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Abstract 

This paper describes our participation in the 
Recognizing Textual Entailment challenge 
(RTE-5) in the Text Analysis Conference (TAC 
2009). Following the two-stage binary 
classification strategy, our focus this year is to 
recognize related Text-Hypothesis pairs instead 
of entailment pairs. In particular, we propose a 
joint syntactic-semantic representation to better 
capture the key information shared by the pair, 
and also apply a co-reference resolver to group 
cross-sentential mentionings of the same entities 
together. For the evaluation, we achieve 63.7% 
of accuracy on the three-way test, 68.5% on the 
entailment vs. non-entailment test, and 74.3% on 
the relatedness recognition. Based on the error 
analysis, we will work on differentiating 
entailment and contradiction in the future.  

1 Introduction 

Recent research on recognizing textual entailment 
(RTE – Dagan et al., 2006; Giampiccolo et al., 
2007; Giampiccolo et al., 2008) extends the two-
way annotation into three-way1, making the task 
more difficult, but more linguistic motivated. The 
straightforward strategy is to tackle the three-way 
task is to treat it as a three-way classification task, 
such that a classifier directly tries to assign one of 
the following results, entailment, contradiction, or 
unknown. However, it seems that the performance 
suffers a significant drop even when using the 
same classifier and feature model. As mentioned in 
Wang and Zhang (2009), common approaches 

                                                           
1 http://nlp.stanford.edu/RTE3-pilot/ and 
http://www.nist.gov/tac/tracks/2008/rte/rte.08.guidelines.html  

based on overlapping information between text (T) 
and hypothesis (H) usually over-cover the 
entailment (E) cases, which include the 
contradiction (C) cases as well. They suggest a 
Textual Relatedness measurement and also 
perform a detailed comparison of different 
classification strategies, which indicates that 
identifying related (R) and unknown (U) cases first 
might be the most appropriate choice. Following 
this line of research, we show the relationship 
between these different cases in Figure 1. In this 
work, we continue the two-stage classification 
strategy, that is to make a decision between R and 
U first and followed by a second decision between 

Figure 1 The Relationship between the Three 
Textual Relations 

We treat relatedness as another dimension besides 
entailment and contradiction. Given a related T-H 
pair, we further decide whether there is an entailment 
relation or contradiction in between; if it is unrelated, 
it will be classified as unknown. Note that in fact 
these relations cannot cover the whole area (e.g. the 
directionality of the entailment relation is ignored 
here), this is just a simplified figure roughly showing 
the two dimensions. 



E and C, instead of a direct classification among E, 
C, and U in one step. And we focus on the first 
stage. 

Apart from the choice of different strategies, 
there is another issue that has not been addressed 
in detail in (Wang and Zhang, 2009), that is, the 
selection of the meaning representation for the 
text. In fact, any representation is limited in 
someway, the Bag-of-Words (BoW) representation 
is an extremely naïve model in this case, and it is 
insufficient to capture the meaning of text in 
general. Our previous work (Wang and Neumann, 
2007) proposed a pure syntactic approach by only 
performing a syntactic dependency analysis on 
corresponding T-H pairs. It utilizes subsequence 
kernel to capture different variations of the 
syntactic transformation based on Part-of-Speech 
(POS) and syntactic dependency path. Although 
this approach only uses syntactic information, it 
achieved promising performance. Of course, it is 
still not a systematic way of handling entailment 
recognition, which is usually at or beyond the 
semantic level. Wang and Zhang (2009) work on 
the semantic dependency graphs, which can deal 
with (some) syntactic variations like active/passive 
voice transformation, nominalization of the events, 
etc. However, the semantic dependency fails to 
reach the syntactic object inside each prepositional 
phrase, which is of great importance for matching 
key information between T and H. Moreover, 
sentence-based syntactic and semantic dependency 
analysis will suffer from unsolved cross-sentential 
co-references, when T contains more than one 
sentence, and the problem becomes even more 
severe if the length of T increases (as in RTE-5). 

In this work, in order to solve the problems 
mentioned above, 

• We combine syntactic and semantic 
dependency structure into a connected 
graph, achieving a new joint representation 
which can better capture the overlapping 
information between T and H; 

• We also use a co-reference resolver to 
group different mentionings of the same 
entity together to share the information 
between sentences. 

The experiment results show that our approach 
is effective on relatedness recognition, therefore, 
favors three-way classification more than the 

traditional two-way annotation, entailment vs. non-
entailment. The joint representation, the co-
reference resolver, and the richer feature model for 
the backup strategies all contribute to the final 
results, while the contribution from different 
lexical resources is less significant. 

In the following, we will firstly mention some 
related work; Section 3 will introduce our joint 
representation; Section 4 will describe the 
matching/alignment module of our system; The 
experiment results as well as ablation tests of 
excluding different lexical semantics resources will 
be presented in Section 5; and finally in Section 6, 
we will conclude the paper and point out future 
work. 

2 Related Work 

Although the term of Textual Relatedness has not 
been widely used by the community, many 
researchers have already incorporated modules to 
tackle it, which are usually implemented as an 
alignment module before the inference/learning 
module is applied. For example, Pado et al. (2009) 
mentioned two alignment modules: one is a 
phrase-based alignment system called MANLI 
(MacCartney et al., 2008), and the other is a 
stochastic aligner based on dependency graphs. 

As for the whole RTE task, many people 
directly do the three-way classification with 
selective features (e.g. Agichtein et al., 2009) or 
different inference rules to identify entailment and 
contradiction simultaneously (e.g. Clark and 
Harrison, 2009); while other researchers also 
extend their two-way classification system into 
three-way by performing a second-stage 
classification afterwards. An interesting task 
proposed by de Marneffe et al. (2008) suggested an 
alternative way to deal with the three-way 
classification, that is, to identify the contradiction 
cases first. However, it has been shown to be more 
difficult than the entailment recognition. 

Wang and Zhang (2009) performed a detailed 
comparison of different two-stage binary 
classification strategies. They claimed that 
approaches based on overlapping information 
between T and H actually capture the related text 
pairs instead of entailment pairs, which is 
confirmed by experiments. In this work, we will 
follow the strategy of splitting related/unknown 
cases out first, but we propose a joint syntactic-



semantic representation for text, as opposite to the 
pure semantic dependency graph as in (Wang and 
Zhang, 2009). 

Basically our previous year’s system focusing 
on NE-based entailment (Wang and Neumann, 
2009) could potentially be used for relatedness 
recognition as well. However, due to the time 
constraint, we did not integrate the two systems 
into a unified framework. After all, the old system 
focuses on two-way entailment recognition 
(directional rules were applied), and the new 
system handles relatedness better, which is based 
on overlapping information shared between T and 
H. 

3 The Joint Representation 

Before introducing the joint representation, let us 
first take a closer look at the problems of the pure 
syntactic or semantic dependency structure as the 
meaning representation. Figure 2 shows an abstract 
example of an alignment between T and H. 

We simplified H into a concise sentence with 
only three words, e.g. a predicate (in red) with a 
subject and an object, while T contains two 
sentences (hence T1 and T2) and more information 
(ir)relevant to H. We assume that T2 is aligned 

with H with more overlapping words (denoted by 
the circles with same blue color2). 

Besides the word alignment, we also check the 
overlapping syntactic dependency triples (i.e. 
<word, relation, word>), but we observe that these 
overlapping syntactic dependency triples cannot 
help us to reach the aligned words (on the syntactic 
dependency tree). Therefore, we need to go one 
level deeper to the semantic dependencies. 

Although we could get the left-hand side aligned 
fully by semantic dependencies, the blue circle in 
T2 on right-hand side still cannot be reached. The 
black circle here is the end of the semantic 
dependency graph, and usually it is realized as a 
preposition. Consequently, we take the syntactic 
dependency into account, which links the black 
circle to the blue circle and it can be used as a 
“backup” link for the semantic dependencies. 

Therefore, the joint representation consists of 
two parts: 1) the semantic dependencies (which 
can be a bag of isolated graphs in some cases); and 
2) the syntactic dependencies connecting the 
content words, where the semantic graph ends at 
functional words. This is marked in bold in Figure 
2. 
                                                           
2 The light blue circle will be discussed later. For now, we just 
treat it the same as the dark blue ones. 

Figure 2 Example of an Alignment 
Each circle represents a word/token in the sentence; circles with the same color are aligned word 
pairs; the light blue circle represents a co-reference of the dark blue circle in sentence 1 of T; each 
arrow represents a dependency between two words, either a syntactic dependency (curved) or a 
semantic dependency (orthogonal); a dashed line means an alignment between two words, and a 
dash-doted line means an alignment between two dependencies. Note that the black circle is how 
"far" we can get by semantic dependency, which cannot reach the aimed dark blue circle. 



The light blue circle denotes a co-reference of 
the dark blue circle in T1. This occurs more 
frequently, if the text of T becomes longer. Since 
we can easily find the alignment between the first 
word of H and the first word in T1, the alignment 
can be potentially passed to the first word in T2 
(which is, for example, a pronoun). Therefore, we 
apply a co-reference resolution toolkit, BART 
(Versley et al., 2008) to gather such cross-
sentential references. Briefly, the resolver will 
assign a label for a bag of different mentionings of 
the same entity it discovers in the text and we just 
group all the mentionings together (according to 
the labels) for the word alignment module. 

Based on these two processes, we can thus 
integrate all the information (under a certain 
discourse) into one unified representation, both 
horizontally (from different sentences) and 
vertically (from different levels of linguistic 
analyses). 

The advantage of such representation will be 
shown in the following example, 

T: At least five people have 
been killed in a head-on 
train collision in north-
eastern France, while others 
are still trapped in the 
wreckage. All the victims are 
adults. 
H: A French train crash 
killed children. 

This is an example of a contradiction, where the 
only contradictive part lies on “adults” in T and 
“children” in H (shown in italics). As being 
mentioned in Wang and Zhang (2009), this pair 
can be solved by matching the semantic 
dependency graphs. However, notice that, “in 
north-eastern France” in T and “French” in H 
(shown in bold) cannot be aligned by only 
syntactic or semantic dependencies, because the 
AM-LOC argument of the predicate “collision” is 
the preposition “in”, and “France” cannot be 
reached on the semantic dependency graph. The 
link from the preposition “in” to the object 
“France” is a syntactic dependency, which will be 
included by the joint representation. Similarly, the 
active/passive voice transformation can also be 
captured. For example, 

T: Yigal Amir, the student 
who assassinated Israeli 
Prime Minister Yitzhak Rabin, 
… 
H: Yitzhak Rabin was killed 
by Yigal Amir. 

“Yigal Amir” in T will be linked to 
“assassinated” via semantic dependency (the 
syntactic dependency is not direct); while “Yigal 
Amir” in H is under the preposition “by” on the 
syntactic tree, but hidden on the semantic 
dependency graph. 

4 The Matching Module 

Basically, we use the same matching algorithm of 
Wang and Zhang (2009). As we mentioned in the 
introduction, we break down the three-way 
classification into a two-stage binary classification 
and focus on the first stage as a subtask of the main 
task, which is to determine whether H is related to 
T. Similar to the probabilistic entailment score, we 
use a relatedness score to measure such 
relationship. Due to the nature of the entailment 
recognition that H should be fully entailed by T, 
we also make this relatedness relationship similar. 
Roughly speaking, this relatedness function R(T, 
H) can be described as whether or how relevant H 
is to some part of T. In practice, the relevance can 
be realized as surface string similarity, semantic 
similarity, or co-occurrence-based similarity. 

The only difference here is that, the meaning 
representation for the new system is the joint 
syntactic-semantic dependency graph introduced in 
the previous section instead of the pure semantic 
dependency graph. Therefore, when we find the 
best matching sentence pair from T and H, we will 
(in most of the cases) have two connected graphs 
at hand. And then, the same decomposition 
algorithm will be performed to divide the graphs 
into dependency triples (i.e. <predicate, relation, 
argument> for semantic dependencies and <parent, 
relation, child> for syntactic dependencies). 

To align the words, we need lexical semantic 
resources. Fortunately, many people have done 
research on semantic relatedness in lexical 
semantic studies. Therefore, these functions can be 
realized by different string matching algorithms 
and/or lexical resources. Since the meaning of 
relevance is rather broad, apart from the string 
matching of the lemmas, we also incorporate 



various resources, from distributionally collected 
ones to handcrafted ontologies. We choose 
VerbOcean (Chklovski and Pantel, 2004) to obtain 
the relatedness between predicates (after using 
WordNet – (Miller, 1993) to change all the 
nominal predicates into verbs) and use WordNet 
for the argument alignment. For the verb relations 
in VerbOcean, we consider all of them as related; 
and for WordNet, we not only use the synonyms, 
hyponyms, and hypernyms, but antonyms as well. 
In addition, the Normalized Google Distance 
(NGD – Cilibrasi and Vitanyi, 2007) is applied to 
both cases3 and we use empirical value 0.5 as the 
threshold. 

In all, the main idea here is to incorporate both 
distributional semantics and ontological semantics 
in order to see whether their contributions are 
overlapping or complementary. In order to achieve 
a better coverage, we use the OR operator to 
connect all the lexical relatedness functions, which 
means, if any of them holds, the two items are 
related. 

Finally, besides giving one single answer 
(whether T and H is related or not), the module 
provides more outputs, like the alignment ratio of 
the predicates over all the triples, whether all the 
predicates in H are aligned, and the same for the 
arguments. Furthermore, these outputs are used as 
part of the feature model of the backup strategy, 
which essentially incorporate features from all 
linguistic processing levels, BoW, syntactic 
dependencies, semantic dependencies, and the joint 
representation. 

5 Results and Discussion 

We have submitted three runs for the three-way 
RTE challenge, which have different 
configurations as follows, 

• Run1: Wang and Zhang’s system + a 
backup strategy using BoW, and syntactic 
dependency features 

• Run2: the main system (lenient 4 ) + a 
backup strategy using features from the 

                                                           
3 You may find the NGD values of all the content word pairs 
in RTE-3, RTE-4, and RTE-5 datasets at http://www.coli.uni-
sb.de/~rwang/resources/RTE3_RTE4_NGD.zip and 
http://www.coli.uni-sb.de/~rwang/resources/RTE5_NGD.zip  
4 We use the same settings of the Wang and Zhang’s system. 
Here, “lenient” is “yyn” according to their definition, meaning 

BoW, syntactic dependency, and semantic 
dependency 

• Run3: the main system (strict) + a backup 
strategy using features from the BoW, 
syntactic dependencies, semantic 
dependencies, and the joint representation 

For syntactic dependency parsing, we use the 
open source MSTParser (McDonald et al., 2005), 
trained on the Wall Street Journal Sections of the 
Penn Treebank, using a projective decoder with 
second-order features. And for the semantic 
dependency parsing, we use the semantic role 
labeler described in (Zhang et al., 2008). The 
system is also trained on the Wall Street Journal 
sections of the Penn Treebank using PropBank and 
NomBank annotation of verbal and nominal 
predicates, and relations to their arguments (Mihai 
et al., 2008). 

The three-way results and the ablation test 
results are shown in the following Table 15, 

 
Runs Main Main 

-VO 
Main 
-WN 

Main 
-VO-WN 

DFKI1 50.7% 50.5% 50.7% 50.5% 
DFKI2 63.7% 63.2% 63.3% 63.0% 
DFKI3 63.5% 63.3% 63.3% 63.3% 
Table 1 Official Submission Results (three-way) 

 

Compared to Wang and Zhang (2009) system 
(DFKI1), the improvement of system DFKI2 and 
DFKI3 is obvious. We attribute it to two reasons: 
1) the backup strategies using richer feature 
models (i.e. including semantic dependency 
features) contribute to the final results; and 
furthermore 2) the joint representation of syntactic 
and semantic dependency and co-reference 
resolution are also effective. We will take a closer 
look at these two aspects in the following Table 2, 
which shows the T-H pairs on which the main 
approach has a higher confidence, 

 
 
 
 
 

                                                           
either predicate trees ask for a full match or argument trees 
ask for a full match; and similarly, “strict” is “nny”. 
5 VO stands for VerbOcean; WN stands for WordNet; and “-” 
here means taking the resource(s) out. 



Covered 
Runs 

# of T-H Pairs Main Backup 
DFKI1 102 55.9% 53.9% 
DFKI2 102 67.6% 67.6% 
DFKI3 10 80.0% 80.0% 

Table 2 Results on the Covered Data 
 
We observe that, in fact, the backup strategies 

determines the final results, since the coverage of 
the main approach occupies only 1/6 of the dataset, 
especially for DFKI3, the strict setting of our 
system only covers 10 T-H pairs. The big gap 
between DFKI1 and the other two suggests that 
including richer semantic dependency features 
does help a lot. 

We also calculate the confusion matrix for the 
three-way submission DFKI2 as follows, 

 
Gold-Standard 

DFKI2 
E C U Total 

E 238 60 77 375 
C 4 21 10 35 
U 58 9 123 190 

System 

Total 300 90 210 600 
Table 3 Confusion Matrix of DFKI2 Submission 
 
Although the system confuses between many 

entailment and unknown cases, the most serious 
problem seems to be the contradiction recognition, 
whose recall is the lowest (21/90=23.3%). In fact, 
this difficulty has been mentioned in the previous 
research (de Marneffe et al., 2008). Therefore, the 
differentiation between entailment and 
contradiction in the second stage classification will 
be our future focus. 

Finally, we also present our two-way results, 
both on the traditional two-way classes (Table 4) 
and related vs. unknown classes (Table 5). 

 
Runs Main Main 

-VO 
Main 
-WN 

Main 
-VO-WN 

DFKI1 62.5% 62.5% 62.7% 62.5% 
DFKI2 66.8% 66.5% 66.7% 66.3% 
DFKI3 68.5% 68.3% 68.3% 68.3% 

Table 4 Results of Entailment vs. Non-Entailment 
 

 
 
 
 

Runs Main Main 
-VO 

Main 
-WN 

Main 
-VO-WN 

DFKI1 74.0% 73.7% 73.8% 73.7% 
DFKI2 74.3% 73.7% 73.8% 73.5% 
DFKI3 72.3% 72.2% 72.2% 72.2% 

Table 5 Results of Related vs. Unknown 
 
These two tables clearly show that all our three 

runs do well for the relatedness recognition, which 
meets our original goal. The overall improvement 
from the worst to the best results on the traditional 
two-way annotation is less than the three-way 
annotation (6% vs. 13%). 

Notice that the setting with the best three-way 
result (DFKI2) is different from the setting of the 
best two-way result (DFKI3). It seems that, a 
model of richer features would contribute more to 
the two-way task; while a simplified version would 
give us a better three-way result. 

6 Conclusion and Future Work 

To sum up, the results of this year’s participation is 
encouraging. Given that the task is more difficult 
(longer Ts), we still achieve better results than last 
year’s results (although on different data sets). 
Especially, our approach based on the joint 
syntactic-semantic structure is effective for the 
three-way task, which we view as a more 
linguistically motivated annotation scheme. This 
also confirms the claim that methods based on 
overlapping information between T and H does a 
better job on relatedness recognition comparing 
with the entailment recognition. 

For the future work, as we mentioned in the 
previous section, we plan to do more fine-grained 
analysis on the second-stage classification, that is, 
entailment vs. contradiction. And the directionality 
of entailment should also be taken into 
consideration. 
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