
OHSU Summarization and Entity Linking Systems

Seeger Fisher, Aaron Dunlop, Brian Roark, Yongshun Chen, Joshua Burmeister
Center for Spoken Language Understanding
Division of Biomedical Computer Science

Oregon Health & Science University
{fishers,dunlopa,roark,chenyo}@cslu.ogi.edu, burm0248@gmail.com

Abstract

We present two distinct text analysis systems.

We first present two supervised sentence rank-
ing approaches for use in extractive update
summarization. For the first, we use the same
general machine learning approach described
in Fisher and Roark (2008) for update sum-
marization. In the second, we use a sim-
ilar machine learning approach, but include
sub-sentential units produced by our discourse
segmenter, see Fisher and Roark (2007b), as
possible units for inclusion in a summary. In-
terestingly, we find that one approach per-
forms significantly better in the production
of the base summary, while the other ap-
proach performs significantly better in the up-
date summary.

We then present a large-corpus entity link-
ing system. This system expands queries us-
ing internal links within Wikipedia and link
entities with minimum-spanning-tree cluster-
ing. We present and evaluate empirical results
on the TAC 2009 knowledge-base-population
data, and demonstrate competitive results with
a simple system.

1 Introduction to Summarization

Our approach to the update summarization task is
similar to our approach to the query-focused multi-
document summarization task, with some changes
to how we filter redundant sentences within a sum-
mary. Furthermore we extend our approach to not
only include full sentences from the source doc-
uments in our summaries, but also sub-sentential
units called “elementary discourse units” or edus.
These edus are usually a single clause but can some-
times be smaller. Our summarization approach
is a form of extractive summarization. Sentence

extraction summarization systems take as input a
collection of sentences (one or more documents)
and select some subset for output into a summary.
This is best treated as a sentence ranking problem,
which allows for varying thresholds to meet vary-
ing summary length requirements. Most commonly,
such ranking approaches use some kind of similar-
ity or centrality metric to rank sentences for inclu-
sion in the summary – see, for example, Lin and
Hovy (2002); Erkan and Radev (2004); Radev et
al. (2004); Blair-Goldensohn (2005); Biryukov et
al. (2005); Mihalcea and Tarau (2005) and the ref-
erences therein. Such an approach is typically pre-
ferred over supervised ranking approaches for rea-
sons of domain independence.

We present an alternative approach, whereby a
number of similarity/centrality metrics are used, not
directly to rank the sentences, but rather as features
within a supervised machine learning paradigm.
Since the features themselves are not domain-
specific, the benefit of domain generality is retained,
while still accruing the benefits of supervised learn-
ing.

We examine this approach within the context of
query-focused multi-document summarization, for
which there is much less training data for supervised
approaches than query-neutral multi-document sum-
marization. We address this through the use of two
separate ranking models: one trained on a large col-
lection of document clusters and associated (query-
neutral) manual summaries; the other trained on a
smaller data set from the 2005 and 2006 DUC query-
focused multi-document summarization task, which
includes document clusters, queries, and the associ-
ated (query-focused) manual summaries. The scores
from the first ranker are used as features in the sec-
ond ranker. In addition to the use of two ranking

models, we achieve query responsiveness by skew-
ing the word distributions, which make up the fea-
tures of our models, towards the query. All of this
is achieved within a very general supervised ranking
paradigm, which is robust and domain independent.

We broke the query-directed summarization
problem down into several tasks:

1. Text normalization
2. Segmentation

a. document to sentences
b. sentence to edus

2. Sentence ranking
a. query-neutral ranking
b. query-focused ranking

3. Sentence selection from a ranked list

In previous papers we have detailed the archi-
tecture and training of our query-focused multi-
document summarization system (Fisher and Roark,
2006; Fisher and Roark, 2007a; Fisher and Roark,
2008). In this paper we review the previous sum-
mary system, and then show how we modified our
approach to produce update summaries both with
only sentences as the units being extracted and with
either sentences or edus as the units being extracted.

1.1 Sentence Extraction System
Most stages of our sentence extraction system are
detailed in Fisher and Roark (2006). We give just
a brief review of the stages here. The exception is
2b, segmentation of sentences into edus, which we
cover in more detail.

1.2 Text normalization
In the multi-document summarization data1 made
available for the Document Understanding Confer-
ences (DUC), each document set is a collection of
individual articles, each article in its own file. We
created one large text file for each document set by
concatenating the raw content text from each article,
discarding the meta-data. We then used a simple al-
gorithm to perform sentence segmentation, making
use of a list of common abbreviations extracted from
the Penn Treebank.

1.3 Segmenting sentences to edus

One failing of extractive summarization at the sen-
tence level is that sentences often are quite long and

1http://duc.nist.gov/

can contain substantial amounts of information that
is not very important. This drawback is even more
pronounced when producing query-focused extrac-
tive summaries. In order to circumvent this is-
sue, this year we experimented with extracting sub-
sentential spans of text. Rather than simply seg-
menting each sentence into its constituent clauses,
we instead segment into edus, which form more nat-
ural units of meaning in discourse. We then allowed
the system to rank whole sentences and edus to-
gether as if they were all sentences in the original
system.

We use the system fully described in Fisher and
Roark (2007b) to perform segmentation of individ-
ual sentences into its edus. A brief summary of
that approach follows. We use a log-linear model
to individually classify each word in a sentence as to
whether it is the end of a segment or not. We make a
zero-order Markov assumption, that is, each word is
classified independently of the classification results
of its two neighbors.

There are several classes of features the classifier
uses. N-gram features for the lexical items, part-of-
speech tags, and shallow phrase tags are used. We
use up to 6-grams, with a max of 3 items to either
side of the possible segmentation boundary we are
currently predicting, without any skips. We also use
features derived from full syntactic parses. These
features are all derived from the lowest subtree of
the full parse of the sentence that spans the possi-
ble segmentation boundary that we are predicting.
The features are both lexicalized and unlexicalized
versions of productions and parts of productions ex-
tracted from that subtree of the syntactic parse. See
Fisher and Roark (2007b) for the exact details.

1.4 Supervised sentence ranking
For sentence ranking, we implemented a perceptron
ranker (Crammer and Singer, 2001). The objective
we used for our supervised ranking is the ROUGE-2
score as configured for the DUC-06 evaluation. For
a 250 word summary we are typically only interested
in the top 15 or so sentences in a document set (while
allowing for redundancy). As a result, we configured
the perceptron ranking algorithm to produce models
with only 3 ranks. Within each document cluster,
feature values were normalized.

Using a limited feature set, the algorithm can-

1. average tf.idf 6. average LO
2. sum tf.idf 7. sum LO
3. average LL 8. sum (max 3) LO
4. sum LL 9. Sentence position
5. sum (max 3) LL 10. centrality

Table 1: Base feature set. LL is log-likelihood, and LO is
log-odds

not converge to perfect ranking performance on the
training set. We experimented with n-gram fea-
tures, but although this allowed the perceptron to
converge to the training data very accurately, it did
not improve ranking performance against our held-
out training data. We also experimented with a sec-
ond order polynomial kernel for the perceptron. This
also helped the perceptron to converge, but it did not
significantly help with accuracy on the heldout data.
See Fisher and Roark (2006) for further details.

1.4.1 Query-neutral sentence ranking
The base feature set that we use is the same as was

used in previous systems (Fisher and Roark, 2007a;
Fisher and Roark, 2008). For every cluster of docu-
ments c in the set of clusters C comprising the train-
ing set, letZc be the collection of manual summaries
for that cluster. Let s ∈ c be the sentences in cluster
c and z ∈ Zc be the sentences in the summaries of
cluster c. For every cluster c ∈ C we scored each
sentence s ∈ c as follows

ρ(s) = average
z∈Zc

(rouge(s, z))

where rouge(s, z) is the ROUGE score (Lin, 2004)
of sentence s with z as the reference summary. We
calculated this value for all sentences in each cluster
of the DUC 2001-2003 training data for summaries
of size 100, 200 and 400 words, giving us our “gold
standard” ranking for use in training the base sys-
tem.

For each sentence in a cluster, we extracted a
small number of features for ranking. Most of
these features are aggregated from word-based fea-
tures. Word-based features were of three varieties:
TF*IDF, log likelihood ratio, and log odds ratio
statistics. The feature set is summarized in Table 1.
See Fisher and Roark (2006) for details on calcula-
tion of the features.

Beyond these base features, we added the features
from Table 1 for both the immediately previous and

immediately following sentences as features for the
current sentence, effectively tripling the number of
features.

Using multiple similarity metrics as features
is useful because all of these features score co-
occurrence dependencies differently.

1.4.2 Query-focused sentence ranking
Skewing word distributions
To achieve query-sensitivity within the context of
a single supervised ranking system, we examined
skewing word distributions towards the query for
purposes of calculating distribution sensitive fea-
tures. Recall that we have a number of features (see
table 1) that rely on the distribution of a word in the
document set relative to its distribution in the corpus.
We skew the word distributions towards the query
in a document set by adding the counts of each of
the non-stop query words, multiplied by an empir-
ically determined factor, to the counts of words in
the document set. In effect, non-stop query words
have their counts increased in the document set for
purposes of calculating the word-distribution sensi-
tive features. The result is that when extracting fea-
tures from a sentence, words that are in the query
will have relatively larger feature values, by virtue
of having higher document set counts. When the in-
dividual words have larger values, the feature val-
ues for sentences containing those words will also
be higher.

Note that this approach allows us to train the mod-
els on non-skewed training data, with the query-
focused skewing happening at test time. Hence,
large amounts of query-neutral multi-document
summarization training data can be exploited. With
this approach, we can get query sensitivity within
a very simple ranking approach. This has the ad-
ditional benefit of being able to convert the ranking
score to a normalized probability (via softmax), thus
allowing the use of these scores as features in an-
other stage of ranking.
Re-ranking
The first-pass ranking model in our approach is
trained on query-neutral summarization data. Given
that we now have query-sensitive training data from
the DUC-2005 and 2006 evaluation set, we can build
a specifically query-focused reranker from this data.
As with the query-neutral ranking, we used the per-

ceptron ranking algorithm.
The sentences are first ranked using the skewing

approach described above, and the output from this
step (the softmax normalized perceptron score) is
one of the features input to the reranker. In ad-
dition to this feature, which has its weight empiri-
cally fixed, the reranker has two other sets of fea-
tures for which it learns parameter weights. These
are features characterizing the number of non-stop
query words in the sentence. We first partition the
set of non-stop query words into two subsets: those
with log likelihoods higher than a fixed threshold
and those with log likelihoods lower than the thresh-
old. The log likelihood is calculated for each query
word for that cluster, using unskewed counts. Then,
for each subset s, there are five indicator features: 0
words in the sentence from s; at least 1 word in the
sentence from s; at least 2 words from s; at least 3
words; and at least 4 words. For the trials reported
here, the partitioning threshold was set empirically
at 10. See Fisher and Roark (2007a) for further de-
tails on this approach.

For training the reranker, we used the DUC-2005
document sets as training data, and the DUC-2006
document sets as development data for testing dif-
ferent features. We fixed the weight of the baseline
ranker at 1000.
Query expansion
Besides skewing word distributions towards the
query, and then performing re-ranking with query-
based features, we also performed query expansion
to make our sentence ranking more sensitive to the
query. We used a 300 million word corpus to esti-
mate the probability that two words will occur in ad-
jacent sentences. We picked the 100 non-stop words
with the highest log-likelihood as expansion terms
for each query term. These expansion terms were
included in the re-ranking step described above, but
as separate features from the actual query terms. For
more details see Fisher and Roark (2007a).

1.5 Sentence and edu selection
At the sentence selection stage, we removed any sen-
tence (or edu less than 5 words or greater than 50
words in length. The restriction on being too short
is based on the intuition that in an extraction system,
anything too short will be meaningless out of con-
text. The restriction on being too long is a simple

way to keep the system from extracting long lists,
which generally do not make a good summary. In
addition, any sentence that begins or ends with a
quotation mark was also filtered out. Finally, sen-
tences beginning with a pronoun were removed, to
avoid the most obvious cases of poor anaphora res-
olution.

At this point we also applied some simple com-
pression to the remaining sentences. Namely,
we removed any paired parentheticals, defined as
stretches of text in a sentence that were delimited
by parentheses, single dashes, or em-dashes.

For the base summary in a docset, sentences (and
edus for our second system) were selected in order
based on the final ranking, until the summary size
limit was reached, with some sentences (and edus)
being removed for lack of novelty, as follows. Stop-
words were removed from a candidate span, then the
bigram overlap with non-stop words already in the
summary was calculated. If the overlap amounted
to 65 percent or less of the non-stop words in the
candidate (determined empirically), the candidate
was added to the summary, otherwise it was dis-
carded. Finally, we ordered the extracted spans by
document-id, and then by order they occurred in the
document.

2 Update Summaries

Our system for producing the update summary, the
second summary for each docset, is very similar to
the query-focused multi-document summarizer just
described, but with some important differences in
selection from the ranked list of sentences (and edus
in the second system). We use the same classi-
fier and feature set, trained in the same way as the
base summarizer. However, in the sentence selec-
tion stage when checking for overlap between a can-
didate sentence or edu and the spans already in the
summary so far, we checked not only against spans
already in the new summary, but also against spans
from the summary of the first partition. Thus, there
was no change to our ranking algorithm, only to the
part of the system that adds already ranked spans to
the growing summary.

3 Summarization Results

This year at TAC, each team was allowed to submit
two runs, each of which was fully evaluated, both
automatically and manually. Our first run, CSLU-
OHSU1, used precisely the same model (no retrain-
ing) as our 2008 system (Fisher and Roark, 2008).
Our second run, CSLU.OHSU2, was trained on the
same training data as the first, but with the inclusion
of the sub-sentential units, edus, described above in
section 1.3.

The difference between the two runs was some-
what surprising. We will concentrate here on the
manual pyramid evaluations (recall based), as they
are most indicative of the quality of the content in
the summary, which is what we were aiming to max-
imize. The CSLU.OHSU1 run scored at about the
top of the bottom third (35th of 55) in the base sum-
mary, which is a little worse than last year, and in-
dicates that as in previous years, participants are
getting better (this summarizer scored in the top
quartile for virtually all measures in the 2006 eval-
uation). We were not surprised that the second
run, CSLU.OHSU2, score significantly better for the
base summary, about the bottom of the top third
(19th of 55). Because the second run could choose
from smaller units, a larger number of relevant units
should be included in the summary - and the mea-
sures we are looking at are recall based.

The surprise came when we examined the results
of the update summaries. For the update summaries,
the first run improved quite a bit, and the second run
fell dramatically. We expected that even if our first
run improved, the second run would still be better.
Instead, our second run (CSLU.OHSU2) fell to 38th
of 55, while the first run improved to 20th of 55.
The improvement of our first run can be attributed
to our approach to creating the update summary, and
agrees with results from last year in which our up-
date summaries scored better than our base sum-
maries. The fall in score for the second run was puz-
zling at first. What appears to have happened is a
combination of two factors. First, our sentence se-
lection filter for update summaries (see section 2)
became too restrictive for the shorter units (edus)
which were now being included in both the base and
update summaries, i.e. we did not re-estimate the fil-
tering threshold for our second run, and we should

have. Second, even if the threshold is changed, there
is still a problem. That is that when an important
sentence is segmented, the query-sensitivity as we
measure it (akin to word overlap, where word can
also be a synonym, with the query) may leave one
of the segments as scoring with little or no overlap,
even though it contains relevant information. The
solution to this problem is not readily apparent, but
we have a number of ideas. One idea is to include
the score of other edus in the same sentence as fea-
tures, similarly as to how we include the scores of
neighbor sentences as features in the base summa-
rizer. Another idea is to use the rhetorical relation-
ships between edus in the same sentence as features,
thus allowing the discourse structure to play a role
in scoring sub-sentential spans. We currently don’t
have results from using these ideas, but are planning
to implement them.

4 Summary and future directions

We have presented the application of general super-
vised machine learning techniques to the problem
of sentence ranking for extractive summarization.
By exploiting model summaries to define a gold-
standard ranking over sentences, we can use well-
motivated learning approaches, which handle an ar-
bitrary number of features. We have demonstrated
that many common metrics used for sentence rank-
ing can be combined into a single ranking model that
provides better performance than any of the met-
rics in isolation. We straightforwardly extended the
model to include features of neighboring sentences,
which was demonstrated to improve performance.
We have applied this approach to query-directed up-
date summarization through a number of techniques:
(1) query word count inflation; (2) reranking based
on query-directed training data; and (3) query ex-
pansion techniques. The resulting approach is com-
petitive, and its generality and ease of extension
should allow for substantial future developments.

There are a number of ways to improve the cur-
rent system. The feature set for the reranker is an
area we will continue to explore, since we have ex-
perimented with relatively few different features for
the current system. Though including all unigrams
as features led to over-fitting, we would like to find a
subset of lexical n-gram features that are relevant to

indicating importance and applicability to inclusion
in a summary. We also want to include features that
are indicative of what sort of question the query is.

Given the intriguing results from using sub-
sentential RST segments rather than just sentences
alone as the spans extracted, we would like to exper-
iment with going one step further and performing
full Rhetorical Structure Theory discourse parses of
the source documents. Previous work has shown
that such parses can be useful for producing query-
neutral summaries. We feel it is highly likely that
they can be useful in query-focused summarization
as well.

5 Introduction to Entity Linking

We now move on to describing an entity linking sys-
tem for knowledge base population.

Many textual information extraction pipelines be-
gin by assigning links between texts (documents,
paragraphs, sentences, or fragments) which refer to
the same entity. Indexing and search are fairly well
understood, so retrieving information about an entity
is usually easy, but identification of the desired in-
formation within a set of search results can be quite
difficult. For example, if we wish to extract facts
about the Arizona Cardinals football team from a set
of search results, we might need to identify (and ex-
clude) extraneous documents about birds, about the
St. Louis Cardinals baseball team, and perhaps even
some about Catholic church officials. An entity link-
ing system assigns links between texts or from texts
to previously known entities, enabling accurate in-
formation extraction.

We developed the system described here to com-
pete in the 2009 TAC Knowledege Base Population
(KBP) task (NIST, 2009). The KBP task included
two subtasks, the first of which was intended to en-
courage and measure progress on entity-linking.

The KBP dataset included a sizable corpus of
newswire text (source documents) and a partially
pre-populated knowledge-base (KB). KB entries
were divided into three categories:

• PER: Person

• GPE: Geo-political Entity (e.g. city or country)

• ORG: Organization (e.g. company or govern-
ment office)

Each KB entry included an entity ID, a canonical
name and a disambiguating document describing the
entity; some included a few pre-populated facts as
well. Each entity-linking query specified the name
of the desired entity (which often differed from the
KB canonical name of the intended entity) and ref-
erenced a source document which mentioned the en-
tity by name. The system responds with either an
entity ID or NIL if no link could be found.

6 System Description

6.1 Text Preprocessing
We split the source documents into paragraphs us-
ing the SGML paragraph markers, and into sen-
tences using LingPipe’s rule-based sentence seg-
menter (Alias-i, 2009). We removed and ignored all
other SGML markup. We stored each sentence from
the approximately 1.2 million source documents in a
relational database, indexed by document, sentence,
and paragraph. We indexed the full text of each sen-
tence using Apache Lucene (Apache, 2009).

We stored the entities, facts, and disambiguating
documents from the knowledge-base in the same
database, again using LingPipe to sentence-segment
the source documents. We compressed all text
stored in the database, resulting in a sizable but man-
ageable database of approximately 12 GB including
all indices.

The relational database allows easy retrieval of
any subsection of a document. In particular, we’re
able to easily and efficiently retrieve any sentence or
series of sentences, allowing us to vary the size of
the clustering context (see section 6.3) by parame-
terizing the SQL select.

We counted word occurrences in the set of source
documents S, and define o(w) as the count of docu-
ments from S in which word w occurs and

idf(w) = loge

(
|S|

1 + o(w)

)
6.2 Entity Lookup and Query Expansion
We want the ability to link a query to an entity whose
name is not an exact (or even approximate) textual
match. For instance, we would like the possibility
of linking the query ‘GOP’ to the entity ‘Republi-
can Party’, even though no reasonable lexical met-
ric would associate the two. In our context, this

is a query-expansion task — given the query term
‘GOP’, we want to execute searches on our source
documents and knowledge base for the term ‘Repub-
lican Party’ as well as for ‘GOP’.

Various methods of automatically learning such
associations have been explored, but we elected to
make use of easily-available human annotations for
this task. Wikipedia articles link extensively to other
articles within Wikipedia, providing a rich source
of potential ‘aliases’ for known entities. We used a
November 2008 snapshot of Wikipedia, made avail-
able by New York University (Sekine, 2009) to ex-
tract the text of internal links within Wikipedia to the
articles in the reference knowledge base. We used
the title of each link as an alias for the subject of
the target article. For example, the article on Bill
Clinton is linked from elsewhere in Wikipedia as
‘William Clinton’, ‘Clinton, Bill’, ‘I never inhaled’,
etc. These links provide a noisy but useful source
of query term expansions. We stored these aliases in
the database as well, referring relationally the target
entities.

With each query, we construct a set of contexts
C = {c1, c2, . . . , cn}, in which each ci is a string of
tokens, generally one or more sentences, and cluster
C.

We first attempt to match the query directly to an
entity name. We require an exact prefix match of 3
characters, and a total similarity of more than 80%
of the query length, using a character-wise Leven-
shtein distance similarity. We add the entire disam-
biguating document for any matching KB entity to
C.

We then attempt to match the query to any aliases,
applying the same 3-character / 80% threshold, and
again adding the disambiguating KB documents of
any referenced entities to C. If we are unable to
match any knowledge-base entities by either name
or alias, we output NIL.

Having found one or more knowledge-base enti-
ties, we query our Lucene text index and add to C
any sentences from the source document set which
match the query, again requiring a 3-character prefix
match, but this time with a 90% similarity thresh-
old. Note that we do not attempt to match source
document sentences by alias.

Finally, we add the entire disambiguating docu-
ment referenced by the query.

So, C includes:

• The entire document referenced in the query it-
self.

• Disambiguating documents describing all KB
entities matched either by name or by alias.

• All source document sentences which closely
match the query.

6.3 Clustering
We use a simple weighted variation of the standard
TF-IDF similarity metric (Robertson and Sparck
Jones, 1976) to cluster related texts in C. For any
string ci from C, we define:

w1 . . . wn = the set of unique words in ci
cnt(ci, wj) = occurrences of word wj in ci

weight(c, w) = idf(w) · cnt(c, w)

And finally,

distance(c1, c2) =

1−

n∑
j=1

(
idf(wj)

√
cnt(c1, wj) · cnt(c2, wj)

)
√√√√ n∑

j=1

weight(c1, wj) ·
n∑

j=1

weight(c2, wj)

To cluster, we apply Kruskal’s minimum-
spanning-tree algorithm, as described in CLR (Cor-
men et al., 2009) and implemented by LingPipe
(Alias-i, 2009). We let e be the number of enti-
ties found through query expansion, and split C into

min(2e,
|C|
2

) clusters. We then link the query to
the knowledge-base entity nearest to the query doc-
ument and within the same cluster. If no KB entity
is clustered with the query document, we return NIL.

7 Entity Linking Results

The TAC 2009 KBP query set consisted of 3904
queries, of which we correctly identified 2572. We
present our performance as compared to the median
of all systems evaluated:

Queries OHSU Median
All 0.6588 0.7108
non-NIL 0.4854 .6352
NIL 0.7891 0.7891

Our overall performance falls close to the me-
dian of all submissions; in fact, our performance on
queries for entities which are not in the KB (NIL) is
precisely the median. However, we significantly un-
derperform the median system(s) on non-NIL enti-
ties. When considering potential improvements, we
further subdivide our 1332 errors as follows:

• A - Failed to link (chose NIL when the entity
was in the KB): 492

• B - Linked to the incorrect entity: 370

• C - Linked when the entity was not in the KB:
470

Classes A and B both cause errors on non-NIL
entities, but we believe the causes and potential so-
lutions are different enough to warrant consider-
ing them separately. In general, class A errors are
caused by insufficient query and alias resolution. We
found that 483 of the 492 Class A errors occurred
when we were unable to find a single entity to clus-
ter (e = 0). Thus, only 9 of the class A errors can
be attributed to clustering failure, whereas all class
B and C errors are clearly caused by clustering.

Note that our errors are distributed fairly evenly
across those three categories. We believe this indi-
cates a system with fairly balanced failure modes;
unfortunately, it also means that a changing the op-
erating point with a simple parameter change is un-
likely to improve overall performance significantly.

The full system ran in approximately 1.5 hours
of wall-clock time, consuming 13.2 CPU-hours on a
heterogenous 30-node cluster.

8 Future Directions

Within the current architecture of our system, we
see two primary avenues for improvement, as well
as a number of parameter tuning opportunities. As
noted, our errors are fairly well-balanced. We be-
lieve that errors of class A are best addressed by ex-
panding and improving query expansion and that er-
rors of classes B and C call for improved clustering.

8.1 Query Expansion
We believe our query expansion would be improved
by weighting a proposed alias match by the number
of links within Wikipedia using the alias. We plan

to try weighting proposed entities (whether matched
by the exact query or by alias) by the number of
links incoming to that entity. We would first explore
a simple weighting by count, followed perhaps by
PageRank over all internal Wikipedia links. How-
ever, note that expanded QE could potentially shift
errors (from class A to other classes) instead of elim-
inating them; improvements in clustering are needed
as well.

8.2 Clustering

Our simple TF/IDF context distance metric (see
section 6.3) is surprisingly effective, but clustering
could probably be improved by substituting a more
principled metric. In particular, we believe we could
improve system performance by adding a named en-
tity recognition (NER) system within the distance
metric. When comparing and linking contexts to
one another, infrequent words (IDF) are of inter-
est, but entity names probably more so. We could
of course emphasize any approximate matches to
the query, but we’re presumably already account-
ing for those similarities in our choice of contexts
to cluster. Additionally, we would like to benefit
from common mentions of other entities. For in-
stance, two contexts which each contain the name
of a PER query’s spouse, or two which contain the
name of the mayor of a city (GPE) should logically
be closely related. We believe incorporating NER
into our distance metric would improve recognition
of these similarities.

We intend to experiment with the lengths of
the contexts added to C. Some of the contexts
are document-length (for example, the query docu-
ment), while others are of sentence length. Although
our database implementation allows fairly transpar-
ent variation of the context size, we have not yet ex-
plored the effects of such variation. We expect the
clustering to perform better with contexts of similar
length, and we will attempt to verify this empirically.

We plan to explore more thoroughly the perfor-
mance effects of the various parameterizations de-
scribed in sections 6.2 and 6.3. In particular, we
chose the 3-character prefix primarily for efficiency
reasons, and it occasionally misses correct matches.
We chose the 80% and 90% thresholds (see section
6.2) and the cluster count arbitrarily, and intend to
further explore the system’s sensitivity to changes in

these parameters.

8.3 Slot Filling

Finally, we plan to complete a slot-filling system
based on entity links produced by our existing sys-
tem (see (NIST, 2009)). We developed some slot-
filling components, but did not have a full system
ready for the 2009 KBP competition.

9 Entity Linking Summary

We presented a simple entity-linking system using
internal Wikipedia links for query expansion. We
evaluated on the TAC 2009 KBP dataset and demon-
strated reasonable performance and efficient runtime
behavior. We discussed various avenues of explo-
ration for future improvements.

References

Alias-i. 2009. LingPipe 3.8.1. http://alias-
i.com/lingpipe.

Apache. 2009. Lucene. http://lucene.apache.org/.
M. Biryukov, R. Angheluta, and M.F. Moens. 2005.

Multidocument question answering text summariza-
tion using topic signatures. Journal on Digital Infor-
mation Management.

S. Blair-Goldensohn. 2005. Columbia University at
DUC 2005. In Document Understanding Workshop
(DUC) 2005.

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. 2009. Introduction to Al-
gorithms, Third Edition. The MIT Press, Cambridge,
MA, 3rd edition.

K. Crammer and Y. Singer. 2001. Pranking with ranking.
In Neural Information Processing Systems. NIPS.

G. Erkan and D. Radev. 2004. Lexpagerank: Prestige in
multi-document text summarization. In Proceedings
of EMNLP.

S. Fisher and B. Roark. 2006. Query-focused summa-
rization by supervised sentence ranking and skewed
word distributions. In Proceedings of the Document
Understanding Workshop (DUC).

S. Fisher and B. Roark. 2007a. Feature expansion for
query-focused supervised sentence ranking. In Pro-
ceedings of the Document Understanding Workshop
(DUC).

S. Fisher and B. Roark. 2007b. The utility of parse-
derived features for automatic discourse segmentation.
In Proceedings of the 45th Annual Meeting of ACL,
Prague, Czech Republic.

Seeger Fisher and Brian Roark. 2008. Query-focused
supervised sentence ranking for update summaries. In
Document Understanding Workshop.

C.Y. Lin and E. Hovy. 2002. Automated multi-document
summarization in NeATS. In Proceedings of the Hu-
man Language Technology Conference.

C.Y. Lin. 2004. Rouge: a package for automatic evalu-
ation of summaries. In Workshop in Text Summariza-
tion, ACL’04.

R. Mihalcea and P. Tarau. 2005. An algorithm for lan-
guage independent single and multiple document sum-
marization. In Proceedings of the International Joint
Conference on Natural Language Processing (IJC-
NLP).

NIST. 2009. Task description for Knowledge-Base polu-
lation at TAC 2009.

D. Radev, T. Allison, S. Blair-Goldensohn, J. Blitzer,
A. Çelebi, S. Dimitrov, E. Drabek, A. Hakim, W. Lam,
D. Liu, J. Otterbacher, H. Qi, H. Saggion, S. Teufel,
M. Topper, A. Winkel, and Z. Zhang. 2004. MEAD
- a platform for multidocument multilingual text sum-
marization. In LREC, Lisbon, Portugal.

S. E. Robertson and Karen Sparck Jones. 1976. Rele-
vance weighting of search terms. Journal of the Amer-
ican Society for Information Science, 27(3):129–146.

Javier Artiles Satoshi Sekine. 2009. Tagged and cleaned
wikipedia. http://nlp.cs.nyu.edu/wikipedia-data/.

