
Experimenting with Clause Segmentation for Text Summarisation

Stephen Wan and Ćecile Paris
ICT Centre∗

CSIRO
Locked Bag 17, North Ryde, Sydney

NSW 1670, Australia
Firstname.Lastname@csiro.au

Abstract

In this paper, we describe our experiments
with clause segmentation in producing sum-
maries for the TAC 2008 Update Summariza-
tion Track. The submitted runs were designed
to determine if a heuristic clause segmentation
applied before sentence selection would im-
prove summarization results by reducing the
need for sentence compression approaches. A
baseline summariser was used to test this hy-
pothesis. The TAC results achieved suggest
that a slight trend in improvement was de-
tected.

1 Introduction

In this paper, we describe the automatic text sum-
marisation system implemented by CSIRO for par-
ticipation TAC 2008 Update Summarization Track.
It represents the results of an intensive three week
development. This was the first time we participated
in either DUC or TAC. We thus had to implement a
system from scratch. Our aim was in participating
was to investigate specific system-design issues for
text summarisation. In particular, given our limited
resources, we examined the issue ofClause Segmen-
tation and its impact on text summarisation via text
extraction methods.

Often, summaries are constrained in length. A
sentence is usually extracted in response to some
stimulus, such as a generic summarisation request
or a representation of a user’s interests or a specific
user query. It is then usually shortened so that irrel-
evant information is not presented to the user.

∗Information and Communication Technologies Centre

To shorten a sentence, one might apply a series
of heuristics commonly used to search for informa-
tion of a secondary nature to the key proposition
expressed in the sentence (for example, an embed-
ded subordinate clause). Having identified this sec-
ondary information, one can delete them from the
sentence, with the hypothesis that they do not pro-
vide enough core information. Such techniques have
been used in previous DUC systems (for example,
see Dunlavy et al. (2003)). Unfortunately, it may
be the case that applying such simple sentence com-
pression methods on extracted sentences might re-
move the fragments of the sentence that matched
well with the stimulus.

For example, often, embedded clauses might in-
dicate information of lesser importance, particularly
when it modifies a noun phrase as in the case of the
relative clause, “Ban Ki-moon,who began his term
in 2007, addressed the General Assembly this morn-
ing.” Unfortunately, if a user query was interested in
specifically the beginning time of the term, the com-
pression, “Ban Ki-moon addressed the General As-
sembly this morning.” would not be a good answer
to the user’s information need.

State-of-the-art approach to sentence compres-
sion have been described in Knight and Marcu
(2002) and Clarke and Lapata (2007). Applying
these techniques, however, might be particularly
problematic when sentence compression methods
shorten the sentence without considering any addi-
tional context such as a user bias.

Clarke and Lapata (2007) models discourse pa-
rameters which are provided to the sentence com-
pression algorithm so that content in focus within



• Title: Airbus A380

• Narrative: Describe developments in the production
and launch of the Airbus A380.

Figure 1: A Topic Statement

the overall document is not removed. Such a method
could be applied to take the query into account in
a similar way. However, these approaches do take
some amount of effort to deploy and are usually de-
pendent on suitable training data for machine learn-
ing methods.

Nevertheless, to meet the space constraint of 100
words imposed by the TAC 2008 competition, some
method of shortening sentences is clearly necessary.
For our participation this year, state of the art com-
pression methods were not feasible in terms of re-
sources, and heuristic approaches seemed to run the
risk of omitting the very information that would pro-
vide a good answer.

In response to this, we designed a system that
would apply clause segmentation to document sen-
tencesbefore they were selected. Once this seg-
mentation has occurred, clauses that match queries
would not require further compression since they are
already short. An unsupervised heuristic clause seg-
mentation tool was implemented based on the same
heuristics for sentence compression, with some
modifications to correct fragments such that they re-
sembled grammatical sentences.

In the remainder of this paper, we describe the
system developed for the TAC 2008 Update Sum-
marization Track and the evaluation results that ad-
dressed this design questions.

2 The Update Summarisation Task

In the task specification, each summarisation train-
ing and test case is provided with a topic statement
that represents the user’s interests. It includes ati-
tle categorising that interest and a series of “essay
question”-like directives outlining the specific as-
pects of the topic in which the user is interested.
These directives are referred to as thenarrative. An
example is provided in Figure 1.

In addition to the topic statement, each training
and test case also includes an ordered pair of doc-

Figure 2: System Architecture Diagram

ument sets, referred to as Document Set A and B,
respectively. The two sets are constructed such that
documents in Set B have a time-stamp that occurs
chronologically after documents in the first set. The
update summarisation task requires that Document
Set A is summarised with respect to the topic state-
ment. This is essentially a standard query-biased
multi-document summarisation scenario.

The update summarisation task also requires that
Document Set B be summarised with respect to the
topic statementand the first set to produce anUp-
datesummary. This update summary should select
information that relates to the topic statement that
does not appear in Document Set A.

3 System Architecture

3.1 An Overview

Our summarisation system was designed as a
pipeline of four sub-tasks:Query Processing, Text
Normalisation, Query-biased Multi-document Sum-
marisation (QBMDS) and aAnswer Compilation.
The QBMDS stage decomposes into two variants,
depending on which of the two sets is being sum-
marised. Figure 2 presents a pictorial representation
of this pipeline.



The topic statement is first analysed so that the
narrative, usually a lengthy sentence involving mul-
tiple conjoined main clauses, is decomposed into
component sub-queries. In the Text Normalisation
stage, the document sets, representing the results of
a document search process, are first pre-processed
to delimit sentences. If the clause segmentation sys-
tem parameter is set, then sentences are separated
into clauses. We refer here to the smallest unit of
text segmentation as aText Unitwhich can either be,
in this case, a sentence or a clause.

Each sub-query is then matched in the QBMDS
stage against the text units in the document set. The
matching process returns a ranked list of text units,
the top-ranking of which will be considered as an-
swers to the sub-query.

Finally, to generate the summary, we iterate
through each sub-query and its matched text units,
choosing the best text units until the available space
is exhausted. We now describe each of these stages
in more detail.

3.2 Query Processing

Following Mollá and Wan (2006) the narrative of
the topic statement is split into its component ques-
tions. In this work, a slightly different set of rules is
used to perform sub-query splits. In particular, this
system does not rely on creating grammatically cor-
rect questions from sub-queries, since these will be
treated as bag-of-words queries by the summarisa-
tion module.

To separate the narrative into its component sub-
queries, we first segment it into sentences, if multi-
ple sentences exist, using thesptoolkitfrom Manch-
ester University.1 The sub-query segmentation algo-
rithm then applies the following heuristics:

1. Segment narrative text into sub-queries where
a WH-word is found.

2. Segment narrative text into sub-queries if a
conjunction (in this case, “and” or “;”) is found.

The heuristics are applied in the order specified so
that heuristic (1) is applied to each sentence to pro-
duce a list of sub-queries. Each of these sub-queries

1http://text0.mib.man.ac.uk:8080/scottpiao

/sent detector

is then analysed with heuristic (2) to produce fine-
grained sub-queries.

The sample topic statement in Section 1 would
be transformed into the following sub-queries:

Sub-Queries:

• describe developments in the production

• launch of the Airbus A380

Finally, when searching for text units that match
the sub-query, words from the title of the topic
statement are appended to introduce the topic for
the search.

Unique Search Terms for Sub-Queries:

• describe developments in the production Air-
bus A380

• launch of the Airbus A380

3.3 Text Normalisation

In this work, we decided to use our own clause seg-
mentation approach since it needs to be of a length
that is suitable as an answer to a sub-query. That is,
we did not want the clauses to be too fine-grained as
they must still contain sufficient information to be of
use to the reader of the summary. As such, we opted
to write a heuristic clause segmentation algorithm
that would attempt to identify independent clauses
(those that can stand by themselves as sentences).

To begin with, the text is segmented into sen-
tences using thesptoolkit. Our clause segmenta-
tion algorithm uses a heuristic approach that breaks
a string into components when certain strings are
encountered. A post-process then repairs the seg-
mented strings by concatenating it with its neigh-
bour if a clause boundary is deemed to be unlikely.

Sentences are segmented whenever a conjunction
or a set regular expression known to indicate clause
splits is observed. In the latter case, this may in-
clude patterns containing certain punctuation marks.
The string that triggered the clause split is referred to
here as thetrigger string. The string in between the
trigger strings is referred to here as atext segment.
The result of this first stage is a list of text segments
and trigger strings.



Each text segment in the resulting list is then ex-
amined to see if it is a good independent clause. If
the following is true:

• it is part of a list;

• it is a relative clause;

• it is simply too short;

• it begins with punctuation;

• it begins with attributive verbs like “said”;

• or, it begins with the copula (for example “is”,
“was”, “were”)

then, it is deemed not to be an independent clause
and is concatenated with the previous text segment
with the appropriate trigger string re-inserted. The
last four conditions in this list are there to handle any
text segments that will display poorly when included
in a summary.

3.4 Query-biased Multi-document
Summarisation

3.4.1 A Vector Space Approach

To match text units to sub-queries, we use a stan-
dard information retrieval vector space approach
(Salton and McGill, 1983) as applied to the text units
segmented in the Text Normalisation stage. Such an
approach has been used in a number of DUC entries
(for example, see Radev et al. (2003)). Each text
unit or sub-query was represented as a vector using
unweighted term frequencies. The vector contains
one dimension for every word in the vocabulary with
the exception of those that occur in a stop-word list.
We used cosine as the similarity metric between text
units and sub-queries. The result is a ranked list of
text units for a sub-query.

3.4.2 Update Summarisation

To perform the update summarisation task, we
modified the vector space approach above by chang-
ing the way words were ranked. We used the Maxi-
mal Marginal Relevance (MMR) method (Carbonell
and Goldstein, 1998) to choose text units that were
similar to the sub-query but different from sentences
chosen when summarising Document Set A.

3.5 Answer Compilation

Once text units have been ranked for each sub-query,
all that remains is to choose the top ranking units
until the word limit is reached. The generated sum-
mary is constructed such that each sub-query and the
answers found for it are turned into an attribute and
value pair, in lieu of a more advanced text generator.

At first, the sub-query is modified so that an im-
perative is changed into a declarative fragment. For
example, imperative verbs like “describe”, “iden-
tify”, “trace” or “include” are removed leaving some
noun phrase. In the sub-query from Section 1,
“describe developments in the production” becomes
“developments in the production”. This is referred
to as thequery realisation.

Until the word limit is reached, each sub-query is
considered one by one and the top-ranked text unit
for each sub-query is picked as the answer, if it has
not already been included in the summary as an an-
swer to some other sub-query. This ensures that a
text unit is only seen once in the summary. The
query realisation for the sub-query and the chosen
text unit are concatenated using only a line break to
denote that the former is the attribute and the latter
is the value.

This approach runs the risk of omitting an entire
sub-query if the word limit is reached prematurely.
Examples of the output are presented in Figure 3 and
4 for the test case D0801A-A.

4 Evaluation

This year, the evaluation at TAC’08 was performed
manually by NIST and measure both readability and
content. The latter was measured using the pyramid
method (Nenkova and Passonneau, 2004).

The results for the two variant of our system, Sen-
tence Segmented (SS) and Clause Segmented (CS)
are presented in Tables 1 and 2 in Figure 5, which
show performance on Document Set A and B re-
spectively. Numbers in the brackets refer to the
rank in the evaluation. The metrics reported arace
the Pyramid method, the number of Summarization
Content Units (SCU), the linguistic quality and the
responsiveness. There were 58 competing systems
(peers). The run identifier in the evaluation (run id)
for each was 8 and 38, respectively.

Both systems rank relatively low comparing to



• First Document Set:
Developments in the production:
Airbus also stresses the plane’s fuel efficiency,
claiming that a customer driving a compact car to
the airport will burn more fuel per mile than the
A380 requires to move one passenger 100 miles.
A team of Airbus specialists has visited major
airports over the past few years to determine how
much work will be necessary to allow the A380
to use runways and terminals. The new Airbus
”superjumbo” which will be officially unveiled
Tuesday, is the product of a decade of designing.

Launch of the airbus a380:
A launch decision is expected in mid-2005.

• Second Document Set:
Developments in the production:
Airbus said Wednesday the delays were due to
production problems linked to the cabin fittings
demanded by the different clients. Airbus said
Wednesday it was up to six months behind schedule
in delivering its new superjumbo A380 aircraft to
airlines due to production problems, a delay that
could entail financial penalties.

Launch of the airbus a380:
Before February to the ICAO, well ahead of the
launch of the European-made superjumbo. The
European aircraft maker said that A380 deliveries
to customers would be pushed back by two to six
months.

Figure 3: Sample summaries generated without clause
segmentation.

• First Document Set:
Developments in the production:
Airbus also stresses the plane’s fuel efficiency,
claiming that a customer driving a compact car to
the airport will burn more fuel per mile than the
A380 requires to move one passenger 100 miles. A
team of Airbus specialists has visited major airports
over the past few years to determine how much
work will be necessary to allow the A380 to use
runways and terminals. Here are some key dates in
its development:.

Launch of the airbus a380:
A launch decision is expected in mid-2005.

• Second Document Set:
Developments in the production:
Airbus said Wednesday the delays were due to
production problems linked to the cabin fittings
demanded by the different clients. Airbus said
Wednesday it was up to six months behind schedule
in delivering its new superjumbo A380 aircraft to
airlines due to production problems, a delay that
could entail financial penalties. ”We are in the
process of reviewing the timetable.”.

Launch of the airbus a380:
She added that experts would make recommenda-
tions before February to the ICAO, well ahead of
the launch of the European-made superjumbo. ”two
to six months depending on the case”.

Figure 4: Sample summaries generated with clause seg-
mentation.



Table 1:
Sys. Pyr. SCU’s Ling. Resp.
SS 0.17 (54) 2.50 (55) 1.37 (58) 1.62 (50)
CS 0.18 (53) 2.52 (54) 1.54 (56) 1.64 (54)

Table 2:
Sys. Pyr. SCU’s Ling. Resp.
SS 0.13 (52) 1.62 (53) 1.25 (56) 1.45 (52)
CS 0.10 (50) 1.29 (51) 1.35 (57) 1.37 (52)

Figure 5: Results from the TAC 2008 Evaluation.

the other systems. This is not surprising since a
very simple sentence extraction module was used
to choose sentences. In particular, without suitable
expansion of terms in the query to include related
words and synonyms, the sentence extraction stage
may, at times, miss good candidate answers. How-
ever, for our investigation, it is not the absolute rank-
ing that is important, but rather, the relative ranking
between the two systems.

As can be seen by the results in Table 1, clause
segmentation seems to improve the ranking of the
system for Document Set A. For Document Set B,
the reverse is true for the pyramid scores; however,
linguistic quality still improves. We attribute the
poor responsiveness for Document Set B to a bug
in our implementation of MMR for update summa-
rization. We accounted for redundancy between text
units chosen in Document Set A with Document
Set B. However, we did not account for redundancy
within sentences chosen for Document Set B.

We thus can only learn from the results in Table
1 which suggests that clause segmentation before
sentence extraction improves summarisation results
based on the TAC2008 rankings.

5 Conclusion and Future Work

We conclude that summarisation responsiveness and
quality for an extraction based summariser can im-
prove by first performing clause segmentation be-
fore summarisation. The relative improvement in
rankings are encouraging. This approach is particu-
larly useful if more advanced sentence compression
approaches are not possible. In future work, we in-
tend to further develop the clause segmentation ap-
proaches to use machine learning methods.

References

Jaime G. Carbonell and Jade Goldstein. 1998. The use of
MMR, diversity-based reranking for reordering docu-
ments and producing summaries. InResearch and De-
velopment in Information Retrieval, pages 335–336.

James Clarke and Mirella Lapata. 2007. Modelling com-
pression with discourse constraints. InProceedings
of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), pages
1–11.

D.M. Dunlavy, D.P. O’Leary, J.M. Conroy, J.D.
Schlesinger, S.A. Goodman, and M.E. Okurowski.
2003. Performance of a three-stage system for multi-
document summarization. InDocument Understand-
ing Conference 2003: Workshop on Text Summariza-
tion, Edmonton, Canada, May.

Kevin Knight and Daniel Marcu. 2002. Summariza-
tion beyond sentence extraction: a probabilistic ap-
proach to sentence compression.Artificial Intelli-
gence, 139(1):91–107.

Diego Mollá and Stephen Wan. 2006. Macquarie univer-
sity at duc 2006: Question answering for summarisa-
tion. In Proceedings DUC.

Ani Nenkova and Rebecca Passonneau. 2004. Evaluat-
ing content selection in summarization: The pyramid
method. In Daniel Marcu Susan Dumais and Salim
Roukos, editors,HLT-NAACL 2004: Main Proceed-
ings, pages 145–152, Boston, Massachusetts, USA,
May 2 - May 7. Association for Computational Lin-
guistics.

D.R. Radev, J. Otterbacher, and D. Tam H. Qi. 2003.
Mead reducs: Michigan at duc 2003. InDocument
Understanding Conference 2003: Workshop on Text
Summarization, Edmonton, Canada, May.

G. Salton and M. J. McGill. 1983.Introduction to mod-
ern information retrieval. McGraw-Hill, New York.


