semantics

In section 1, we have already mentioned that our notion of a

degree of validity is perhaps the core of our contribution. In

section 1.2 we outlined some initial intuitions on this notion,

and its function in defining a logic for robust natural language

semantics. Now, with all the necessary logical preliminaries

in place from section 2, we can move on to give a definition.

Definition 9. (degree of validity) Let Λ = 〈p1, p2, . . . , pN 〉
be a propositional signature, and let W be a set of N -

dimensional valuations. The degree of validity of a formula
χ over W and Λ, denoted �χ�ΛW is defined as follows:

�χ�ΛW =
1

|W|
∑
w∈W

‖χ‖Λ
w.

In a first step, let us restrict attention to the case of consid-

ering all bivalent valuations, i.e. W = W|Λ|,2. This definition

can then easily be understood both logically and probabilisti-

cally.

For its logical interpretation, first recall the definitions of

the classical notions of validity and satisfiability within such a

model-theoretic framework. Here, χ is considered classically

valid, iff the truth value ‖χ‖w equals 1 in all valuations w.

We could also say, χ is classically valid iff the minimum truth

value ‖χ‖w across all w is 1. Similarly, χ is considered clas-

sically satisfiable, iff ‖χ‖w equals 1 in some valuation w, i.e.

iff the maximum truth value ‖χ‖w across all w is 1.

We have pointed out, before, that this traditional notion of

validity is in practice too strong, and this notion of satisfiabil-

ity too weak. A given candidate entailment will, in practice,

usually turn out to be satisfiable, yet not valid. This is why we

use a statistic between the minimum and maximum. We use

an arithmetic mean.

Given a value for �χ�, we then know that χ is classically

valid iff �χ� = 1.0, and that χ is classically satisfiable iff

�χ� > 0.0. But we now also have a continuum of degrees of

validity between the two extreme cases 1.0 and 0.0.

For its probabilistic interpretation, one can think of ‖χ‖ as a

random variable indicating the truth value expected for ‖χ‖w

when a valuation w is chosen from at random. The value of

�χ� is then quite simply the probability that the truth value of

χ, for such a valuation w chosen at random, is 1, assuming for

this choice a uniform distribution.

From the point of view of traditional objectivist probability,

the question arises: Why should this distribution be uniform,

rather than anything else? In response to this question, one

might imagine an assumption of maximum entropy, i.e. max-

imum uncertainty, regarding this choice of a valuation.

From the point of view of subjectivist probability

(De Finetti, 1974), which suits our theory much better, this

question does not arise. The question, then, is not “Why as-

sume a uniform distribution?”, but rather “Why not?” – in the

absence of any information contradicting such an assumption.

Another very interesting property of De Finetti’s theory

of probability is that it readily deals with the generalization

where we move from the bivalent case W = WN,2 to the more

general case W = WN,ℵ0 .

This does not have an interpretation in a frequentist view

of probability, but the generalization is perfectly valid within

subjective probability. The random variable, or, in De Finetti’s

terms, random quantity, ‖χ‖ now has infinitely many possi-

ble values in [0, 1], rather than only the two possible values



{0, 1} assumed by traditional probabilistic events. The value

�χ� is in De Finetti’s framework now called a prevision of the

random quantity ‖χ‖, but can still be defined by the above

expression, and shares the relevant properties of probability.

To define this in greater detail, and to lend some concrete-

ness to the above definition, let us consider traditional theorem

proving and bag-of-words inference as special cases within

this theory.

3.1 Special Case 1: Theorem Proving
Throughout our presentation, we have emphasized the fact that

the degree of validity is a more fine-grained distinction of va-

lidity classes that generalizes over the traditional dichotomy

between validity and non-validity.

We then only have to remark that, if we operate under the

same assumptions as traditional deep inference, the same re-

sults will be achieved. More concretely, let us assume only

two truth values, fully informative logical formulae, as well as

complete and consistent theories of background knowledge.

We then have �χ�W = 1.0 iff a traditonial theorm prover

would prove χ.

We would expect this strategy, to work quite well for ex-

amples (1), (2.a), (2.b), (3.a), (3.b), (4) and (6), which require

a great deal of informativity. Examples (2.c), (3.c), and (7),

on the other hand, which would yield robustness, cannot be

addressed with a traditional theorem prover.

3.2 Special Case 2: Bag-of-Words Inference
When we have a bag-of-words level of analysis for two pieces

of text T and H , we can think of them in a logical representa-

tion as conjunctions, in which the atomic conjuncts are simply

words, e.g.

(T) socrates ∧ is ∧ a ∧ man

→ (H) so ∧ every ∧ man ∧ is ∧ socrates
.

Let’s call this antecedent ϕ and the consequent ψ, and try to

determine the degree of validity �ϕ → ψ� for the bivalent

case. This is possible using only some basic combinatorics.

Let Λϕ be the set of propositional symbols, in this case

words, appearing only in the antecedent, not in the conse-

quent; Λϕ = {a}. Similarly, let Λψ be the set of proposi-

tional symbols appearing only in the consequent, not in the

antecedent; Λψ = {so, every}. Finally, let Λω be the over-

lap, i.e. the set of propositional symbols appearing both in the

antecedent and the consequent; Λω = {socrates, is,man}.

There are N = |Λϕ ∪ Λψ ∪ Λω| = 6 atomic propositions

altogether. We are dealing with the bivalent case, so there

are 2N = 26 = 64 possible valuations for this signature al-

together. There are 2|Λϕ| = 21 = 2 ways of assigning truth

values to the antecedent, 2|Λψ| = 22 = 4 ways of assigning

truth values to the consequent, and 2|Λω| = 23 = 8 ways of

assigning truth values to the overlap.

In order to make the implication “ϕ → ψ” false, we

must make the antecedent ϕ true, and the consequent ψ false.

Clearly, only one out of the 2|Λϕ∪Λω| = 21 ∗ 23 = 16 ways of

assigning truth values to the antecedent makes the antecedent

true. This is the case in which we assign the value 1 to all of

the four conjuncts, thereby making the conjunction true. Out

of the four conjuncts appearing in the consequent, this leaves

two unassigned – we have already assigned truth values to the

three conjuncts in the overlap set. There are 22 ways of as-

signing such truth values to the consequent, and only one of

them makes the conjunction true, so the other 22 − 1 = 3 all

make the consequent false.

Therefore, out of the 26 possible valuations only 1 ∗ 3 = 3
valuations make the implication false. If we count zero for

each of these three valuations, count one for all of the others,

and divide the result by 26, we arrive at the value �ϕ→ ψ� =
64−3
64 = 0.95312.

More generally,

�ϕ→ ψ� = 1 − 2|Λψ | − 1
2|Λψ |+|Λφ|+|Λω | .

So we can express the degree of validity for a given candi-

date entailment in a closed form depending only on the forms

of the words and how they match up against each other, assum-

ing we encode a given piece of text simply as a conjunction in

bivalent logic. Note that this closed form shares the same or-

dering properties as Dice’s coefficient, the Jaccard index, or

any other set overlap metric. These properties are as follows.

(1) It acts as an overlap measure: Given ϕ or ψ, the ordering

imposed by �ϕ → ψ� on all ψ or ϕ, respectively, of the same

length is the same as that imposed by |Λω|. (2) It performs

length normalization: Given ϕ or ψ, the ordering imposed by

�ϕ→ ψ� on all ψ or ϕ, respectively, is inverse to the length of

such ψ or ϕ.

This strategy, would work well for examples (2.b), (2.c),

(3.b.), (3.c), (4.a.), and (7), as these can easily be addressed

using robust strategies. Examples (1), (2.a), (3.a), (4.b.), (4.c),

and (6), on the other hand, require greater informativity, and

cannot be addressed in this way.

Conclusions

Consider the following partition of buzzwords commonly used

in NLP:

(a) shallow processing, robustness, probability, automatic

acquisition, machine learning;

(b) deep processing, semantics, logic, knowledge engineer-

ing, artificial intelligence;

Furthermore, consider the following two statements overheard

between NLP researchers in a pub:

(a) “. . . you must be very naive to believe you can reason

about language in logic. Even if you could, you’re miss-

ing the knowledge to prove things. Even if you had that,

logic would still be too computationally complex.”



(b) “. . . you must be rather ignorant to believe a machine

learner will get you anywhere, if all you do is to feed it

bags of words. It’s just wrong from the point of view of

logic, epistemology, linguistics, and whatever other the-

ory you should care about.”

Any attempt to describe, or put more meaningful labels on,

these standpoints is quite unnecessary. Any member of the

NLP community will be intimately familiar with the deeply

entrenched paradigm which separates the field into (a) and (b).

To anyone subscribing to viewpoint (a), the overly restric-

tive consistency and completeness assumptions, as well as the

theoretical limitations of the traditional notion of validity will

seem like a bad idea. We agree. Probability theory can do

better than that.

To anyone subscribing to viewpoint (b), the formula

“every ∧ man ∧ is ∧ socrates” will seem like a particularly

bad idea, indeed. Again, we agree. Existing tools for seman-

tic composition can do better than that. – But the following

conclusions will perhaps come as more of a surprise.

In response to viewpoint (a), we can now say that knowl-

edge and computational complexity are issues that are com-

pletely separate from the question of whether or not logic is a

useful theoretic framework for approaching textual inference.

It is all a question of how one represents text in logic. In the

case of a bag-of-words representation, all the knowledge that

is required is in the identities of the logical variables, and com-

putational complexity is as little as that of evaluating a simple

arithmetic expression.

In response to viewpoint (b), it is perhaps time to try ac-

counting for the practical success of seemingly naive ap-

proaches like bag-of-words inference. Here, the robustness

properties associated with the gradual notion of validity em-

ployed may be a key element.

In conclusion, we would like to emphasize, that our ap-

proach subscribes neither to viewpoint (a) nor to viewpoint

(b) exclusively. Rather it is an attempt to make the two view-

points complement, rather than contradict, each other within a

single unified framework.

4 Monte Carlo Semantics

How do we approach the problem of computing �ϕ → ψ� in

all its generality? This problem is far from trivial, of course,

because the decision problem for classical propositional logic

can be reduced to it. If ϕ→ ψ is a formula over Λ, then, using

a naive approach, we could check whether ϕ → ψ is valid,

i.e. whether �ϕ → ψ� = 1.0, by generating every possible

valuation w ∈ W|Λ|,2. But there are 2|Λ| such valuations.

Because we are considering, in the traditional case, the

maximum or minimum truth value ‖ϕ → ψ‖w we can en-

counter for any w, this means we would have to run a model

checker 2|Λ| times, in the worst case.

Our approach is as follows: We exploit the fact that the

arithmetic mean, in contrast to a maximum or a minimum, is

very well behaved, when it comes to its statistically estimating

it. We do not attempt to logically determine its exact value.

Thus, if W ⊆ W , we can use �ϕ → ψ�W as an estima-

tor for �ϕ → ψ�W . By statistical sampling theory, we know

that the former will approach the latter as the sample size |W|
approaches the population size |W|. This sampling can be au-

tomated in a Monte Carlo method.

The central question that arises then, is how much informa-

tion we obtain about �ϕ → ψ� by simply assigning truth val-

ues to atomic propositions at random using a random number

generator.

Let’s consider a simple implication involving only atomic

propositions: �p → q� = 0.75. We know that the truth table

for this formula assigns the value 0 to only one valuation ( ‖p‖
= 1, ‖q‖ = 0 ), and the value 1 to three valuations. Thus we

have a 3/4 chance of hitting the value 1.0 (error 0.25), and a

1/4 chance of hitting the value 0 (error 0.75), which makes

for a mean error of 0.375.

If we do this twice, we still have a (3/4) ∗ (3/4) = 9/16
chance of hitting an average value of 1.0 (error 0.25), a (3/4)∗
(1/4) + (1/4) ∗ (3/4) = 6/16 chance of hitting an average

value of 0.5 (error 0.25) and finally a (1/4) ∗ (1/4) = 1/16
chance of hitting an average of 0.0 (error 0.75). We have a

mean error of 0.28125.

As we increase the number of trials, the mean error will

decrease. But can we speed up the process? We can increase

the number of truth classes. This is what a truth table for 3-

valued Łukasiewicz logic would look like:

p 1.0 1.0 1.0 0.5 0.5 0.5 0.0 0.0 0.0
q 1.0 0.5 0.0 1.0 0.5 0.0 1.0 0.5 0.0
p → q 1.0 0.5 0.0 1.0 1.0 0.5 1.0 1.0 1.0

Four of these nine assignments coincide with bivalent logic,

but we also insert five new values. We now have a mean truth

value �p → q� = 0.77. We have a 6/9 chance of hitting the

value 1.0 (error 0.23), a 2/9 chance of hitting the value 0.5
(error 0.27), and a 1/9 chance of hitting the value 0.0 (error

0.77). The mean error is 0.296296.

We can now leave it as an exercise for the reader to verify

that, if we repeat the process twice and obtain averages, we

get an even smaller mean error of 0.19753.

We can increase the number of truth values in the logic,

all the way to ℵ0, where the value �p → q�, which is 1.0 iff

p ≤ q, takes on the value 1.0 only at a 0.5 chance. – Of course

we can do this only in theory. In practice, any set of valuations,

where the truth values come out of a random number generator

for floating point numbers will fit into anM -valued logic for a

large-enough M . The point is, that we do not want to restrict

the possible values of truth values any further.

This raises some questions, as to whether the new logic,

which now only proves a subset of the theorems provable in

bivalent logic, is still a correct model of natural language se-

mantics, and we believe it is. The example theorems listed in

figure 1 can all be proved within such a logic.



ϕ : Some elephants are intelligent,
ψ : Some grey elephants are intelligent,
χ : Some clean grey elephants are intelligent.

ϕ : (e1 ∧ i1) ∨ (e2 ∧ i2)
ψ : (e1 ∧ g1 ∧ i1) ∨ (e2 ∧ g2 ∧ i2)
χ : (e1 ∧ c1 ∧ g1 ∧ i1) ∨ (e2 ∧ c1 ∧ g2 ∧ i2)

e1 i1 e2 i2 (e1 ∧ i1)∨(e2 ∧ i2)= ϕ→ ψ = (ψ→ ϕ) χ (ϕ→ χ) g1 g2 c1 c2

w1 .99 .55 .47 .38 .55 .38 .55 .39 .84 1 .19 .64 .39 .19 .12 .97
w2 .10 .58 .29 .00 .10 .00 .10 .10 1 1 .10 1 .98 .85 .62 .44
w3 .13 .93 .59 .96 .13 .59 .59 .32 .73 1 .25 .66 .16 .32 .08 .25
w4 .26 .64 .68 .74 .26 .68 .68 .68 1 1 .13 .45 .80 .99 .02 .13
w5 .47 .10 .03 .76 .10 .03 .10 .10 1 1 .10 1 .65 .54 .10 .74

.91 1 .75

Figure 2: some of the examples in their logical representations

Example
To clarify the whole process, let us conclude this section by

turning back to the elephant example, repeated here, together

with a logical representation in figure 2.

Let the atomic proposition e1 represent that individual 1 is

an elephant, the proposition g2, that individual 2 is grey, etc.

Now we can assign truth values to these propositions at ran-

dom. Above, we have simply listed five different assignments

of truth values. The truth values, listed in the first and last

four columns, have not been carefully selected, but have sim-

ply been randomly generated, in this case, using a standard

spreadsheet tool.

If we substitute the definition of the implication from defi-

nition 8 into defintion 5, it turns out that

‖ϕ ∧ ψ‖ = min(‖ϕ‖, ‖ψ‖),
‖ϕ ∨ ψ‖ = max(‖ϕ‖, ‖ψ‖)

In the first valuation of the example, we have ‖e1‖w1 =
0.99, ‖i1‖i1 = 0.55, so ‖e1 ∧ i1‖w1 = .55, so “individual

1 is an intelligent elephant” is true to degree .55. Similarly,

‖e2∧i2‖w1 = .38, so “individual 2 is an intelligent elephant” is

true to degree .38. Finally ‖ϕ‖w1 = ‖(e1∧i1)∨(e2∧i2)‖w1 =
max(.55, .38) = .55, so “some individual is an intelligent ele-

phant” is true to a degree .55.

If we use the values ‖g1‖ and ‖g2‖, we can analogously

determine ‖ψ‖w1 = .39. Since 1 − .55 + .39 = .84, the im-

plication stating “if some elephants are intelligent, then some

grey elephants are intelligent” is true to a degree .84 in val-

uation w1. The converse implication is true to a degree 1.0.

Similarly, we can determine ‖ϕ → χ‖w1 = .64. Note that

‖ψ → ϕ‖ ≥ ‖�‖ = 1.0, in accordance with (2.a), that

1.0 = ‖�‖ < ‖ϕ → ψ‖, in accordance with (2.b), and that

‖ϕ→ ψ‖ < ‖ϕ→ χ‖, in accordance with (2.c). It should be

obvious, at this point, that this is not a coincidence.

While the fundamental logical properties are already ful-

filled correctly, the exact truth values are still a function of the

random valuation, we started out with. This is why, we now re-

peat the process for different valuations w2, w3, etc., to obtain

mean truth values, i.e. degrees of validity, of �ψ→ ϕ� = 1.0,

and �ϕ→ ψ� = .91, and �ϕ→ χ� = .75.

5 Initial Results & Future Directions

MCPIET is a direct implementation of this process and was

tested successfully on section 1 of the FRACAS testsuite

(Cooper et al., 1996). Now, we have also tried it on the RTE

data for the first time, though with little success visible in the

form of statistics over this dataset. This is why we have em-

phasized before, that our main contribution currently lies with

our theory.

The reason why we have seen little practical success is not

because of a flaw in the inference mechanism, but because of

the naive setup of the frontend infrastructure that converts text

into logical formulae.

MCPIET can use either BOXER and the C&C TOOLS (Cur-

ran et al., 2007) or the ERG (Copestake and Flickinger, 2000)

for this translation. In the case of the ERG, we first have to

scope the text. For the sake of simplicity, we currently always

choose the top ERG parse and scope the quantifiers in the or-

der in which they appear in the text. We then apply some

reductions to translate generalized quantifiers into first-order

structures. In the case of the C&C TOOLS, no parses other

than the top one are available to begin with. Semantic compo-

sition, scope selection and first-order reduction are then done

by BOXER.

The main problem here was that we effectively force the

grammar into venturing a wild guess as to which in a number

of ambiguous readings to assign to a given sentence. So we

are not yet implementing the strategy suggested by our theory

of falling back to less informative representations, where in-

formation is unavailable or syntactically unknown. Rather, we

have wrong information represented in our logical formulae,

which is obviously counterproductive. To solve this problem,

we are currently investigating methods of removing this noise

by generalizing logically over the semantic representations of

multiple parses.

Another main shortcoming of the current implementation is



that we do not yet support any kind of coreference resolution

or other semantically relevant discourse phenomena, not even

anaphora. We have not implemented special recognition and

reasoning with dates, times, geographical locations, organiza-

tion names, etc.

6 Concluding Remarks

For all these reasons outlined in the previous section, it comes

as little surprise that MCPIET does not perform competitively

yet with other systems in an RTE evaluation. While many

other systems are already pushing the limits of what is the-

oretically possible within their approaches, development on

MCPIET has hardly even begun. It is these theoretical limits,

which have been our central concern herein.

More particularly, we were concerned with the design goals

of informativity and robustness. We have shown a catalogue

of example inferences, to define exactly what properties one

would expect of a system, in connection with a claim to infor-

mativity or robustness.

We have situated current approaches to deep and shallow in-

ference within our theoretic framework, and shown their limits

by characterizing the informativity/robustness tradeoff, a well-

known experience to the community, yet a concept which is

usually not quite trivial to pin down theoretically.

Our theoretical framework relies on a notion of a degree of
validity, and we have provided some evidence to suggest that

precisely this concept of graded validity may play a crucial

role in the robustness properties of shallow inference. At the

same time our framework still supports informationally rich

semantic representations and background theories, which play

a crucial role in the informativity properties of deep inference.

From this point of view, we have then posed the problem of

deep/shallow integration within our new theory, and also pro-

posed a solution to it we have called Monte Carlo Semantics.

Acknowledgments

I would like to thank Ann Copestake and Ulrich Bodenhofer

for their continued support throughout this research project. I

have been supported financially by an EPSRC studentship, a

Cambridge European Bursary, and a DOC-fellowship by the

Austrian Academy of Sciences, and would like to thank the

benefactors who made this possible.

References
Johan Bos and Katja Markert. 2005. Combining shallow and deep

nlp methods for recognizing textual entailment. In Ido Dagan,
Oren Glickman, and Bernardo Magnini, editors, Proceedings of
the PASCAL Challenges Workshop on Recognising Textual En-
tailment (RTE-1).

Johan Bos and Katja Markert. 2006. When logical inference helps
determining textual entailment (and when it doesn’t). In Proceed-
ings of the Second PASCAL Challenges Workshop on Recognising
Textual Entailment (RTE-2).

Nathanael Chambers, Daniel Cer, Trond Grenager, David Hall,
Chloe Kiddon, Bill MacCartney, Marie-Catherine de Marneffe,
Daniel Ramage, Eric Yeh, and Christopher D. Manning. 2007.
Learning alignments and leveraging natural logic. In Proceed-
ings of the Workshop on Textual Entailment and paraphrasing
(RTE-3).

C. C. Chang. 1958. Proof of an axiom of lukasiewicz. Transactions
of the American Mathematical Society, 87(1):pp. 55–56, January.

Robin Cooper, Dick Crouch, Jan van Eijck, Chris Fox, Josef van
Genabith, Jan Jaspars, Hans Kamp, David Milward, Manfred
Pinkal, Massimo Poesio, and Steve Pulman. 1996. Using the
framework. Technical Report D16, FraCaS project deliverable,
January.

Ann Copestake and Dan Flickinger. 2000. An open-source gram-
mar development environment and broad-coverage English gram-
mar using HPSG. In Proceedings of the Second Linguistic Re-
sources and Evaluation Conference, pages 591–600, Athens,
Greece.

James R Curran, Stephen Clark, and Johan Bos. 2007. Linguisti-
cally motivated large-scale nlp with c&c and boxer. In Proceed-
ings of the Demonstrations Session of the 45th Annual Meeting
of the Association for Computational Linguistics (ACL-07).

Bruno De Finetti. 1974. Theory of probability : a critical intro-
ductory treatment. Wiley, London. Translation of Teoria delle
probabilita.

Jan Łukasiewicz and Alfred Tarski. 1930. Untersuchungen über
den aussagenkalkül. Comptes rendus des séances de la Société
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Notes
1 The fragment of the model theory considered here consisting of im-

plication and negation as basic operators as well as the attached notion of
validity were first introduced in a publication by (Łukasiewicz and Tarski,
1930), but are correctly attributed to Jan Łukasiewicz alone.

2 The full set of operators considered here were used by (Rose and
Rosser, 1958) and now appear throughout the relevant literature on multi-
valued logic.

3 The axioms were given by Łukasiewicz himself (Łukasiewicz and
Tarski, 1930), in addition to a fifth axiom. He conjectured that these five
theses would form an axiomatization for the semantic system he was con-
sidering, but did not present a completeness proof to that extent. In 1935,
M. Wajsberg claimed to have proved this completeness result, but such a
proof never appeared in print. A completeness result for these five axioms
was established by (Rose and Rosser, 1958). At the same time, it was also
found that the fifth axiom considered by Łukasiewicz was in fact dependent
(Meredith, 1958; Chang, 1958).


