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Abstract

In this paper, we report our participation in
Update Summarization, Knowledge Base Pop-
ulation and Recognizing Textual Entailment at
TAC 2009. This year, we enhanced our ba-
sic summaization system with support vector
regression to better estimate the combined af-
fect of different features in ranking. A Nov-
elty measure is devised to effectively capture
relevance and novelty of a term. For Knowl-
edge Base Population, we analyzed IR ap-
proaches and Naive Bayes Classification with
Phrase and Token searches. Finally for RTE,
we extract templates from sentences and com-
pare them based on rules designed seperately
for predicting entailment, contradiction and un-
known cases, making use of semantic knowl-
edge from resources like Word Net, Verb Ocean
and Acronym database.

Part 1

Update Summarization
Track

1 Introduction

Update Summarization is a new stride in summariza-
tion community. Ever since its introduction in DUC
2007 !, there has been a consistently growing focus
in this direction. The task is to summarize a clus-
ter of documents under the assumption that user had
some prior knowledge on topic. The major challenge
in update summarization is to detect information that
is not only relevant to users need but also novel given
the user’s prior knowledge. Update summarization is
relevant for newswire, since a topic in news stories
evolves over time and user/reader would only be more
interested about new information about that topic.

L http://www-nlpir.nist.gov/projects/duc/duc2007/tasks.html#pilot

NIST first introduced update summarization as a pi-
lot task at DUC 2007, later as a main task at TAC 2008
and continued it in TAC 2009. While the problem def-
inition remained the same, the quality of data have
improved through out the years. In DUC 2007, the
update task data was just a subset of Multi-Document
Summarization data. In 2008 sufficient care is taken
such that there are distinctive events between clusters,
but a huge time gap is observed between clusters. For
TAC 20009, a lot of time and efforts has been put into
choosing news topics and creating appropriate docu-
ment clusters.

Update summarization shares similarity with Nov-
elty track introduced at TREC 20022. The Nov-
elty track was designed to investigate systems’ abil-
ity to locate relevant, novel information within the
ranked set of documents retrieved in answer to a topic.
Update Summarization is in a way an extension to
Novelty track as it needs to summarize the content
along with detecting relevant and novel information.
Researchers have approached the problem of “Up-
date Summarization” at varying levels of complexity
during past couple of years at TAC. Ruifang He et.
al [6] proposed an iterative feedback based evolution-
ary manifold ranking of sentences for update summa-
rization. Ziheng Lin et. al [24] followed time stamped
graph approach incorporating information about tem-
poral ordering of events in articles to focus on the up-
date summary. There are also simple content filtering
approaches [23] which identify dynamic content and
generate summaries.

Recent advances in machine learning like per-
ceptrons [4], markov models [14], CRF’s [19] and
bayesian classifiers [9] have been adapted to sum-
marization throughout the years. We use a machine
learning method, Support vector regression (SVR) for
sentence ranking. Sujian Li, You Ouyang [11] were
the first to use regression in the context of text sum-
marization to predict sentence scores. FastSum [18]
also utilizes support vectors to score sentences using
multiple features.

2 http://trec.nist.gov/data/novelty.html



In this work, we introduce a new feature Novelty
Factor (NF), that is devised to capture relevance and
novelty of a sentence within a topic. Computation-
ally NF is a very simple feature, yet very effective.
Official TAC results support our argument on NF. We
secured 1st position in avg-modified pyramid scores
for cluster B, and 3rd in ROUGE-2 and ROUGE-SU4
recall scores for both clusters A, B. Our Post TAC ex-
periments have shown significant imporovement over
current results for cluster A.

2 System Description

We built a sentence extractive summarizer, that ex-
tracts, scores and ranks a sentence before finally gen-
erating a summary. During ranking, instead of man-
ually weighting each sentence scoring feature 3, we
utilize a machine learning algorithm, Support Vector
Regression (SVR) to predict sentence rank. In fol-
lowing sections we briefly explain SVR, estimation
of sentence importance and our algorithm to generate
summaries.

2.1 Support Vector Regression

Regression analysis refers to techniques for model-
ing values of a dependent variable from one or more
independent variables. Support Vector Machines, a
popular mechanism for classification purposes could
also be used for regression purposes (Vapnike ,Gunn
1988) [5].

Consider the problem of approximating the set of
training data

T = {(Fl,il), (FQ,iQ)...(FS,iS)} C F x R.

where F is space of feature vectors.

A tuple (Fs,is) represents feature vector Fs and
importance score ¢5 of sentence s. Each sample sat-
isfies a linear function ¢(f) = (w, f) + b, with w €
F,beR.

The optimal regression function is given by mini-
mum of functional,

B(w,8) = pllulf +C Y& +&*

where C is a pre-specified value, and ¢;~, &; " are slack
variables representing upper and lower constraints on
the outputs of the system.

We use Radial bias kernel function for our experi-
ments.

2.1.1 Sentence Importance Estimation

Importance score (i) is not pre-defined for sentences
in training data, we estimate the value of importance

using human written summaries(also known as mod-
els) on that topic. ROUGE-2 and ROUGE-su4 scores
highly correlate with human evaluation [12]. Hence
we make a safe assumption that importance of a sen-
tence is directly proportional to its overlap with model
summaries.

Sentence importance is estimated as the ROUGE-2
score of that sentence. The importance of a sentence
s, denoted by 75 is computed as follows

i = ZmEmodels |Bigramm ﬂBigrams|
s =
|s|

ey

| Bigram,, () Bigrams| is number of bigrams
shared by both model m and sentence s. This count is
normalized using sentence length |s|.

2.2 Algorithm

Our system follows a 3 stage algorithm to generate
summaries,

1. Pre-Processing
In pre-processing stage, documents are cleaned
from news heads and HTML tags. Stop words
are removed and porter stemmer is used to de-
rive root words eliminating suffixes are prefixes.
Sentences are extracted from each document.

2. Feature Combination
Features used for sentence scoring are combined
to rank sentences. Normally features are man-
ually weighted to compute sentence rank. This
process is automated with use of SVR in 3 steps,

o Sentence tuple generation: Feature val-
ues of every sentence are extracted and its
importance(z;) is estimated as described in
Section 2.1.1. Each sentence s in train-
ing data is converted into a tuple of form
(Fs,is). Fy is vector of feature values of
sentence Iy = { f1, f2, f3}

e Model building: A training model is built
using SVR, from generated sentence tuples.

e sentence scoring: Importance of a sentence
in testing dataset is predicted based on the
the trained model. The estimated impor-
tance value is considered as rank of sen-
tence.

is = Q(Fs)

3. Summary Generation
During summary generation, a subset of ranked
sentences are selected to generate summary. A
redundancy check is done between a sentence
and summary generated so far, before selecting



it into summary. This step helps to prevent du-
plicate sentences in summary. Sentences are ad-
justed based on their order of occurrence in docu-
ments to improve readability. Reported speech is
removed from summary to alleviate its concise-
ness.

3 Features

For our previous participation at TAC 2008 and
DUC 2007, complex language modeling techniques
like Probabilistic hyperspace analogue to language
(PHAL) [7], KullbackLeibler divergence (KL) [1] are
used as features in our system. This year we have used
Sentence Position (SL1 and SL2) and Novelty Factor
(NF) that is specifically devised for update task as sen-
tence scoring features.

3.1 Sentence position

Sentence position is a very old and popular feature
used in summarization [3]. It is well studied and
still used as a feature in most state of art summariza-
tion systems [8]. We use the location information
of a sentence in two seperate ways to score a sentence.

Sentence Location 1 (SL1):

First three sentences of a document generally con-
tain the most informative content of that document
which is proved by our analysis on the oracle sum-
maries (in Section 5.1). Nearly 40% of all the sen-
tences of the oracle summaries come from among the
first three sentences of each document.

Score of a sentence s at position n in document d is
given by,

n

1— —
1000
n

= 1000 else

Score(sng) = if n<=3

(Assuming that number of sentences in a document
will be less than 1000)

Such that,

Score(s1q) > Score(saq)... >> Score(spq)

Sentence Location 2 (SL2):

Positional index of a sentence in the document is
assigned as the value of feature. Training model will
learn the optimum sentence position for the dataset
based on its genre. Hence this feature is not inclined
towards top or bottom few sentences in a document
like SL1.

Score(spg) =n

where s,, is nth sentence in document d.

3.2 Novelty Factor (NF)

We propose a new feature Novelty Factor (NF) that
primarily focuses on update summarization prob-
lem.Consider a stream of articles published on a topic
over time period T. All the articles published from
time O to time ¢ is assumed to have been read previ-
ously (previous clusters). Articles published in the in-
terval ¢ to T" are unread articles that might contain new
information (new cluster). Let the publishing date of
a document d is represented by 4. NF of a word is
calculated by

. |7’Ldt‘
i) = La T D]

ndg ={d:wedANty >t}
pdi ={d:wedNty <=1t}
D :{d:td>t}

Numerator |nd;| is the number of documents in the
new cluster that contain word w. It is directly propor-
tional to relevancy of the term, since all the documents
in the cluster are relevant to the topic. The term |pdy|
in denominator will penalize any word that occurs fre-
quently in previous clusters, in other words it elevates
novelty of a term. |D| is total number of documents
in current cluster, this is useful for smoothing values
when w do not occur in previous clusters.

Update task data in TAC 2009 consists of two clus-
ters, cluster A is the only previous cluster and B is the
new cluster. Hece the NF for a word in

cluster A

da

nfclusA(w> = Da

cluster B J
nfclusB (w) = W%

Score of a sentence s is the average n f value of its
content words (w). We exclude query words while
computing the score since they are equally important
in both the clusters.

Zies nf (wz)

Score(s) = 5|

NF score of a sentence is a measure of its relevance
and novelty to the topic.

4 Evaluation and Results

TAC 2008 update task documents and corresponding
models are used to generate data for training SVR.



It provides 48 topics, each topic contains 20 docu-
ments divided in chronological order between clus-
ter A and cluster B. Summary for cluster A is normal
multi document summary of length 100 words, where
as summary for cluster B is an update summary of 100
words.

TAC 2009 Update summarization data has 45 top-
ics with documents distributed in each topic the same
way as TAC 2008. NIST evaluates all peer summaries
manually for overall responsiveness, readability and
linguistic quality. All summaries were also automat-
ically evaluated using ROUGE and BE. Evaluations
are also conducted using pyramids [16], which are
built using Semantic Content Units(SCU) from cor-
responding model summaries of a topic.

We submitted two runs, Runl and Run2 for TAC
2009 update summarization track,

Run 1(System id:35) uses two features NF and SL1
for sentence ranking. The training model for SVR is
built upon TAC 2008 update task data.

Run 2(System id:51) generates summary using two
features NF and SL2. DUC 2007 update task data is
used to build training model.

4.1 Results

Official TAC evaluation results of Runl and Run2 on
various intrinsic and extrinsic evaluation criterion for
clusA and clusB are presented in Table 1 and Table 2
respectively.

Runl has proved to work exceptionally well in up-
date scenario. Runl is ranked 1st in Average modi-
fied pyramid scores(APS), 4th in Overall Responsive-
ness(OS) and 3rd in ROUGE Scores(R2 and Rsu4)
for cluster B which is essentially the update cluster.
It worked equally well for cluster A, given that it
secured 3rd in ROUGE, 4th in Overall Responsive-
ness. Average modified pyramid scores of cluster A is
slightly below than best systems.

Run2 is an experimental run to find the effect of
training on overall performance of the system. The
main difference between Runl and Run? is the quality
of training data. Even though Run2 performs compar-
atively well than most of the systems that participated,
it still does not make to the top unlike Runl. Hence it
is inferred that as the quality of training improves so
do the performance of system.

5 Post TAC experiments

5.1 Oracle Summaries

We generated sentence-extractive Oracle Summaries
using test document set and their model summaries.
Each oracle summary is the best sentence extractive

summary that can be generated by any sentence ex-
tractive summarization system for that topic. Sen-
tences are ranked using Equation 1 to produce these
summaries. Motivation behind generating these sum-
maries is to find the scope of improvement in sentence
extractive summarization.

After TAC submission, some new and simple fea-
tures are devised to improve the summary quality es-
pecially in update scenario.

5.2 Query Focus

All the features (NF,SL1, and SL2) in current summa-
rizer are query independent and makes no use of any
information provided by query. Even without query
focus these features are able to perform very well.
Hence, a new feature Qterms is introduced to incorpo-
rate query focus into current summarization system.

Qterms In query focused summarization systems,
a sentence is considered relevant only if it contains a
query term. We use the same intuition to score query
focused sentences. A sentence (s) is scored by the
amount of query terms it contains

F,
Score(s)zizwes o(w)
||
where
Fow) = n if w € @Q
= 0 else

@ is list of all the words in query
n is frequency of w in Q

5.3 Novel Word Count (Nwords)

Novelty Track at TREC is in many ways similar to the
update summarization. The task is to mark novel sen-
tences within a set of relevant sentences for a topic.
As state of art summarizers are sentence extractive
and update summarization requires to extract novel
sentences to build an update summary, novelty track
approaches can compliment update summarization in
identifying sentences with new information.

A simple approach to detect novel sentences is to
compute the amount of new words in a sentence.
Words that never occurred before in document clus-
ter are considered new. In this case, we consider any
word that occured in cluster A other than query words
as old and all the remaining words as new.

A sentence (s) is scored by the amount of Novel
(New) words it contains,

ZwEs FclusA(w)
|s]

Score(s) =



R-2

\ R-sud4 \ Average modified Pyramid score \ Overall Responsiveness

Runl || 0.10840 | 0.14475
2 || 0.10491 | 0.14167

0.299
0.295

4.864
4.727

Table 1: TAC Official results for cluster A

| R-2 | R-su4 | Average modified Pyramid score | Overall Responsiveness
Runl || 0.10100 | 0.13833 0.307 4.614
Run2 || 0.09572 | 0.13644 0.299 4.568
Table 2: TAC Official results for cluster B

are relevant to it. Hence, the importance of a term is

directly proportional to the number of documents in

Fousa(w) = 0 if w € clusA which it occurs. In context of update summarization,

= n/N else there is a need to penalize the terms that are authorita-

clusA is set of words in cluster A
n 1s number of times w occured in cluster B
N is total term frequency of cluster B

We present in Table 3, Table 4, the effect of these
new features along with oracle summaries to depict
the scope of improvement in sentence extractive sum-
marization.

| R2 | Rsud |
Runl+Qterms || 0.11350 | 0.14969
Oracle 0.15620 | 0.18093

Table 3: ROUGE-2 and ROUGE-SU4 scores of Post-
TAC experiments for cluster A

| R-2 | R-sud4 |
Runl1+Qterms 0.09106 | 0.13132
Runl+Nwords 0.09807 | 0.14058
Runl+Nwords+Qterms || 0.08923 | 0.13047
Oracle 0.14978 | 0.17767

Table 4: ROUGE-2 and ROUGE-SU4 scores of Post-
TAC experiments for cluster B

Query focus (Qterms) has helped in producing bet-
ter summaries for cluster A. Around 4% improvement
in ROUGE scores is observed. It is interesting to
see that, the same feature failed to improve quality of
cluster B summaries.

Inclusion of New Novelty feature (Nwords) does
not show any significant growth over Runl. Adding
Qterms to this combination only resulted further dip
in scores.

6 Discussion

Novelty Factor(NF) is able to perform well in summa-
rization because all the documents given under a topic

tive in cluster A. So, the importance of a term in clus-
ter B is inversely proportional to the number of docu-
ments in which it occured in cluster A. Both sentence
positional algorithms (SL1 and SL2) have performed
decently. SL1 is inclined towards top sentences in a
document, and SL?2 is unbiased towards positional in-
dex of a sentence. SL1 works because of the intu-
ition that top sentences would always have informa-
tive content. SL2 is a feature that helps boosting infor-
mative sentences based on genre of the corpus. SL2
learns significant sentence positions in corpus based
on training data. As both training and testing belong
to same genre (Newswire) SL2 performs well. In our
experiments both SL1 and SL2 performs in a similar
way as important sentences in training data are present
among top 3 sentences of a document.

The major difference between Runl and Run2 is
the amount and quality of training data. DUC 2007
update task data is just a subset of Multi Document
summarization data and TAC 2008 data is specifically
handcrafted for update task. It is observed that Runl
produces better summaries than Run2 both in auto-
matic and manual evaluations.

There is still a huge gap between ROUGE scores of
oracle summary and machine generated summaries. It
reveals the fact that there is a lot of scope for improve-
ment in sentence extractive summarization.

In future we plan to involve NF within a formal lan-
guage modeling framework. We are currently work-
ing on predicting word level importance using SVR.
Experiments are being carried out to predict the role
of word position in a sentence to decide its impor-
tance. Further we plan to explore the use of entailment
in summarization scenario.



Part 11
Knowledge Base
Population (KBP)

1 Introduction

TAC 2009 Knowledge Base Population (KBP) track
focuses on automatic updation of structured Knowl-
edge Bases (KB). The task has been broken down into
two sub tasks.

1) Entity Linking: The aim of this task is to de-
termine for each query, which knowledge base entry
is being referred to, or if the entry is not present in
the knowledge base. The query consists of a name-
string and a document id from the document collec-
tion. Each query string will occur in the associated
document in the test collection. The purpose of the as-
sociated document is to provide context for that might
be useful for disambiguating the name-string. Each
query must be processed independently of one another
and for each query a knowledge base node id should
be returned if present else NIL.

2) Slot Filling: The Slot Filling task involves learn-
ing a pre-defined set of relationships and attributes for
target entities based on the documents in the test col-
lection. A query in the Slot Filling task will contain
a name-string, docid, entity-type, node-id, and a list
of slots to ignore. The node id that is provided will
refer to a node representing the entity in the KB. For
targets for which no node exists in the KB, the node-
id will begin with NIL. As in the entity linking task
the provided docid is intended to give context for the
entity.

Systems must process the target entities (i.e., each
query) independently from one another. For each slot
value returned, systems must also return a single do-
cid from the test collection that supports the value re-
turned for the given entity and slot. Slots can be single
valued slots or multi valued slots.

2 Approach For Entity Linking

We have broken down the Entity Linking task into
three separate modules.

1. Preprocessing: Our aim during the prepro-
cessing step is to build a Knowledge Repos-
itory of entities that contains vast amount of
world knowledge of entities like name variations,
acronyms, confusable names, spelling variations,
nick names etc. We use Wikipedia® to build our
knowledge repository.

3 Wikipedia is a huge collection of articles. Each article is iden-
tified by a unique title. These articles define and describe about
events and entities.

The advantages of using wikipedia are

e It has  better coverage of named
entities[22].
e Redirect pages provide wus with
synonyms[22].

e Disambiguation pages can be used for
homonym resolution[15].

We use the following link structure from
Wikipedia to extract the name variations of an
entity.

(a) Redirect Links: A redirect page in
wikipedia is an aid to navigation. When
a page in wikipedia is redirected it means
that those set of pages are referring to the
same entity. They often indicate synonym
terms, but can also be abbreviations, more
scientific or more common terms, frequent
misspellings or alternative spellings etc.

(b) Disambiguation Pages: Disambiguation
pages are specifically created for ambigu-
ous entities, and consist of links to arti-
cles defining the different meanings of the
entity. This is more useful in extracting
the abbreviations of entities, other possible
names for an entity etc.

(c) Bold Text from First Paragraph: In
wikipedia the first paragraph usually con-
tains a summary of the article or most im-
portant information about the article, thus
containing the most relevant words for that
article. We extract phrases from the first
paragraph of wikipedia article that are writ-
ten in bold font. This bold text generally
refers to nick names, abbreviations, full
names etc.

(d) Metaphones: In order to identify spelling
variations for a given entity we use the
metaphone algorithm [2] .We generate the
metaphonic codes for each token generated
using the above 3 features.

(e) Lucene: Lucene * is used as an underly-

ing retrieval system by us to retrieve entity
mapping from the knowledge repository
created using the above features. Meta-
phone codes for each token of knowl-
edge repository is also stored in this in-
dex. We also index the knowledge base and
wikipedia to facilitate fast retrieval of data.

2. Candidate List Generation: Since the en-
tity linking task involves the determination of

4 Lucene is a high-performance, full-featured text search engine.
http://lucene.apache.org/java/docs/.



whether a knowledge base node exists or not
for a given query, we try to generate the possi-
ble candidate maps for a given query from the
knowledge base as well as wikipedia. The mo-
tive behind adding articles from wikipedia also
to the candidate items list is that our knowledge
base is a subset of articles from wikipedia. The
addition of wikipedia articles to the candidate
items list helps us in identification of nill valued
queries, that is if for a given query we have nodes
from both knowledge base and wikipedia in our
candidate items list and our algorithm maps to
the wikipedia article we can conclude the non-
presence of the node in knowledge base describ-
ing about this entity.

Candidate items list is generated using only the
title information of the articles and the given
query terms, also we follow different approaches
for queries that are Acronyms and those that are
not.

In order to identify if a given query is an acronym
or not we use a simple heuristic based approach.
If all the letters present in the query are capitals
we consider it as an acronym else it is not. The
algorithm for handling these two cases is as fol-
lows.

(a) Not an Acronym: If the given query is not

an acronym we search for the query terms
directly in the title field of the nodes of
knowledge base. If an hit is found we add
that node to the candidate items list. If no
hit is found it means that the query could
be a variation of the entity or variation of
the entity is present in the knowledge base.
We then search on the knowledge reposi-
tory index created by us in order to get the
possible variations for the entity. If we find
any possible variations for an entity in our
knowledge repository index, we search in
the knowledge base index on title field us-
ing these variations. If any hits are found
we add those nodes to the candidate items
list. We also search in the wikipedia index
using the retrieved variations. If any hits
are found in the wikipedia index we add
them to the candidate items list.
If no variations are found in the knowledge
repository index as well, we assume that
the entity might have been written in a dif-
ferent form than it is usually written. we
generate the metaphone code for each to-
ken present in the query. We search in the
metaphone field of the knowledge base in-
dex. If any hits are found we add those
nodes to the candidate items list. The al-
gorithm is depicted in Fig.1 .

If “X” is not an Acronym
Searchfor “X" in
Knowledge Base
True False

[ Add NodelD's to Candidate List ]

Searchfor “X” in
Knowledge repository

)

J Hits =0 Hits>0 |
Encode Query Tokens using Search “X “and variations of
Metaphone “¥ " in Knowledge Baseand
wikipedia

Search Metaphone codes in
Knowledge Base

Hits >0 Hits > 0

Add NedelD's to Candidate
List

Fig. 1: Flow chart when query is not an Acronym

(b) Acronym: If the given query is an acronym
we try to get the expanded form from the
document content which has been given
as disambiguation text. We remove stop
words from the disambiguation text and use
an N-Gram based approach to find the ex-
panded form. If the length of the acronym
is ”N” characters, we check if "N continu-
ous tokens in the disambiguation text have
the same initials as the characters of the
acronym. If we are successful in finding
the expanded form from the disambigua-
tion text, we search in the knowledge base
index using these tokens. If any hits are
found we add those nodes to the candi-
date items list. If we don’t find the ex-
panded form from the disambiguation text
we search in the knowledge repository in-
dex for the acronym. If we find the ex-
panded form in the knowledge repository
index, we search in the knowledge base in-
dex using this expanded form. If any hits
are found in the knowledge base index we
add those nodes to the candidate items list.
We also search in the wikipedia index us-
ing the expanded form. If we find any hits
in the wikipedia index we add those articles
to the candidate items list. We also search
using the acronym in the the title field of
the knowledge base and wikipedia index.
If any hits are found we add those nodes
to the candidate items list. The algorithm is
depicted in Fig.2 .

Refining the Candidate items list: We delete
articles that belong to wikipedia from our candi-
date items list if it is also present in the knowl-
edge base because if a node is present in the
Knowledge base describing about an entity, it



If ¥ is an Acronym

Search For
Expanded form
indata file

Successful

[

Knowledge Base

Search expanded form in
Repository

Search for “X” in Knowledge

\|/ Hits > 0

Searchvariations of “X" in

Knowledge Base and wikipedia

Hits >0 Hits >0
Add MNedelD's to Candidate List

Fig. 2: Flow chart when query is not an Acronym

could be the possible link for our query.

While searching in the article title of the knowl-
edge base or wikipedia index for generating the
candidate item list we can apply 2 different meth-
ods.

(a) Phrase Search: In this method we see if
the exact phrase of the query or the ex-
panded form of the acronym is present in
the title field or not. Only on finding the ex-
act phrase we add those nodes to the candi-
date items list. A variation of this is search-
ing for phrase with a noise of one word.
EG: If the given query is "UT” and if we
find the expanded form from our knowl-
edge repository as “University of Texas”.
In simple phrase search we would be re-
trieving nodes that have exact phrase Uni-
versity of Texas” present in the title. But in
Phrase search with noise we would be re-
trieving nodes that have the titles “Univer-
sity of Texas at austin, University of Texas
at Dallas” also.

(b) Token search: In this method we check
if all the tokens of the query or the ex-
panded form of the acronym are present
in the title field or not. Variation of to-
ken search is searching with a noise of
one word. The difference between Phrase
search and Token search is that in phrase
search the word order is constrained where
as in token search just the presence of each
token is vital and not the order in which
they occur.

EG: If the given query is "CCP” and if we
find the expanded form from our knowl-
edge repository as “Chinese Communist

Party”. In token search we would be re-
trieving nodes that have titles either ”Chi-
nese Communist party” or “Communist
Party of China”. The node having title
”Communist Party of China” is not found
as a candidate item in the phrase search.

3. Calculating Similarity Score: If there are no

nodes present in the candidate list, it means that
no node is present in the knowledge base describ-
ing that entity. We return NILL in this case. If
there is only one node belonging to knowledge
base present as a candidate item , it means that
we have found an exact match for the query and
there are no other entities in our knowledge base
node describing about this entity. But if we find
that single node belongs to wikipedia, it means
that the likely link for our query is not present in
Knowledge base and hence we return NIL.

If there are more than one nodes in our
candidate items list and all of those belong to
wikipedia, we return NILL as there are no nodes
present in the knowledge base describing about
our entity. But if the candidate items list contains
our knowledge base nodes as well, we follow a
different approach to solve this problem. In this
case we have to find which node is the mostly
likely link for the given query. This can be
solved in two different methods.

Classification Approach:

(a) Rainbow Text Classifier ° : It has several
built methods for classification like Naive
Bayes[13], SVM, KL-divergence, TFIDF,
K-Nearest Neighbor. We have conducted
our experiments using Naive Bayes and K-
Nearest Neighbors.

If we consider all the possible candidate
items as different classes, we need to find
which class is the best map for our query.
In this approach we use bag of words as
a feature and build models for classifica-
tion using Rainbow Classifier. For building
these models we view each candidate item
as a separate class and train the model. We
then give the disambiguation text provided
along with the query as test document. This
test document is classified into one of the
classes and the score obtained is the likeli-
hood of the test document belonging to that
class.

(b) Information Retrieval Model: We index
the candidate items text using lucene. Each

5 http://www.cs.cmu.edu/ mecallum/bow/rainbow/



candidate item is treated as a separate doc-
ument. Query formulation is an impor-
tant part in the success of this approach.
We try and reduce as much noise as pos-
sible while generating the query from the
disambiguation text along side trying to
boost the terms that seem to the most likely
terms that describe about our entity. Since
the disambiguation text provided has been
tagged neatly into different paragraphs, we
consider only those paragraphs where the
query terms are present. Once we have ex-
tracted all the paragraphs that contain the
query terms, we remove the stop words. We
form a boolean "OR” query of all the to-
kens generated from the paragraph text.

We give this query to the candidate items
index and the relevance score for each doc-
ument is calculated.

Result generation: Once we are able to find the
closest matching node for a given query using the
disambiguation text we check if the node belongs
to the knowledge base or the wikipedia. If the node
belongs to the knowledge base we give the knowledge
base node id as the mapping link else if the node
belongs to wikipedia we give the link as NILL saying
that we don’t have a link for the query entity in our
knowledge base.

3 Description of runs
We have submitted 3 runs for the entity linking task.

1)Phrase search with noise for candidate list
generation and Naive Bayes for classification.
2)Token search with noise for candidate list genera-
tion and Naive Bayes for classification.
3)Phrase search with noise for candidate list genera-
tion and Information Retrieval approach.

Table 5 shows the results of our various runs. It also
includes post TAC experiments. Infact an IR approach
with token search performs better than the runs we
have submitted for TAC 2009.

Micro-Average Score we obtained through our
system outperforms all 35 runs submitted at TAC
2009. The average-median score over all the 35 runs
is 71.08% and the base line score is 57.10% when
NILL is returned for all the queries. Our system score
outperforms median score by as much as 11% and the
base line score by 25%.

4 Approach for Slot Filling

In the slot filling task we have to populate the slot
value pairs of an entity in the knowledge base. The
query for slot filling task will be of the form (Name-
String, Doc-id, Entity-type, Node-id, Ignore-slots).

Name-string refers to the entity name whose slot
values pairs have to be modified and Entity-type refers
to the whether the given entity is either a person, loca-
tion or organization. Node-id will refer to the knowl-
edge base entry which has to be populated. If the
node-id is NIL, in that case we have to populate the
whole template of the given entity type.

1. Preprocessing: For slot filling task, during the
preprocessing stage we index all the documents
of the document collection using lucene. This
facilitates searching and fast retrieval of the doc-
uments.

2. Approach: Given a query, we search for the
name-string on the index built during the prepro-
cessing stage. We boost the documents that have
name-string appearing in the headline of the doc-
ument. From the retrieved results we consider
the top 50 documents for further processing. Our
assumption is that these top 50 documents might
contain information related to the slots.

Once we have these documents we need to ex-
tract the sentences that might contain the slot val-
ues. For this we index the sentences of the top 50
documents we retrieved as separate documents.

3. Query Formulation: Since we have been given
a generalized mapping from different Wikipedia
slot names to a single slot name of the knowledge
base. EG: "Nick names”, ”Also known as” are
all mapped to ”Alias name”. So we have used
this information during our query formulation.
We form a boolean "OR” query of all the tokens
of the mappings provided.

Now based on the slot value to be filled, we query
the index built using the sentence extracted from
the top 50 documents and consider the top 10 re-
trieved sentences for further processing. We as-
sume that these top 10 sentences might contain
our slot values.

We have categorized the slot values as

(a) Person

(b) Organisation
(c) Place

(d) Date

(e) Integer

(f) String



Algorithm | Noise | Phrase/Token | Micro- Nill- Non-nill Macro-
search Average | valued valued Average
Score precision | precision Score
IR 1 Token Search 82.25 86.32 76.84 75.70
IR 1 Phrase Search | 82.17 86.41 76.54 75.39
IR 0 Phrase Search 81.81 86.90 75.04 75.46
IR 0 Token Search 81.76 86.45 75.52 75.54
NB 1 Token Search | 81.43 85.42 76.12 75.38
NB 1 Phrase Search | 81.25 85.37 75.76 75.10
NB 0 Phrase Search 81.12 85.91 74.75 75.45
NB 0 Token Search 80.87 85.51 74.69 74.96
Table 5: Results of Various Experiments.
IR = Information Retrieval, NB = Naive Bayes
Type Our Score Median Best Score
Score
Single Valued Slots 0.761 0.514 0.816
List Valued Slots 0.604 0.439 0.742
SF-Value score, All Slots | 0.682 0.461 0.779

Table 6: Results of Various Experiments.

Now we need to extract the slot value from the 10
sentences we have. For this we have used Stan-
ford Named Entity Recognizer(NER). We tag the
10 sentences using this NER and based on the
slot value type we extract the value from the sen-
tences. Different sentences might return different
values, we consider the value with highest fre-
quency as the correct slot value and return it as
the output.

For list valued slots we return the top 3 frequency
results.

4. Results: Table 6 shows the results of our single
run submitted at TAC 2009 for slot filling task.

5 Conclusion and Future Work

We have presented a general overview of building our
system for TAC 2009 which analyzes a query and
it’s disambiguation text in order to find a link in a
knowledge base. We showed that an indexing based
approach with word search noise we able to outper-
form all the othe approaches. Our approach and ex-
periments indicate that the 2 level methodology helps
in achieving high accuracies. We believe that this ap-
proach is particularly promising because, Wikipedia
is constantly growing and being updated. With it con-
tinuous growth we are gauranteed of the latest up to
date information.




Part I1I
Recognizing Textual
Entailment (RTE)

1 Introduction

The definition of entailment is based on (and assumes)
common human understanding of language as well
as common background knowledge. It captures ma-
jor semantic inference needs across many natural lan-
guage processing applications, such as Question An-
swering (QA), Information Retrieval (IR), Informa-
tion Extraction (IE), and (multi) document summa-
rization. For example, on the basis of Entailment, a
Question Answering system can be reframed, repre-
senting the Text as the question and the Hypothesis
as the expected answer pattern. Now, the QA prob-
lem is restructured to identifying texts that entail the
expected answer. Given a question, the text entails
the expected answer form. Similarly, in Information
Retrieval the concept denoted by a query expression
should be entailed from relevant retrieved documents.
In Information Extraction, entailment holds between
different texts variants that express the same target re-
lation. In multi-document summarization a redundant
sentence or expression to be omitted from the sum-
mary should be entailed from other expressions in the
summary.

An example, assumed common background knowl-
edge of the business news domain and the following
text:

T1: Nokia and Intel will merge their top-end smart-
phone software as they face increasing pressure from
cellphone industry newcomersGoogle and Apple.

The following hypotheses are entailed:

- H1.1 Google and Apple are newcomers in cell-
phone industry

- H1.2 Nokia and Intel are facing pressure.

- H1.3 Nokia and Intel are facing pressure from
Google and Apple.

- H1.4 Nokia and Intel produce top-end smartphone
software.

If H is not entailed by T, there are two possibilities:

1) H contradicts T

2) The information in H cannot be judged as TRUE
on the basis of the information contained in T.

For example, the following hypotheses are contra-
dicted by T1 above:

- H1.5 Intel and Google will merge their top-end
smartphone software.

- H1.6 Google and Apple are facing pressure.

While the following ones cannot be judged on the
basis of T1 above:

- H1.7 Nokia has a Maemo software platform in
linux.

- H1.8 Intels version is Moblin in linux.

However, entailment must be judged consider-
ing the content of T AND COMMON KNOWL-
EDGE TOGETHER, and NEVER ON THE BASIS
OF COMMON KNOWLEDGE ALONE.

We built our system based on the 3-way classifica-
tion methodology. The goal of making a three-way
decision of ’Entailment’, ’Contradiction’ and 'Un-
known’ is to drive system to make more precise in-
formational distinctions; a hypothesis being unknown
on the basis of a text should be distinguished from a
hypothesis being shown false/contradicted by a text.

An overview of our system is given in Section 2,
a more detailed description of our ontology acquisi-
tion and alignment methods is provided in Sections
4.1 and 4.2, then we describe our template compari-
son techniques in Section 5, followed by a list of di-
rectives (rules) used while detecting entailment, con-
tradiction and unknown cases in Section 6, 7, 8, and
finally we provide our performance evaluation results
on the RTE challenge in Section 9.

2 Approach

In dataset of RTE-5 the average length of the text is
made higher than the dataset of RTE-4. Texts will
come from a variety of sources and will not be edited
from their source documents. Thus, systems will be
asked to handle real text that may include typograph-
ical errors and ungrammatical sentences. The sen-
tence structure of text and hypothesis would rarely be
similar. Hence, there is a need to dramatically reduce
the complexity of input sentences.

The major idea of our approach is to find linguis-
tic structures, here termed templates that share the
same anchors. Anchors are lexical elements describ-
ing the context of a sentence. Templates that are ex-
tracted from different sentences (text and hypothesis)
and connect the same anchors in these sentences are
assumed to entail each other. For example the sen-
tences ’ Yahoo bought Overture’ and ’ Yahoo acquired
Overture’ share the anchors {X= Yahoo, Y = Over-
ture}, suggesting that the templates X buy Y and X
acquire Y entail each other.

In later subsections, a) the problem of finding
matching anchors and b) identifying the template
structure are addressed.

Apart from this major idea, initially the dataset is
preprocessed to extract the dependency trees using
Stanford parser. Considering the fact that WordNet
would take few seconds to load if used for every T-H
pair, would be very costly when we want to make a
quick run over the test set. Instead, all possible noun
pairs from each T-H pair are extracted beforehand and
their similarity values are calculated using WordNet
tool. Additionally, we used semantic resources such
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as Stanford NER, VerbOcean (for comparing verbs
alone), MontyLingua (to get the base form of a verb)
and Acronyms dataset.

3 Pre-Processing

The corpus is first treated with the Stanford parser to
generate dependency trees. We used the collapsed
version of the dependency trees. To recognize the
Named Entities, the Stanford Named Entity Recog-
nition tool has been used.

4 Template Extraction

A template [20] is a dependency parse-tree fragment,
with variable slots at some tree nodes

e.g.,
X(subj)<—- prevent —-> Y (obj)

An entailment relation between two templates T1 and
T2 holds if the meaning of T2 can be inferred from
the meaning of T1. For example

T1: ’Aspirin reduces heart attack’ can be inferred
from

T2: ’Aspirin prevents a first heart attack’ using the
above template structure.

The anchor set here is { Aspirin, heart attack }

4.1 Anchor Set Extraction

In a sentence, the verb action is related to entities
of subject and object. If we know the subject and
object entities (or anchor sets), then we can say the
event a sentence could probably be describing about.
The goal of this phase is to find substantial number
of promising anchor sets for each sentence. Usually
these are the Noun Phrases of a sentence. A noun

4.2 Template Formation

The Template Extraction algorithm accepts as its input
a list of anchor sets extracted from the ASE. Then, TE
generates a set of syntactic templates from the depen-
dency tree structure.

This is applied only on Hypothesis Data. And the
templates extracted are searched in the text for avail-
ability. For example:

T: Madonna has three children.

Output of ASE: {Madonna, three children}

Now, using the dependency tree, the connecting el-
ement for these anchor sets is extracted, in order to get
a relation between each of the anchor sets.

After applying the TE algorithm

Output Template(s):

has=VBZ subject - Madonna=NNP object -
three=CD children=NNS

The pos-tags are attached at the end, because it
would help in the further modules to distinguish
proper-nouns, common-nouns, cardinal numbers and
verbs.

Similarly if there are more anchor sets, there would
be more templates best describing the dependency be-
tween the anchor sets.

S Templates Comparison

After the templates from the Hypothesis are extracted,
these template information is searched in the text in-
formation. For the text sentences, the ASE algorithm
is applied and all the anchor sets are extracted. Now,
for the hypothesis anchor sets, Anchor Set Match al-
gorithm is applied, where each of the anchor sets is
made to match with the anchor sets of the text sen-
tences. Here, immense care is taken while match-
ing [17] the anchor sets. For Named-Entities (like
{China, Chinese}, {Malay, Malaysia}) special rules
are designed to cover majority of such cases. For
nouns WordNet similarity tool is used; as the val-
ues are calculated in the preprocessing stage, there
wouldnt be much time lapse while comparison. The
threshold value was initially 0.75. For comparing car-
dinal numbers, rules are mentioned in later sections.
The output of the ASM algorithm would give an
anchor set from the text that best matches the anchor



set from the hypothesis. If any phrase from the anchor
set in the hypothesis doesnt found a matching phrase
in the text anchor set, then the decision is said to be
UNKNOWN.

With the anchor set comparison, the text and hy-
pothesis are believed to be describing roughly the
same event or fact. Now their verbs or modifier heads
have to match to decide whether they describe the ex-
act same event or not.

The best matching anchor set from the text is re-
trieved. The phrases from this text anchor set would
have a parent node in its dependency tree structure
which it modifies. All such parent nodes are extracted
from the dependency tree structure. The Comparison
Algorithm is applied to these nodes to compare with
the modifier verb or noun of the corresponding hy-
pothesis anchor set.

The comparison algorithm would first look for a di-
rect match of verb or noun in the list of nodes. If
not, it uses the "WordNet’ similarity values for noun
comparisons. Because WordNet doesnt have enough
database for the verbs, the *VerbOcean’ is used which
has a huge collections of verbs and different combina-
tional values. But the Verbocean have the comparison
values only for the base form of the verbs.

So, in order to convert the verbs to base form we
used "MontyLingua’ tool.

This algorithm would return if the event of the an-
chor sets matches or not.

6 Rules for Entailment Prediction

e When the event of an anchor set is identified, it is
verified with the events of the other anchor sets.
If all other anchor sets satisfy the same event,
then the verdict is ENTAILMENT.

e When the event of an anchor set is identified, it is
verified with the events of the other anchor sets.
If all other anchor sets satisfy the same event,
then the verdict is ENTAILMENT.

e Rules for Cardinal Numbers Matching (Numeric
Named Entities) [21]

— The basic rule would first resolve the Nu-
meric Named Entities into numeric values.

Ex: 24 = 24; twenty-six = 26; 1L =
100000; 50,000 = 50000; 45 thousand
=45000

— Next basic rule is to directly compare the
numeric values of hypothesis and text.

— Then there would be quantification modi-
fiers before or after the numeric entities.

Ex: more than 100 in Hypothesis should
match at least 110 in text.

— The modification words are first considered
and then the difference of the numeric val-
ues, to decide whether they match or not.

7 Rules for Contradiction Prediction

e The basic rule would be considering the negation
words such as not, nt, never etc.

e In the VerbOcean database, the list of antonyms
for each verb is hugely available. So, the
antonyms can be detected using the VerbOcean
database and the contradiction can be judged.

e In cases when the events of the anchor sets
match, but the numerical values, the numbers
may mismatch. Such cases are predicted as Con-
tradiction.

Consider the following example

killed nsubj=John obj=Lucy
killed nsubj=Lucy obj=John

e Here, the anchor sets have matched, and the
event also are the same. But the roles are re-
versed. Such cases are declared as CONTRA-
DICTION.

8 Rules for Unknown Prediction

e Whenever an anchor set from the hypothesis do
not match any anchor set in the text, then it judge
as UNKNOWN.

e When the numbers along with their associated
noun phrases from the hypothesis cannot be
mapped to any associated noun phrase in the text,
and then it is judged as UNKNOWN.

o When a T-H pair doesnt satisfy any of the above
rules of entailment or contradiction, then the sys-
tem assumes it to be an UNKNOWN case.

9 Experiments and Evaluation

In the dataset of RTE-5 TAC-2009, there were 600
pairs of Text and Hypothesis. The entailment relations
are manually tagged for all the pairs.

Our system is evaluated in three runs in 3-way clas-
sification. In the first run, considering the comparison
of nouns using the WordNet tool, the upper limit value
is set to 0.75, which maintains a balance between gen-
erality and specificity. In case of VerbOcean there are
two considerations, one are the verb synonyms with
tag ’similar’, and other are verb antonyms with tag



“opposite-of . For verb synonyms the threshold value
is set to 10.5 (max value found was 25 approx). For
verb antonyms the threshold value is set to 12.
For the other two runs, experiments are carried out
by varying the above mentioned threshold values.
The results we obtained for the 3 runs for 3-way
classification are tabulated as follows

Runl Run2 Run3
46.8 46.8 46.83

Accuracy

Table 7: Accuracy obtained for 3-runs.

We obtained an accuracy of 60.66 for the RTE 2-
way classification (evaluation was done upon the gold
standard set) with the threshold values set as men-
tioned in the above paragraph.

The confusion matrix for the 3-way classification
problem of run 3 with accuracy 46.83 is

Entailment Unknown Cnt
Entailment 148 111 41
Unknown 48 122 40
Contradiction 36 43 11

Table 8: Confusion matrix for 3-way task run-3.

*Cnt = Contradiction

We got an accuracy of 46.83% as our best result for
3-way classification task. Our approach was empha-
sized more upon extracting templates and comparing
the anchor sets.

10 Results and Analysis of Ablation
tests

In our system we built, when two words are required
to be analyzed for comparison, we have considered
the following cases for the categorization of those
words

1)Both the words are nouns
2)At least one of them is a verb
3)At least one of them is an acronym.

We used different tools for each of the cases men-
tioned above.

In the first case when the similarity of nouns has to
be calculated, we used the similarity tool WordNet.

While in second case for the comparison of a verb
with any other word, we used VerbOcean along with
MontyLingua tool. And for the third case we used the
acronym data set.

10.1 Experimental Setting

For all the ablation tests the experimental settings was
the same. And they were run upon the experimen-
tal settings of the run-3 of 3-way classification task.
The threshold value for the similarity of nouns using
WordNet tool is set as 0.75. And the threshold value
was 10.5 for comparing the synonyms verbs and the
antonym verbs using Verbocean.

10.1.1 Ablation test - 1

Tool Ablated: WordNet

In this ablation test, the similarity tool WordNet is
ablated. If this tool is removed, then the two nouns
are compared using only the string comparison tech-
niques. Given two words, if they are similar to a cer-
tain string length [17] (starting from the first letter),
proportionate to their lengths then they are said to be
similar. Results obtained for this test

2way accuracy = 0.6033; Change in 2way Accu-
racy = 0.01; 3 way accuracy = 0.467; Change in 3way
accuracy = 0.0017

10.1.2 Ablation test - 2

Tool Ablated: MontyLingua

When a verb needs to be compared with another
word, then we used VerbOcean. But, the VerbOcean
has all the verbs in their base form. So, there is a need
to convert the verb into its base form. For that purpose
we used MontyLingua tool. When this is removed,
the verb is checked in the VerbOcean in its original
form. So, in this ablation test, we removed the tool
and tested with the same experimental setting. We
obtained no change in the results for this test.

10.1.3 Ablation test - 3

Tool ablated: VerbOcean

Here the verb comparison tool VerbOcean is re-
moved. When this is done, those words are compared
based on string comparison techniques mentioned in
the case of wordnet ablation test. There was no change
in results for this test.

10.1.4 Ablation test - 4

Tool ablated: Acronyms set

The acronyms data set downloaded from the
acronym-guide is removed in this ablation test. When-
ever two words are compared, it is checked if any of
those words is an acronym. If so, its expanded form is
retrieved from the acronym set if available, then they
are compared. If a word is embedded in the expanded
set of words, it is said to be similar. So, if this is re-
moved, the acronyms are compared as such, after re-



moving the punctuations. There was no change in the
accuracies of 2-way or 3-way task in this ablation test.

11 Conclusion and Future Work

We followed the template extraction method which
helps in predicting the entailment relation and also
demonstrates a broad range of semantic relations
varying from synonymy to more complicated entail-
ment. These templates go beyond trivial paraphrases
demonstrating the generality and viability of the pre-
sented approach. The best accuracy we obtained for
the two way task is 60.66% and for the three way task
it is 46.83%.These can be increased by adding more
rules during template extraction and template forma-
tion.

There are some issues that impose serious limita-
tions on textual entailment, as for example the lack of
monotonicity of natural language texts. Solving these
issues could be a benefit for textual entailment sys-
tems. In future we aim to improve the yield by in-
creasing the size of the sample-corpus in a qualitative
way, as well as precision, by augmenting the system
with Anaphora resolution techniques [10] and also
by introducing more rules during the template forma-
tion. A further improvement direction also includes the
template ranking and filtering. Thus, the future work
will continue in adding new and more complex ways
of checking entailment among elements in the text and
the hypothesis.
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