Overview of the TAC 2008 Update Summarization Task

Hoa Trang Dang, Karolina Owczarzak

Update Summarization Task

- Task
 - main: produce a 100-word summary from a set of 10 documents (Summary A)
 - update: produce a 100-word summary from a set of subsequent 10 documents, with the assumption that the information in the first set is already known to the reader (Summary B)

Update Summarization Task

- 48 topics
- 20 documents per topic in chronological order:
 - main summary (first 10 documents)
 - update summary (second 10 documents)
- 100 words per summary
- 4 model summaries
 - one summary by topic creator

Data

- AQUAINT-2 Corpus
 - part of LDC English Gigaword corpus 3rd Ed.
 - 2.5GB of text
 - news articles Oct 2004 Mar 2006:
 - Agence France Presse
 - Xinhua News Agency
 - Los Angeles Times Washington Post News Service
 - New York Times
 - Associated Press
- Average length of selected doc: 3368 wrds

Topics

• D0820D

Title: Submarine Rescue

Narrative: Describe efforts of the Russian navy to rescue the trapped submariners and any assistance provided by other countries. Include information regarding the results of the rescue mission and the results and consequences of the subsequent investigation into the matter.

Participants

- 33 teams
- 71 runs (up to 3 per team)
 - manual evaluation for 1st and 2nd priority runs (57)
 - automatic evaluation for all runs
- NIST baseline
 - first sentence(s) of the most recent document
 - up to 100 words

Overall Responsiveness

How well is the summary responding to the information need contained in the topic statement? How good is the structure of the summary and its linguistic quality?

Overall Readability

What is the overall linguistic quality of the summary, independent of content? Note the fluency, structure, grammaticality, non-redundancy, referential clarity, focus, coherence.

• Pyramid framework (Passonneau et al., 2005)

Summary Content Units (SCUs):

- Mini-submarine trapped underwater (4)
- Mini-sub snagged by underwater cables (3)
- Britain sent a robotic vehicle (3)
- U.S. sent underwater vehicles (2)
- Japan sent four vessels (2)
- British arrived first (2)
- Crew taken for medical examination (1)
- Military submarine (1)
- Mini-sub trapped in eastern Russia (1)
- U.S. sent equipment (1)

• Pyramid framework (Passonneau et al., 2005)

SCU (4): <u>Mini-submarine trapped underwater</u>

contributor1: mini-submarine... became trapped... on the sea floor
contributor2: a small... submarine... snagged... at a depth of 625 feet
contributor3: mini-submarine was trapped... below the surface
contributor4: A small... submarine... was trapped on the seabed

• Pyramid framework (Passonneau et al., 2005)

total SCU weight

score =

max SCU weight possible with average SCU count

Candidate Summary

- Mini-submarine trapped underwater (4)
- Mini-sub trapped in eastern Russia (1)
- U.S. sent equipment (1)

Total SCU count: 3

Total SCU weight: 6

Automatic Evaluation

• ROUGE (Lin, 2004)

- ROUGE-2 recall: matching bigrams
- ROUGE-SU4 recall: matching skip-bigrams (skip up to 4 intervening words)
- BE (Hovy et al., 2005)
 - BE-HM: matching head-modifier pairs

sent | call (obj)
sent | they (subj)
call | help (for)
help | international (mod)
sent | out (guest)

- Jackknifing for all metrics
 - evaluate each model summary against remaning 3 models
 - evaluate each automatic summary 4 times, each time against a different set of 3 models, average out

Results – Main vs Update

Macro-average per-topic scores

	Responsiveness		Readability		Pyramid	
	models	systems	models	systems	models	systems
Summaries A	4.620	2.324*	4.786	2.347	0.663	0.260*
Summaries B	4.625	2.024*	4.800	2.337	0.630	0.204*

	ROUGE-2		ROUGE-SU4		BE-HM	
	models	systems	models	systems	models	systems
Summaries A	0.117	0.079*	0.154	0.116*	0.078	0.038
Summaries B	0.117	0.068*	0.150	0.107*	0.089	0.039

* difference statistically significant with p < 0.05

Results – Models vs Systems

	D	4.833		D	4.917		G	0.805
	F G	4.729 4.708		F	4.896		D	0.708
	A	4.708		G	4.854		Ĥ	0.655
	В	4.583		А	4.833		С	0.651
	H	4.583		в	4.812		в	0.625
	С	4.500		E	4.729		F	0.613
	E	4.354		н	4.688		A	0.608
	23	2.667			4.604		E	0.511
R	49	2.667		49	3.073		11 44	0.331 0.319
IX	44	2.635		23	2.958		14	0.319
	50	2.625		50	2.896		41	0.313
E	14 11	2.615 2.542	R	52	2.896		23	0.304
Ľ	24	2.521	Λ	24	2.885		37	0.301
	52	2.479		26	2.885		49	0.299
S	25	2.479	E	51	2.812		6	0.296
S S	41	2.479	\mathbf{L}	44 25	2.792 2.771		13	0.295
	37	2.479		34	2.760		25	0.290
Р	26	2.469	А	1	2.719	_	50	0.287
1	6	2.469	A	14	2.708	Р	43 45	0.285 0.284
	51	2.448		46	2.646	L	12	0.282
\cap	1 13	2.427 2.427	D	6	2.594		42	0.280
U	42	2.427	D	17	2.562	Y	51	0.278
	45	2.385		37	2.552	1	2	0.276
Ν	34	2.385	٨	45	2.521	_	19	0.276
IN	2	2.385	Α	13 16	2.479 2.458	R	24	0.275
	12	2.344		10	2.448	IX	52	0.272
S	46	2.333	В	31	2.438		48 15	0.263 0.263
0	17	2.323	D	33	2.438	А	15	0.263
	19	2.312		35	2.427	1 1	34	0.260
T	43	2.260	Т	5	2.427		26	0.258
1	3 35	2.240 2.219	1	4	2.417	Μ	35	0.250
	10	2.219		22	2.406	111	17	0.249
\mathbf{V}	15	2.208	T	11 27	2.406 2.375	_	з	0.242
V	22	2.198	L	15	2.365		10	0.238
	54	2.188		20	2.354	L	36	0.234
E	48	2.177	T	2	2.354	-	46 29	0.234 0.234
Ľ	4	2.167	1	47	2.344	D	22	0.234
	36	2.156		з	2.333	D	54	0.230
Ν	16 5	2.115 2.104	Т	41	2.323		4	0.229
T M	33	2.104	1	53	2.302		55	0.222
	29	2.083		54 57	2.292 2.281		16	0.222
E	0	2.073	Y	36	2.240		20	0.219
	55	2.073	1	48	2.208		40	0.212
	57	2.073		19	2.188		21 27	0.212 0.212
S	20	2.062		21	2.177		32	0.206
N	27	2.052		56	2.156		30	0.204
	32	2.031		12	2.031		57	0.202
S	21 40	2.021 1.990		42 32	2.031 2.010		28	0.191
N	56	1.948		43	2.000		5	0.190
	31	1.938		40	1.958		33	0.186
	53	1.917		30	1.938		53	0.184
	30	1.917		55	1.833		56	0.180
	28	1.740		29	1.802		31	0.163
	7	1.688		39	1.771		8	0.153
	47	1.656		18	1.760		38	0.140
	8	1.542		7 9	1.677 1.635		7	0.138
	38 18	1.510 1.479		28	1.625		47	0.130
	39	1.417		38	1.448		18	0.085
	9	1.198		8	1.312		39	0.073
	-						9	0.055

Results – Models vs Systems

Macro-average submission scores

	Responsiveness	Readability	Pyramid
models	4.622*	4.792*	0.647*
systems	2.174*	2.342*	0.232*

	ROUGE-2	ROUGE-SU4	BE-HM
models	0.117*	0.152*	0.084*
systems	0.074*	0.111*	0.045*

* difference statistically significant with p < 0.05

Results – Models vs Systems

Manual Metrics - Correlation

- Overall Readability evaluation of form
- Pyramid evaluation of content
- Overall Responsiveness evaluation of form + content

Correlation between average Responsiveness and average Readability/Pyramid

	Pea	arson's	Spearman's		
	models	systems	models syste		
Readability	0.778*	0.763*	0.910*	0.750*	
Pyramid	0.64	0.950*	0.46	0.941*	

* correlation statistically significant with p < 0.05

Manual Metrics - Correlation

Manual and Automatic Metrics

Correlation between Responsiveness score and ROUGE/BE

	Pearson's		Spearman's		
	models	systems	systems models syst		
ROUGE-2	0.725*	0.894*	0.874*	0.920*	
ROUGE-SU4	0.866*	0.874*	0.898*	0.909*	
BE-HM	0.656	0.911*	0.683	0.910*	

Correlation between Pyramid score and ROUGE/BE

	Pearson's		Spearman's		
	models	systems	models	systems	
ROUGE-2	0.276	0.946*	0.429	0.967*	
ROUGE-SU4	0.457	0.928*	0.595	0.951*	
BE-HM	0.423	0.949*	0.309	0.950*	

* correlation statistically significant with p < 0.05

Conclusions

- Update summaries more difficult for automatic systems than main summaries
 - lower Overall Responsiveness
 - lower Pyramid scores
- Gap between automatic and human summaries
 - Overall Responsiveness
 - Overall Readability
 - Pyramid score
- NIST baseline best in Readability, low in content (Pyramid)

Thank you