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ABSTRACT
Generating short multi-document summaries has received a
lot of focus recently and is useful in many respects includ-
ing summarizing answers to a question in an online scenario
like Yahoo! Answers. The focus of this paper is to attempt
to define a new probabilistic topic model that includes the
semantic roles of the words in the document generation pro-
cess. Words always carry syntactic and semantic informa-
tion and often such information, for e.g., the grammatical
and semantic role (henceforth GSR) of a word like Subject,
Verb, Object, Adjective qualifiers, WordNet and VerbNet
role assignments etc. is carried across adjacent sentences
to enhance local coherence in different parts of a document.
A statistical topic model like LDA[5] usually models topics
as distributions over the word count vocabulary only. We
posit that a document could first be topic modeled over a
vocabulary of GSR transitions and then corresponding to
each transition, words and and hence sentences can be sam-
pled to best describe the transition. Thus the topics in the
proposed model also lend themselves to be distributions over
the GSR transitions implicitly. We also later show how this
basic model can be extended to a model for query focused
summarization where for a particular query, sentences can
be ranked by a product of thematical salience and coherence
through GSR transitions. We empirically show that the new
topic model had lower test set perplexity than LDA and we
also analyze the performance of our summarization model
using the ROUGE[13] on DUC2005 dataset1 and PYRA-
MID[17] on the TAC20082 and TAC20093 datasets.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models—statistical

General Terms
1http://www-nlpir.nist.gov/projects/duc/duc2005/
2http://www.nist.gov/tac/tracks/2008/index.html
3http://www.nist.gov/tac/2009/index.html

Topic Models, Centering theory, Coherence, Multi-document
summarization

1. INTRODUCTION
Topic models like LDA[5] have become the cornerstone for
understanding the thematic organization of large text cor-
pora in an unsupervised fashion. These models define prob-
abilistic generative process for document generation in a
robust manner. The input to such a model are primarily
word counts or more recently part-of-speech (POS) tags of
words in sentences as popularized by Syntactic Topic Models
(STM) [8] in documents. However, in our proposed “utter-
ance topic model” (henceforth UTM), we incorporate the
grammatical and semantic information of the words across
a context of utterances in addition to the word counts.

There are two reasons why we had to come up with a new
topic model based on contextual information around the
terms - firstly, given a corpus without any thematic struc-
ture, the topic modeling framework is a necessary first choice
to understanding such organization. Secondly, we wanted
to understand the human process of compacting documents
into summaries and encode such a process in a statistical
framework. Since local coherence is a major factor in un-
derstanding various parts of a discourse, it was natural to
encode coherence statistically in such a framework.

In the realm of computational linguistics, there has been
quite some work in Centering Theory including Grosz et.
al. [9]. Their work mainly specifies how discourse interpre-
tation depends on interactions among speaker intentions,
attentional state and linguistic form. As such, in our con-
text, we could assume a subset of documents discussing a
particular “theme” to be a discourse involving one or more
participants. The discourse participants’ focus of attention
at any given point in time is modeled by their “attentional
state”. This “state of attention” comprises of a focus in the
current utterance being understood. This focus within the
attentional state helps identify “centers” of utterances that
relate different parts of local discourse segments meaning-
fully and according to [9], the“centers”are semantic objects,
not just words, phrases, or syntactic forms. Centering theory
helps formalize the constraints on the centers to maximize
coherence. In our context, the GSRs along with the explicit
realization of the roles through the sentential words approx-
imate the centers. As a simple example on attentional state
and centering, consider the following:

• Discourse 1



1. Martha shot her husband Tom.

2. She was abused by Tom for many years.

3. Martha couldn’t take it anymore.

4. She shot Tom as he was preparing to have supper.

• Discourse 2

1. Martha shot her husband Tom.

2. Tom had been abusing her for many years

3. Martha couldn’t take it anymore.

4. Tom was shot as he was preparing to have supper.

Discourse 1 is an example where the focus of attention is
clearly on Martha. If we observe discourse 2, there is a
shift of attention from Martha to Tom and vice versa. For
e.g. in the first utterance if a reader perceives the focus
of attention to be Tom, there is a retention of the focus
in the second utterance. If, however, in the first utterance
the focus of attention be Martha, then there is a focus shift
in the next utterance. In any case, the focus is Martha in
the third utterance. Discourse 2 is thus less coherent than
discourse 1 in terms of the effort to understand the discourse
i.e. discourse 1 has less inference load.

In classicial Centering theory as in [9], the term “centers
of an utterance” is used to refer to those entities serving
to link that utterance to other utterances in the discourse
segment that contains it. In the example above, in discourse
1, the pair (Subject, “Martha”) approximates a center that
is retained through the focus of attention in the utterances.
Thus the propagation of these centers of utterances within
discourse segments helps maintain the local coherence.

Each word in a sentence of a document has an associated
role (syntactic or semantic) with it for e.g., a noun helps
identify a concept (abstract or concrete) and thus serves as
a part or whole of a center of utterance. If two consecutive
sentences contain the same word, then there is a GSR tran-
sition (henceforth GSRt) within the context of sentences.
We approximate the change in attentional state in local dis-
course segments through these transitions. If the word is not
present in the preceding (or succeeding) sentence then there
is still a transition from (to) a null, identified by “−−” GSR
to (from) the current GSR. A GSRt is thus looked upon
as a multinomial distribution over sentences in a document.
Although entities (nominal subjects) are only advocated by
centering theory, we also used verbs as GSRs of words to
understanding the intents in attention. In our context, the
GSRs and the explicit realization of these roles through the
sentential words approximate the centers.

This paper is organized as follows. The next two section re-
views some related work, followed by the mention of how
Centering theory was adapted to develop our new topic
model. In the next section we show how this model can
be extended as a full summarization model. Then we de-
scribe the techniques of our proposed method and follow up
with results and analysis of the output of our model. The
paper is concluded in the last section with some ideas for
future work.

2. RELATED WORK
Topic models have been widely applied to text despite a
willful ignorance of the underlying linguistic structures that
exist in natural language. There have been a lot of work on
either applying topic models directly to a certain problem
as in [1, 6] or adapting basic LDA style topic modeling as in
[16, 15]. In a topic model, the words of each document are
assumed to be exchangeable; their probability is invariant
to permutation of the positions of the words in a document.
A workaround to this inadequacy was posed and addressed
in [8]. It is also important to note that although a topic
model can suggest documents relevant to a query, finding
particularly relevant phrases for question answering is still
a challenging task. Our main focus had been to build a new
topic model based on the LDA framework that could use
linguistic features and semantic roles of words in a discourse
segment for representing local coherence.

With regard to extractive multi document summarization,
most earlier methods had focussed on clustering of sentence
vectors or building graphs of sentences from the relevant
documents and then using some graph mining algorithms
like Pagerank to select out the most authoritative sentences
(as in [19]). Other approaches include algorithmic formula-
tion of summary extraction using greedy, dynamic and in-
teger linear programming methodologies. The work in [14]
compares these approaches and also proves that in general
the inferring an extractive summary is NP-hard.

The work by Ye et. al.[20] calculates the semantic similarity
among the sentences in the cluster, and between a sentence
and the given cluster of documents. The semantic similarity
between sentences is determined by the number of sentential
concept overlaps calculated from the WordNet synset hier-
archy including glosses, hypernyms and meronyms. Another
intersting approach taken by [12] where the sentences where
scored by a weighted combination of several features includ-
ing pattern based features which provide clue as to how to in-
terpret an information need. It was shown in [11], that using
contextual language models and latent semantic indexing,
the resulting summaries were indeed promising based on the
results of the ROUGE evaluation tool. Their contextual lan-
guage model essentially computed a language model within
a window of words instead of an explicit n-gram. In yet an-
other unique approach to summarization[10], the syntactic
structure of the parse trees was utilized to generate valid
triples of basic elements (BEs) or (head|modifier|relation)
triples and then summary sentences were extracted using a
score directly related to computing important BEs in them.
The focus in [18] was more about finding hidden connec-
tions among query concepts using textual evidences through
sematic cues rather than summarization. However, a final
summarization was performed on the evidence trails and was
therefore chosen as a system for comparison.

Some of the recent and notable Bayesian topic model ap-
proaches to summarization have been presented in [6] and
[7]. In both the models the focus had been to model the
both the query and the relevant documents together. It
is to be noted here that in all these approaches, there has
been hardly any focus on the actual process of coherence in a
passage. Our extended summarization model is novel in this
aspect and also dissociates itself from the queries explicitly.



It only assumes that we have a fixed index and attempts to
build a multi document summary given any query and its
associated relevant documents.

3. BACKGROUND FOR OUR METHOD
In this section we give a brief introduction to centering the-
ory based local coherence and how centering could be sta-
tistically represented.

3.1 Centering Theory
As mentioned previously in section 1, the term centers of
an utterance to refer to those entities serving to link that
utterance to other utterances in the discourse segment that
contains it. Each utterance, which we approximate by a
sentence, S in a discourse segment (DS) is assigned a set
of forward-looking centers, Cf(S,DS) and each utterance
other than the segment initial utterance is assigned a single
backward-looking center, Cb(S,DS). The backward-looking
center of utterance Sn+1 connects with one of the forward-
looking centers of utterance Sn The Cfs consists of all the
referents in the utterance Sn and are ordered according to
salience: the subjects are preferred over objects and those
over other GSRs. An illustration from [9] below elucidates
coherence through such center linkages.
(a) John has been having a lot of trouble arranging his vacation

(b) He cannot find anyone to take over his responsibilities. (he =
John) Cb = John; Cf = {John}

(c) He called up Mike yesterday to work out a plan. (he = John) Cb
= John; Cf = {John,Mike}

For building a statistical topic model that incorportes GSR
transitions (henceforth GSRts) across utterances, we attributed
words in a sentence with GSRs like subjects, objects, con-
cepts from WordNet synset role assignments(wn), adjec-
tives, VerbNet thematic role assignment(vn), adverbs and
“other” (if the feature of the word doesn’t fall into the previ-
ous GSR categories). Further if a word in a sentence is iden-
tified with 2 or more GSRs, only one GSR is chosen based on
the left to right descending priority of the categories men-
tioned. These roles (GSRs) were extracted separately us-
ing the text analytics engine SemantexTM

(www.janyainc.com) .
Thus in a window of sentences, there are potentially (G+1)2

GSRts for a total of G GSRs with the additional one repre-
senting a null role (denoted by “−−”) as in the word is not
found in the contextual sentence. We used anaphora resolu-
tion as offered by the product to substitute pronouns with
the referent nouns as a preprocessing step. If there are TG
valid GSRts in the corpus, then a sentence is represented
as a vector over the GSRt counts only along with a binary
vector over the word vocabulary. In the extended model
for summarization, we also added one more role called NE
(Named Entity), with the highest priority, that encompasses
all possible named entity categories.

For further insight on how GSRts were used, we constructed
a matrix consisting of sentences as rows and words as columns;
the entries in the matrix are filled up with a specific GSR
for the word in the corresponding sentence following GSR
priorities. Table 1 shows a slice of such a matrix taken from
the DUC2005 dataset which contains documents related to
events concerning rules imposed on food labeling. Table 1
suggests, as in [2], that dense columns of the GSRs indicate
potentially salient and coherent sentences (1 and 2 here)
that present less inference load with respect to a query like
“Food Labeling”.

Table 1: Snapshot of a sentence-word GSR grid view of
document

↓SentenceIDs || words... →
sID food consumers health confusion label(ing)
1 nn −− nn nn nn
2 nn −− nn −− −−
3 −− subj −− −− −−
4 subj nn subj −− −−

where “nn” is a noun and “ne” is a Named Entity category. The
sentences 1 through 4 in the document read as:

1. The Food and Drug Administration has proposed a stringent set of rules gov-
erning the use of health claims on food labels and advertising, ending
nearly six years of confusion over how companies may promote the health
value of their products.

2. By narrowing standards for what is permissible and strengthening the FDA’s
legal authority to act against misleading claims , the rules could curtail a
trend in food marketing that has resulted in almost 40% of new products
and a third of the $ 3.6 billion in food advertising over the last year
featuring health-related messages.

3. Most such messages are intended to make the consumer think that eating the
product will reduce the risk of heart disease or cancer.

4. The regulations, which will be published next week in the Federal Register
, were criticized by food industry o¡cials , who said they would require
health claims to meet an unrealistic standard of scienti↓c proof and would
hinder the ability of manufacturers to give consumers new information
about nutrition.

Note that the counts for the GSRts“nn→ −−”and“nn→nn”
for sentenceID 1 are 2 from this snapshot. Thus this dis-
course is dominant in GSRts involving a noun GSR w.r.t.
the query words.

4. THE PROPOSED METHOD
In this section we describe our method to model topics not
only using word counts but also using contextual GSRts. We
also show how an extension transforms the utterance topic
model to a “Learning To Summarize” (henceforth LeToS)
model.

4.1 Description of the Datasets
The datasets we used for finding topics as well as subse-
quent summarization are the DUC2005, TAC2008, TAC2009
as well as a more practical real-life data from Yahoo! An-
swers4. The DUC2005 dataset had 50 folders with at least
25 documents in each folder. Each such folder corresponded
to a particular “topic focus” or “cluster” representing vary-
ing human information needs. The TAC2008 dataset was
organized in 48 folders as in DUC2005, however, it also had
documents in each folder grouped into two timelines that
we merged for the sake of theme detection. The organiza-
tion for the TAC2009 dataset is also similar with 44 folders.
The manually collected Yahoo! Answers dataset consists of
10 such topic focuses with each topic focus pertaining to a
particular real-life question. For each such topic focus, we
collected 10 relevant answers and each stored each answer
in a separate document.

4.2 Utterance Topic Model
We now describe in detail the proposed probabilistic graph-
ical Utterance Topic Model (henceforth UTM). To describe
the document generation process, we assume that there are
K latent topics, TG total number of possible GSRts and T
GSRts associated with each document. Also denote θ and π

4http://www.answers.yahoo.com



to be the topic and topic-coupled GSRt proportions in each
document. We say topic-coupled GSRt proportions since
the expected number of terms per GSRt also depends on
their latent topic assignment. Let rt is the observed GSRt
for a particular GSRt = t across a window of 3 sentences;
wn is the observed word in the nth position. Further de-
note, zt to be an indicator variable for topic proportions,
yn is the indicator variable for topic-coupled GSRt propor-
tions. At the parameter level, each topic is a multinomial
over the vocabulary V of words in the corpus and each topic
is also a multinomial over the GSRts following the implicit
relation of GSRts to words within sentence windows. Also
these GSRts are the output of a separate natural language
parsing system.

At a higher level, each document in the corpus has mixing
proportions over both the number of latent topics and also
over the number of topic-coupled GSRts. In our proposed
model, a GSRt along with the topic is also responsible for
selecting a word from the vocabulary. The document gener-
ation process is shown in Fig. 1 and is explained as a model
below:

For each document d ∈ 1, ...,M
Choose a topic proportion θ|α ∼ Dir(α)

Choose topic indicator zt|θ ∼Mult(θ)
Choose a GSRt rt|zt = k,ρ ∼Mult(ρzt

)

Choose a GSRt proportion π|η ∼ Dir(η)
For each position n in document d

Choose yn|π ∼Mult(π)
Choose a word wn|yn = t, z,β ∼Mult(βzyn

)

where n ∈ {1, ..., Nd} is the number of words in document
d ∈ {1, ...,M}, t is and index into one of the T GSRts and
k is an index into one of the K topics; β is a KxV matrix
and ρ is a KxTG matrix. The model can be viewed as a
generative process that first generates the GSRts and subse-
quently generates the words that describes the GSRts. For
each document, we first generate TG GSRts using a simple
LDA model and then for each of the Nd words, a GSRt is
chosen and a word wn is drawn conditioned on the same
factor that generated the chosen the GSRt. Instead of in-
fluencing the choice of the GSRt to be selected from an as-
sumed distribution (e.g. uniform or poisson) of the number
of GSRts, the document specific proportions are used i.e.
π − η is the expected number of terms assigned to a GSRt
influenced by the generating topics.

Direct posterior inference over the latent variables is in-
tractable because of coupling of the parameters and the la-
tent factors given the observed variables. We thus resort to
approximate inference through Variational Bayes [3]. Varia-
tional Bayes breaks the edges between coupled random vari-
ables and parameters, removes the observed variables that
lead to coupling and introduces free variational parameters
that act as surrogate to the causal distribution of the original
latent variables. The resulting simpler tractable distribution
is shown in Fig. 2. In the variational setting, for each doc-
ument we have

PK
k=1 φtk = 1 and

PT
t=1 λnt = 1. Note that

θ is K-dimensional and π is TG-dimensional.

4.3 Parameter Estimation and Inference
This section outlines the various updates of the latent vari-
ables and the parameters. In this paper we have resorted
to mean field variational inference [5, 3] to find as tight as
possible an approximation to the log likelihood of the data
(the joint distribution of the observed variables given the

Figure 1: Graphical model representation of UTM

Figure 2: The variational dual of UTM

parameters) by minimizing the KL divergence of the poste-
rior distribution of the latent variables over the variational
parameters to likelihood of the data. The details can be
found in [5, 3]. For tractability, we assume a fully factorized
variational distribution

q(θ,π, z,y|γ,χ,φ,λ) = q(θ|γ)q(π|χ)

TY
t=1

q(zt|φt)
NY
n=1

q(yn|λn) (1)

and then maximize the lowerbound on p(r,w|α,η,ρ,β)

The variational functional to optimize can be shown to be
[3]

F = Eq[log p(r,w,θ,π, z,y|α,η,ρ,β)]

−Eq[log q(θ,π, z,y|γ,χ,φ,λ)] (2)

where Eq[f(.)] is the expectation of f(.) under the q distri-
bution.

4.4 Latent variable inference
The key inferential problem that we are trying to solve here
is to infer the posterior distribution of the latent variables
given the observations and parameter values. We essentially
convert the intractable integration problem to a tractable
lower bound optimization problem. From Fig. 2, we obtain
the variational parameters to be γ,χ,φ,λ. The maximum
likelihood estimations of these indicator variables are as fol-
lows:

γi = αi +
PTd
t=1 φti

χt = ηt +
PNd
n=1 λnt

λnt ∝ exp{(Ψ(χt)−Ψ(
PT
f=1 χf )) + (

PK
i=1 φti log βz(yn=t)=i,n)}

φti ∝ exp{log ρit + (Ψ(γi)−Ψ(
PK
k=1 γk))

+(
PNd
n=1 λnt log βz(yn=t)=i,n)}

4.5 Maximum Likelihood Parameter estima-
tion

We now write down the expressions for the maximum likeli-
hood of the parameters of the original graphical model using
derivatives w.r.t the parameters of the functional F in Equ.



(2). We have the following results:

ρig ∝
PM
d=1

PTd
t=1 φdtir

g
dt

βij ∝
PM
d=1

PNd
n=1(

PTd
t=1 λntφti)w

j
dn

where g and t are index variables for all possible GSRts and
document specific GSRts respectively. and rgdt is 1 iff t = g
and 0 otherwise. The updates of α and η are exactly the
same as mentioned in [5].

5. EXTENDING UTTERANCE TOPIC MODEL
FOR SUMMARIZATION

In this section, we investigate how a topic model like UTM
that incorporates word level contextual features could be
extended to a model for summarization. The motivation to
model the summarization process as generative model arises
from the following example: Suppose in an exam, a student
is asked to write an essay type answer based out of a large
amount of preparatory reading materials. Now, under usual
circumstances, he would not memorize the entire set of mate-
rials. Instead, for possible question scenarios, the student re-
members only selected sentences (be directly extracted from
text or manufactured through natural language generation
techniques) which are much like those found in the sum-
mary slide(section) of a lecture(chapter) about a particular
topic. Then a coherent answer is constructed out of those
by expanding on the summary sentences.

From table 1, we have observed that dense columns (non
“−−” entries) of the document level sentence-term GSR grid
identify potential coherent informative sentences w.r.t par-
ticular query words. Thus to extend UTM into a summa-
rization model, we treat each GSRt as distributions over
sentences. We thus have a topic-word multinomial simplex
as well as a GSRt-sentence multinomial simplex and the sen-
tences and the words are related through underlying topics
and contextual GSRts. This line of thought again is influ-
enced by the work carried out in [2]

To define a simplistic summarization model, we describe the
document generation process as follows:

For each document d ∈ 1, ...,M
Choose a topic proportion θ|α ∼ Dir(α)

Choose topic indicator zt|θ ∼Mult(θ)
Choose a GSRt rt|zt = k,ρ ∼Mult(ρzt

)
Choose a GSRt proportion π|η ∼ Dir(η)
For each position n in document d:

For each instance of utterance sp for which wn
occurs in sp in document d:

Choose vp|π ∼Mult(π)
Choose yn ∼ vpδ(wn ∈ sp)
Choose a sentence sp ∼Mult(Ωvp)
Choose a word wn|yn = t, z,β ∼Mult(βzyn

)

where N is the number of words in document d ∈ 1, ...,M ,
P is the number of sentences in the same document and
t is and index into one of the T GSRts. δ(wn ∈ sp) is
the delta function which is 1 iff the nth word belong to the
pth sentence and 0 otherwise. Under this extension, πt −
ηt to be the expected number of words and sentences per

topic-coupled GSRt in each document. Each topic-coupled
GSRt is also treated as a multinomial Ωt over the total
number U of sentences in the corpus. Thus when we select
a GSRt using π and choose a word wn to describe it, we
also sample a sentence sp containing wn. In disjunction, π
along with vp, sp and Ω focus mainly on coherence among
the coarser units - the sentences. However, the influence
of a particular GSRt like “subj→subj” on coherence may be
discounted if that is not the dominant trend in the transition
topic. This fact is enforced through the coupling of empirical
GSRt proportions to topics of the sentential words. Figure 3
give the depiction of the above process as a graphical model.
The variational Bayesian counterpart of the model is exactly
the same as in figure 2 but with an additional independent P
plate inside of the M plate for sentence-GSRt multinomials
i.e a plate with a directed arc from variational ζp to indicator
vp.

Figure 3: Graphical model representation of LeToS by ex-
tending UTM

For obtaining summaries, we order sentences w.r.t query
words by accumulating the sentence-query word pair prob-
ability scores by computing:

p(su|q) =

QX
l=1

(

TX
t=1

KX
i=1

ζutφti(λltφti)γdiχdt)δ(wl ∈ su) (3)

where Q is the number of the query words in query vector
q and su is the uth sentence in the corpus that belongs to
all such document d’s which are relevant to the query, wl is
the lth query word, and i and t and topic and GSRt indices
respectively. Normally, under this model we can enforce that
each sentence in the summary be actually extracted form
a unique document only, however, if we need larger more
coherent summaries, we can include the sentences in the
window of each most probable sentence. Further, whenever
possible, the sentences are scored over only “rich” GSRts
which lack any “−−” GSRs.

5.1 Parameter Estimation and Inference in the
Extended Model

The set of equations in section 4.4 is augmented by the up-
dates of the variational sentence multinomial and the pos-
terior Dirichlet update for the proportions of GSRts as:

χt = ηt +
PNd
n=1 λnt +

PPd
p=1 ζtp

ζpt ∝ Ωpt exp{Ψ(χt)−Ψ(
PT
j=1 χj)}

Note that these are again per-document updates. The only
addition to the set of equations given in section 4.5 is:

Ωtu ∝
PM
d=1

PPd
p=1 ζdpts

u
dp



where u is an index into one of the S sentences in the corpus
and sudp = 1 if the pth sentence in document d is one among
S.

6. RESULTS AND DISCUSSIONS
In this section, we first study some topics generated by both
LDA, Correlated topic model - CTM[4] and UTM for the
DUC2005 dataset and then we try to measure the test set
perplexity as in [5].

Figure 4: Perplexities of LDA, CTM and UTM

Table 2: Some topics from LDA for TAC2008

topic19 topic0 topic2 topic7
mines company Armstrong ice
coal Fannie Mae samples glaciers
safety executive tested years
accidents financial Tour sea
China officer L’Equipe warming
coal mine chief EPO scientists
years account doping Antarctica
produced Raines times Alaska
officials billion years global
killed top French levels

Table 3: Some topics from UTM for TAC2008

topic35 topic5 topic58 topic47
mine Fannie Mae Armstrong planet
coal company steroids Pluto
China account tested ice
safety Raines samples scientists
year Fannie years glaciers
accident financial drugs objects
officials executive Tour Earth
panda Howard doping warming
state chief L’Equipe sea
coal mine years EPO melting

We note that perplexity of a held-out test set is calculated

as exp{−
PM

d=1 log p(wd)PNd
n=1 Nd

}, where probability of document d

with Nd words is given by p(wd) with wd being the only
observed variable. In the UTM, however, we have two ob-
served variables - wd and rd where the latter is a vector
over GSRts. Thus for UTM, we only calculate the condi-
tional word perplexity given the GSRts. From the figure 4
we note that the held-out perplexity is least for 80 topics for

UTM and 60 and 70 for LDA (red graph) and CTM (blue
graph) respectively. Also, UTM had the least test-set per-
plexity w.r.t. to the other two models. Similar trends have
been observed for other datasets too and are not reproduced
here due to space constraints.

From both tables 2 and 3, we display a few sample topics as
distributions over the vocabulary by manually matching the
topics from LDA and UTM. Majority of the words in these
topics come from documents that spoke about “Describe the
coal mine accidents in China and actions taken,” “Give an
account of the criminal investigation of Franklin Raines,”
“Describe accusations that seven-time Tour de France win-
ner Lance Armstrong used the performance-enhancing drug
EPO” and “Describe the developments and impact of the
continuing Arctic and Antarctic ice melts” respectively.

There is one important observation that comes out of observ-
ing table 3. We see two intrusive words “panda” and “Pluto”
in topics 35 and 47 respectively. If we recall our Utterance
topic model, we are not directly generating topics from word
counts. Instead, the words are chosen to fit a GSRt that a
topic generates. Thus, word co-occurence is not the only
factor in determining the thematical structure of the docu-
ments for UTM. The word Pluto has been observed in topic
47 because “Pluto” was found to describe the same GSRts
as the other words in the topic. This phenomenon hap-
pened because there were a smaller set of documents that
dealt with scientists discovering another planet outside of
Pluto’s orbit. Similarly there were a few documents report-
ing shortage of bamboos as food for pandas in China. Thus
UTM could discover new related concepts in a topic through
the principles of centering whereas the words in LDA topics
are derived from cooccurence. In CTM, this relation is cap-
tured through correlation between topics. Thus, intuitively,
for UTM, topic 47 is more about “crisis events in China.”
From a summarization point of view, there are no down-
sides to the effects of such inclusion of a few intrusive words.
In terms of an information need like “effects of global warm-
ing,” there would likely be no relevant documents containing
Pluto and so these words don’t affect sentence probability
calculation w.r.t. the query words.

Recall that LeToS is a fixed index (i.e no train-test split be-
cause of unique sentenceIDs) summarization system where
the data is not allowed to change but the queries are i.e.,
once the model parameters are calculated on the fixed data,
we use variational inference to determine the topics of the
free form queries, perform query expansion using related
topical words and finally select the top sentences which are
weighted by products of other variational parameters. To
determine the number of topics fitted to the data, one way
is to run UTM on the dataset, and decide the best number
of topics which from Figure 4 is 80 for the DUC2005 dataset.

Table 4 shows the performance of our summarization sys-
tem to some top systems in DUC2005. Each summary was
input to ROUGE as one single line. The top 4 rows in the
table report the ROUGE scores of 4 gold-standard human
summaries. The description of the systems named NUS,
HKPoly, IIITH, BFQS, BE-ISI and UIR can be found in
[20, 12, 11, 7, 10, 18]. Different runs of our system have
been named LeToS-[kk]-[NE]-qE-[U/NU] where kk denotes



Table 4: Comparison of DUC2005 ROUGE Results

Systems Rouge-2 Recall 95% Conf. Interval Rouge-SU4 Recall 95% Conf. Interval
ModelA 0.34367 0.30939 - 0.37816 0.39876 0.36682 - 0.43142
ModelB 0.36794 0.33509 - 0.40440 0.43518 0.40642 - 0.46766
ModelC 0.30019 0.26992 - 0.33272 0.37335 0.34434 - 0.40416
ModelD 0.31269 0.28657 - 0.34182 0.38028 0.35551 - 0.40693
NUS 0.14632 0.12305 - 0.17200 0.23557 0.21646 - 0.25593
HK Poly 0.13984 0.11951 - 0.16282 0.23066 0.21194 - 0.25070
IIITH 0.14127 0.11740 - 0.16612 0.22849 0.20762 - 0.25163
LeToS-60-qE-U 0.13213 0.11064 - 0.15452 0.21425 0.19610 - 0.23395
LeToS-70-qE-U 0.12799 0.10648 - 0.14990 0.21448 0.19711 - 0.23455
LeToS-80-qE-U 0.13888 0.11332 - 0.16617 0.22302 0.20023 - 0.24589
LeToS-90-qE-U 0.12318 0.10329 - 0.14607 0.21242 0.19394 - 0.23263
LeToS-60-NE-qE-U 0.12556 0.10551 - 0.14537 0.21409 0.20009 - 0.22944
LeToS-70-NE-qE-U 0.12904 0.10692 - 0.15211 0.21747 0.20005 - 0.23662
LeToS-80-NE-qE-U 0.12481 0.10604 - 0.14501 0.21166 0.19586 - 0.22867
LeToS-90-NE-qE-U 0.12512 0.10679 - 0.14575 0.21385 0.19699 - 0.23102
LeToS-60-qE-NU 0.11320 0.09531 - 0.13337 0.19659 0.17934 - 0.21604
LeToS-70-qE-NU 0.11198 0.09233 - 0.13352 0.19710 0.18001 - 0.21641
LeToS-80-qE-NU 0.11767 0.09757 - 0.13863 0.20317 0.18336 - 0.22364
LeToS-90-qE-NU 0.11586 0.09764 - 0.13678 0.20264 0.18524 - 0.22224
LeToS-60-NE-qE-NU 0.10837 0.08754 - 0.13308 0.19365 0.17555 - 0.21414
LeToS-70-NE-qE-NU 0.08939 0.07229 - 0.10976 0.18461 0.16862 - 0.20149
LeToS-80-NE-qE-NU 0.09289 0.07617 - 0.11173 0.18546 0.17052 - 0.20204
LeToS-90-NE-qE-NU 0.09252 0.07710 - 0.10863 0.18788 0.17356 - 0.20317
BFQS 0.12976 0.10834 - 0.15281 0.21703 0.19938 - 0.23647
BE-ISI 0.11973 0.09801 - 0.14425 0.21084 0.19337 - 0.22957
UIR 0.09622 0.07994 - 0.11504 0.17894 0.16544 - 0.19240

the number of topics; a presence of NE indicates use of a
separate Named Entity role as a GSR that is ranked higher
than the “Subject” role and groups all Named Entity cate-
gories together; U/NU means that each sentence of the sum-
mary is from a unique document or sentences could belong
to the same document; qE denoted that the query words
were expanded using topic inference prior to summarization.
From table 4, we observe from the ROUGE2 and ROUGE
SU4 scores that for 80 topics, the scores were highest and
thus 80 is the best value of the number of topics which also
agrees from that obtained from UTM. This is so, since in
LeToS, πt − ηt is the expected number of words plus sen-
tences per topic-coupled GSRt in each document, the rela-
tive document specific topic-coupled GSRt proportions re-
main the same. From the ROUGE scores, it is observed that
using a separate NE category as a GSR did not improve the
ROUGE scores and hence this category was not included
while evaluating summaries using the PYRAMID method.
Also, we observe that if we reject a document once a sentence
is selected, the ROUGE scores are much higher reflecting the
phenomenon that a human would probably pack information
from as many documents as possible into a single summary.
Imparting “a final coherent flow” into such a summary in-
volves a lot of editing to obey centering constraints whilst
not sacrificing information. This post-processing part is im-
portant but outside the purview of this model. However,
table 4 clearly highlights how far automatic summaries are
to the human counterparts.

We used TAC2008 as a development set to measure per-
formance on the TAC2009 dataset. In the A timeline of the
TAC2008 dataset, the average Pyramid scores for very short

100 word summaries over 48 queries were obtained as 0.3089
with a rank of 14 out of 58 submissions. For TAC2009 also,
using the manual Pyramid [17] scoring for summaries, the
average Pyramid scores for the 100 word summaries over
44 queries were obtained as 0.3024 for the A timeline and
0.2601 for the B timeline for LeToS and ranked 13th and 9th

of 52 submissions. Note that the score is lower overall due
to the extractive nature of summarization and a short 100
word limit. The scores for the system in [18] that uses coher-
ence to some extent and a baseline returning all the leading
sentences (up to 100 words) in the most recent document
are (0.1756 and 0.1601) and (0.175 and 0.160) respectively
for the A and B timelines. The score for the B timeline
is lower due to redundancy which was not addressed in our
model. These scores indicate that performance of our model
was consistent with the development (TAC2008) dataset and
test (TAC2009) datasets.

Here we also present a sample summarized ≈120 words an-
swer for a Yahoo! Answers question using our proposed ex-
tension of UTM to LeToS. The questions were fed into the
model with standard stopwords removal. For the question
“Are Sugar substitutes bad for you?,” the summary was de-
rived as “ The show stated Aspartame turns into METHANOL in

your body and is like drinking FORMALDEHYDE! Splenda is an-

other popular one, but because the body doesn’t recognize, the body

won’t digest it, and can actually make you GAIN weight. The FDA

has approved it for 5 mg/Kg body weight, which is the least of all

the sweeteners and comes out to 6 cans of diet cola per day. Aspar-

tame is at the root of diseases such as: aspartame fibromaylagia,

aspartame restless leg syndrome, aspartame and migraines, aspar-

tame and tumors, aspartame allergy, aspartame multiple sclerosis,



bladder cancer aspartame, aspartame and central nervous system,

aspartame and infertility, aspartame and weight gain,....” We note
here that each sentence is forced to be selected from a differ-
ent document to maximize information content. The word
“aspartame” was selected here due to topic based query ex-
pansion.

We also generated baseline summaries that take two sen-
tences with at least one query word overlap from the begin-
ning and end of each document till the length constraint was
satisfied. The baseline was obtained as “ Fructose is another

extract of sugar. Hope that shed a little light on your questions.

It’s made by substituting three atoms of chlorine for three hydroxyl

groups on the sugar molecule. Honey enters the bloodstream slowly,

2 calories per minute, while sugar enters quickly at 10 calories per

minute, causing blood sugars to fluctuate rapidly and wildly. This

sugar substitute, sold commercially as Equal and NutraSweet, was

hailed as the savior for dieters who for decades had put up with sac-

charine’s unpleasant after taste. Too much phenylalanine causes

seizures, elevated blood plasma, is dangerous for pregnancy caus-

ing retardation, PMS caused by phenylalanine’s blockage of sero-

tonin, insomnia, and severe mood swings. Sugar substitues, turn

into formaldehyde in the body...” Clearly for the Yahoo! An-
swers dataset, even though quantitative evaluation was not
available, our summary reads much better than the base-
line. Indeed, length constraints do not allow us to include
the context of sentences around each sentence in each doc-
ument, but implicitly the context is clear. Also, under our
summarization model, because of the way we define GSRts,
we can also relax the constraint that an utterance is a full
sentence by defining any other meaningful sequence of words
to be an utterance.

7. CONCLUSION
The possibility of building a statistical generative model
for documents using lexical and semantic bundles in con-
text has been explored in this paper. A key extension to
this model would be to find a representation to understand
the meaning of the query. Another interesting aspect to
explore would be Bayesian non-parameteric methods that
eliminate the dependance on the number of topics.
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9. APPENDIX
This section gives partially complete derivations to find out
the optimal settings of the hidden variables and the param-
eters of the utterance topic model. Note that the inference
part i.e. inferring variational distributions for hidden vari-
ables (E-step) is document specific, while the model param-
eter estimation (M-step) is corpus wide. We start out with
some initial values of the parameters and following [5, 3], we
find the posterior distribution over the latent variables pa-
rameterized by the free variational parameters in the VBE
step and holding this distribution fixed, optimize the param-
eters of the model in the VBM step. In each of these steps,
we select out only those terms from F that depend on the
variable being optimized.

(γ∗,χ∗,φ∗,λ∗) = arg min
(γ,χ,φ,λ)

KL(q(θ,π, z,y|γ,χ,φ,λ)

||p(θ,π, z,y|r,w,α,η,ρ,β))
(4)

By Jensen’s inequality, we have

log p(r,w|α,η,ρ,β) ≥ {Eq[p(r,w,θ,π, z,y|α,η,ρ,β)]

−Eq[q(θ,π, z,y|γ,χ,φ,λ)]} = F
(5)

We thus have, F(γ,χ,φ,λ; α,η,ρ,β) =

Eq[log p(θ|α)] + Eq[log p(π|η)] + Eq[log p(z|θ)]+

Eq[log p(r|z,ρ)] + Eq[log p(w|y, z,β)]− Eq[log q(θ|γ)]

−Eq[log q(π|χ)]− Eq[log q(z|φ)]− Eq[log q(y|λ)]

(6)

Each of the terms in the equation (6) expands out to:

log Γ(

KX
j=1

αj)−
KX
i=1

log Γ(αi)+

KX
i=1

(αi−1)(Ψ(γi)−Ψ(

KX
j=1

γj))

(7)

+ log Γ(

TX
f=1

ηf )−
TX
t=1

log Γ(ηt)+

TX
t=1

(ηt−1)(Ψ(χt)−Ψ(

TX
f=1

χf ))

(8)

+

TX
t=1

KX
i=1

(Ψ(γi)−Ψ(

KX
j=1

γj))φti (9)

+

TdX
t=1

KX
i=1

TGX
g=1

φti log ρitr
g
dt (10)

+

NX
n=1

TX
t=1

(Ψ(χt)−Ψ(

TX
j=1

χt))λtn (11)

+
NX
n=1

KX
i=1

VX
j=1

(
TX
t=1

λntφti) log βz(yn=t)=ijw
j
n (12)

− log Γ(

KX
j=1

γj)+

KX
i=1

log Γ(γi)−
KX
i=1

(γi−1)(Ψ(γi)−Ψ(

KX
j=1

γj)) . . .

(13)

− log Γ(

TX
j=1

χj)+

TX
t=1

log Γ(χt)−
TX
t=1

(χt−1)(Ψ(χt)−Ψ(

TX
j=1

χj))

(14)

−
TX
t=1

KX
i=1

φti log φti (15)

−
NX
n=1

TX
t=1

λnt log λnt (16)

Where, each term in a document is represented as a binary
vector wjn , j ∈ {1,. . . ,V}, V being the number of terms in the
vocabulary. The total number of GSR transitions is fixed at
TG and Ψ is the digamma function. It is to be understood
that the t index for variational parameter updates is specific
to the GSRt IDs in a document d and that for the global
parameters like ρ, g is a global index into one of the possible
TG GSRts. N is the maximum of the document lengths
interms of unique terms.

9.1 Inference on Variational Parameters
Here we estimate the free variational parameters for the vari-
ational model depicted in Fig. 2 following the constraints
on φ and λ.

For γ:

F[γ] = − log Γ(

KX
j=1

γj) +

KX
i=1

log Γ(γi)

+

KX
i=1

(αi +

TX
t=1

φti − γi)(Ψ(γi)−Ψ(

KX
j=1

γj))

(17)

∂F[γ]

∂γi
= (αi +

TX
t=1

φti − γi)(Ψ′(γi)−Ψ′(

KX
j=1

γj))

−(Ψ(γi)−Ψ(

KX
j=1

γj)) + (Ψ(γi)−Ψ(

KX
j=1

γj))

(18)

Setting the above derivative to 0, we get,

γi = αi +

TX
t=1

φti (19)

For χ

Taking derivative of F [χ] w.r.t. χt, we have

χt = ηt +

NX
n=1

λnt (20)

For λ:

F[λ] =

NX
n=1

TX
t=1

(Ψ(χt)−Ψ(

TX
j=1

χj))λtn+

NX
n=1

KX
i=1

VX
j=1

(

TX
t=1

λntφti) log βzyn
wjn

−
NX
n=1

TX
t=1

λnt log λnt + µ(

TX
t=1

λnt − 1)

(21)



where µ is the Lagrange multiplier in (21)

∂F

∂λnt
= 0⇒ (Ψ(χt)−Ψ(

TX
j=1

χj)

+(

TX
t=1

φti log βzynn
)− 1− log λnt + µ = 0

⇒λnt = exp{(Ψ(χt)−Ψ(

TX
f=1

χf ) + (

KX
i=1

φti log βzynn
)− 1 + µ}

⇒exp{µ− 1} =

1PT
t=1 exp{(Ψ(χt)−Ψ(

PT
f=1 χf ) + (

PK
i=1 φti log βzynn

)}

Setting the derivative ∂F
∂λnt

to 0 gives us,

λnt ∝ exp{(Ψ(χt)−Ψ(

TX
f=1

χf )) + (

KX
i=1

φti log βzynn
)} (22)

For φ :

F[φ] =

TX
t=1

KX
i=1

(Ψ(γi)−Ψ(

KX
j=1

γj))φti +

TX
t=1

KX
i=1

φti log ρti

+

NX
n=1

KX
i=1

VX
j=1

(

TX
t=1

λntφti) log βz(yn)nw
j
n

−
TX
t=1

KX
i=1

φti log φti + µ(

KX
i=1

φti − 1)

(23)

where µ is the Lagrange multiplier in F[φ]. As before,

∂F

∂φti
= 0⇒ φti ∝ exp{log ρti + (Ψ(γi)−Ψ(

KX
k=1

γk))

+(

NX
n=1

λnt log βz(yn)n)}

(24)

9.2 Model Parameter Estimation
Here we calculate the maximum likelihood settings of the
parameters that do not grow with the data. So we need to
need to take into account the contribution of these for all
the documents and not just a single document.

For ρ :

F[ρ] =

MX
d=1

TdX
t=1

KX
i=1

TGX
g=1

φdti log ρitr
g
dt +

KX
i=1

µi(

TGX
g=1

ρig − 1)

(25)
wherethe µt’s are the K Lagrange multipliers in (25)

∂F

∂ρig
=

MX
d=1

TdX
t=1

φdtir
g
dt

1

ρig
+ µi

∂F

∂ρig
= 0⇒ ρig = −

PM
d=1

PTd
t=1 φdtir

g
dt

µi

⇒ µi = −
TGX
g=1

MX
d=1

TdX
t=1

φdtir
g
dt

∴
∂F

∂ρig
= 0⇒ ρig ∝

MX
d=1

TdX
t=1

φdtir
g
dt

(26)

For β :

F[β] =

NX
n=1

KX
i=1

VX
j=1

(

TX
t=1

λntφti) log βzynnw
j
n+

KX
i=1

µi(

VX
j=1

βij−1)

(27)
where µis are the K Lagrange Multipliers in (27)

∂F

∂βij
= 0⇒ βij ∝

MX
d=1

NdX
n=1

(

TdX
t=1

λntφti)w
j
dn (28)

For α :

F[α] =

MX
d=1

(log Γ(

KX
i=1

αi)−
KX
i=1

log Γ(αi)

+

KX
i=1

(αi − 1)(Ψ(γdi)−Ψ(

KX
k=1

γdk)))

(29)

∂F

∂αi
= M(−Ψ(αi) + Ψ(

KX
j=1

αj)) +

MX
d=1

(Ψ(γdi)−Ψ(

KX
j=1

γdj)))

∂F

∂αiαj
= ∂(i, j)MΨ′(αi)−Ψ′(

KX
j=1

αj)

The derivative w.r.t. αi depends on αj and thus we can
resort to Newton’s iterative method to find out the max-
imal α using the gradient and Hessian vector and matrix
respectively as in [5]. Ψ′ is the trigamma function.

For η :

The update is similar to α update


