
Using Latent Semantic Analysis for Extractive Summarization

Kirill Kireyev
University of Colorado Boulder

Computer Science
 kireyev@colorado.edu

Abstract

In this paper, we use simple techniques de-
rived from on Latent Semantic Analysis
(LSA) to provide a simple and robust way of
generating extractive summaries for TAC
2008 Update Summarization task.

1 Introduction

TAC 2008 Update Summarization task is to
write a short (~ 100-word) summary of a set of
newswire articles, under the assumption that the
user has already read a given set of earlier articles.

The summaries are to be generated over a num-
ber of batches of independent news articles, each-
batch related to a particular topic. The summaries
are intended to be in response to a specific query,
which is available in both short and narrative form.
For example:
[short form]:

Arctic and Antarctic ice melt
[narrative form form]:

"Describe the developments and
impact of the continuing Arctic
and Antarctic ice melts.”

There are a total of 48 such query/document
batches. Each document batch is farther partitioned
into two sets. Both sets are to be summarized inde-
pendently using information related to the query
corresponding to the document batch. The second
of the two sets is to be summarized under the as-
sumption that the user has read the first set, i.e. the
second summary should contain information that is
new in relation to the first set.

2 CU System Overview

Our system is a simple extractive summariza-
tion system, meaning that it simply extracts repres-
entative sentences from the source documents,
without attempting to modify them.

The core of the system is on Latent Semantic
Analysis (LSA). We give a brief overview of LSA
in the next section, the reader is also advised to
consult [1] for more information.

2.1 Latent Semantic Analysis (LSA)

Latent Semantic Analysis ([1]) is an unsuper-
vised methods of deriving vector space semantic
representation from a large corpus of texts. LSA
starts by representing a collection of documents by
a term by document (T x D) matrix A, which in es-
sence represents each word by a D-dimensional
vector. It then performs singular value decomposi-
tion (SVD) on the matrix:

A=U V T
(1)

Subsequently, all but the first (largest) k values in
the diagonal singular matrix Σ, are set to zero, res-
ulting in a kind of principal component analysis.
This effectively reduces the dimensionality of each
word vector to k. (For more details, please consult
[2]). The number of dimensions (k) is determined
empirically. The dimensions have no intuitive in-
terpretation; they simply serve to position word
vectors in the high-dimensional space.

The measure of semantic similarity between
two words in this model is typically1 the cosine of

1Other metrics like Eucledian distance and dot product are less
commonly used

the angle between their corresponding word vec-
tors :

S w1 ,w2=cosvw1 ,vw2 =
vw1⋅vw2

∥vw1∥∥vw2∥ (2)
The simulated meaning of a new document

(sometimes referred to as pseudo-document) can
be represented in LSA using the following method:

v d=qT U k k
−1 (3)

where q represents the array containing type fre-
quencies for words in the document (weighted by
tf-idf-derived entropy weights). Note that this is
equivalent to (weighted) geometric addition of
constituent word vectors corresponding to words in
a document.. As a result, both words and docu-
ments are represented as vectors in k-dimensional
space2, allowing for straightforward word-word,
word-document, and document-document compar-
isons., which reflect their semantic similarity ac-
cording to the model:
S w ,d =cos vw

1 /2 ,v d 
1/2 (4)

S d 1, d 2=cosvd1 , vd2 (5)
The absolute values of cosines (which may range

between -1 and 1 with larger values indicating
greater similarity) have no strict interpretation;
only comparisons of cosine values (e.g. between
pairs of words) are meaningful.

2.2 Implementation Details

We built a new LSA space using a corpus con-
sisting of news articles (from sources New York
Times) using the documents in the ACQUAINT-2
corpus. The corpus consisted of 439,947 docu-
ments. The resulting LSA space used 327 dimen-
sions.

We compute the document vectors for each sen-
tence in the source document as well as for the
queries in the short form.

We experimented with all combinations of
(1) sentences vs paragraphs as units of extrac-

tion
(2) short vs narrative form of queries

using DUC 2007 data for the same task, and ob-
tained slightly better results with sentence-length
units and short-form queries.

2Depending on the type of comparison, operands need to be
multiplied by the singular matrix Σ (word-word) or its square
root (word-doc). Please see LSA literature for more details.

3 Extracting Sentences with LSA

In selecting sentences for the summary, our sys-
tem attempts to fulfill the following desiderata:

1. Sentences should be related to the query
2. Sentences should cover different topics
3. Sentences should contain as much inform-

ation as possible
4. (for update summaries) sentences should

be cover different topics from sentences
already selected for the summary of the
first set

We now discuss in more detail how our system
accomplishes each of these criteria.

3.1 Sentences Related to Query

To measure how much a sentence is related to
the query, we compute the cosine between the
query vector and the sentence vector, and select a
number (10) of sentences with the highest cosine
values.

3.2 Maximizing Topic Coverage

To find a set of sentences that cover a wide
range of topics, we use a clustering algorithm to
partition the set of candidate sentences into a num-
ber of clusters. The clusters will ideally represent
distinct semantic themes. We use k-means cluster-
ing on the LSA vectors of the candidate sentences.
We use the cosine measure as the distance metric
for the k-means algorithm. The number of clusters
(k) is chosen to be the number of sentences that we
ultimately wish to return. The k-means algorithm
returns the assignment of each sentence to a partic-
ular cluster, as well as the centroid of each cluster,
in the units of the LSA coordinate space used.

We then select a sentence that is most repres-
entative of each cluster, by finding sentences
which are closest to each cluster's centroid, using
the cosine metric.

3.3 Maximizing Amount of Information per
Sentence

Due to 100-word size restriction of summaries,
we wish to generate summaries that are as informa-
tion-dense as possible. Consequently, we wish to
find sentences that contain as much information as
per word as possible.

We can approximate this quantity using a word
concreteness measure derived from LSA. One
characteristic of LSA word vectors is their vector
length, which differs significantly among different
words. Roughly speaking, it is a function of two
factors:

(1) Number of occurrences in training corpus
(2) Concreteness, or specificity, or words

For example, Kintsch ([2]), writes:
“Intuitively, the vector length tells us how much in-

formation LSA has about this vector. [...] Words that
LSA knows a lot about (because they appear frequently in
the training corpus, in many different contexts) have
greater vector lengths than words LSA does not know
well. Function words that are used frequently in many
different contexts have low vector lengths -- LSA knows
nothing about them and cannot tell them apart since they
appear in all contexts.”

To illustrate, below are examples of different
words and their corresponding vector lengths:

High Frequency Low Frequency

High Specificity dog
father
box

1.31
1.01
0.68

proton
sheriff
triangle

0.43
0.14
0.14

Low Specificity the
how
since

0.01
0.39
0.27

haphaz-
ard
clumsy

0.03
0.06

Therefore, we can isolate the effects of these
two factors and compute word specificity in the
following way:

specificity = { vector length } / { frequency }
As a result, we can obtain an approximation of

word specificity. The amount of information in a
sentence can the be approximated by computing
the mean of specificity values of each constituent
word (we use the sum of logarithms to dampen the
large fluctuations in specificity values).

Below is an example of a high-specificity and a
low-specificity sentence, and their corresponding
specificity scores.
Specificity
score

Sentence

8.9 We found there was too much mass, Schoepf said.
We had to work pretty hard to get back to the spe-
cifications we'd committed ourselves to with our
clients.

69.3 By using chromate-free paint, engineers got the out-
er paintwork down to about 350 kilograms (770
pounds), Schoepf said. That's compared to 550
kilograms (1,210 pounds) for a plane of this size
using other paints.

3.4 Finding Non-Redundant Sentences

To ensure that selected sentences for the second
(update) set are sufficiently non-redundant with re-
spect to the sentences selected for the first set, we
compute pairwise cosine distances between all sen-
tences selected for the first set and all candidate
sentences for the second set. The system selects the
sentences with the smallest such cosines.

3.5 Putting it Together

The following is the pseudo-code for the overall
algorithm:

foreach (b in batches):
Qb = query(b)

Sb1 = get_sentences(batch=b, set=1)

compute score for each sentence, based on
1) similarity to query
2) specificity
foreach (s in Sb1):
sim_s = cos (vector(Qb), vector(Sb))
spec_s = avg (log (specificity (w)), w Sb1∈
score_s = spec_s * sim_s

pick 10 best sentences with highest scores
Sb1' = max(score_s, 10)

cluster them using k-means into 5 clusters
cluster_centers = kmeans(vector(Sb1'), 5)

pick the representative sentence for
each cluster center
foreach (cc in cluster_centers):
add (Rb1, max(cos(cc, vector(Sb1'), 5))

Report sentences for batch b, set 1
print Rb1

Sb2 = get_sentences(batch=b, set=2)

compute score for each sentence, based on
1) similarity to query
2) specificity
3) dis-similarity to sentences in set 1
foreach (s in Sb2):
sim_s = cos (vector(Qb), vector(Sb))
spec_s = avg (log (specificity (w)), w Sb1∈
d_s = 1-max(cos(vector(Sb2), vector(sb1))
score_s = spec_s * sim_s * d_s

pick 10 best sentences
Sb2' = max(score_s, 10)

cluster them using k-means
cluster_centers = kmeans(vector(Sb2'), 5)

pick the representative sentence for
each cluster center
foreach (cc in cluster_centers):
add (Rb2, max(cos(cc, vector(Sb1'), 5))

Report sentences for batch b, set 2
print Rb2

4 Results

At TAC 2008, the system ranked 37th out
of 58 for the average modified pyramid score, 20th

out 58 for linguistic quality, and 35th out of 58 for
overall responsiveness. It should be noted that
these results were obtained with fairly simple, but
robust techniques; no sophisticated syntactic/se-
mantic analysis or natural language generation was
involved. We believe that our methods can be used
in conjunction with these techniques to obtain
much better results.

References

[1] Kintsch, W., Predication. Journal of Cognitive Sci-
ence, 25 (2001).

[2] Landauer, T.K., McNamara, D.S., Dennis, S.,
Kintsch, W. (2007). Handbook of Latent Semantic
Analysis Lawrence Erlbaum

