
HLTCOE Approaches to Knowledge Base Population at TAC 2009

Paul McNamee, Mark Dredze, Adam Gerber, Nikesh Garera,
Tim Finin, James Mayfield, Christine Piatko, Delip Rao, David Yarowsky, Markus Dreyer

Human Language Technology Center of Excellence
The Johns Hopkins University
Baltimore, MD 21218, USA

paul.mcnamee@jhuapl.edu

Abstract

The HLTCOE participated in the entity link-
ing and slot filling tasks at TAC 2009. A ma-
chine learning-based approach to entity link-
ing, operating over a wide range of feature
types, yielded good performance on the entity
linking task. Slot-filling based on sentence se-
lection, application of weak patterns and ex-
ploitation of redundancy was ineffective in the
slot filling task.

1 Introduction

The Human Language Technology Center of Ex-
cellence (HLTCOE) participated in both the Entity
Linking and Slot Filling tasks of the Knowledge
Base Population track at TAC 2009. This paper
describes the systems we built for each of these
tasks, lists our results and comments on some of the
strengths and weaknesses of our approaches.

2 Entity Linking

We cast entity linking as a supervised machine learn-
ing problem. Each entity linking query comprises a
query document and a mention string found within
that document. We represent each query by a D di-
mensional vector x, where x ∈ RD. The entity link-
ing task requires us to select, for each example, a
single KB node y, where y ∈ Y, a set of possible
KB nodes for this query. Note that Y may contain
all nodes in the KB, although in practice we filter
this set considerably before learning. We assume
at most one correct KB node for each example, so
the ith entity linking example is given by the pair
{xi, yi}.

To evaluate each candidate KB node in Y we cre-
ate feature functions dependent on both the example
x and the KB node y. The feature function fj(x, y)
returns the value for the jth feature dependent on the
query and a candidate KB node. We define the fea-
ture functions used by our system in the next section.

We take a maximum margin approach to learning.
We desire that the correct KB node y for an exam-
ple x receives a higher score than all other possi-
ble KB nodes ŷ ∈ Y, ŷ �= y. This learning con-
straint is equivalent to the ranking SVM algorithm of
Joachims (Joachims, 2002). For the ranking SVM,
we define an ordered pair constraint for each of the
incorrect KB nodes ŷ and the correct node y, such
that score(y) ≥ score(ŷ) + γ, where γ is the mar-
gin. We then use the learning package SVMrank to
solve the optimization problem.1 For learning we
use a linear kernel, set the slack parameter C as 0.01
times the number of training examples, and take the
loss function as the total number of swapped pairs
summed over all training queries.

So far we have assumed that each example has a
correct KB entry; however, many queries will not
match any KB entries (i.e., the correct system re-
sponse for the query is NIL ). One approach to pre-
dicting NIL answers is to set a threshold, returning
NIL if the top answer’s score is below the thresh-
old. This approach has several disadvantages. First,
we need to set this threshold manually. Second, the
ranking SVM constraints are relative only within a
single example; the magnitude of the scores cannot
be compared across examples. Third, a threshold
sets a uniform standard across all examples, whereas

1http://www.cs.cornell.edu/people/tj/
svm_light/svm_rank.html



in practice we may have reasons to favor a NIL pre-
diction in a given example.

We integrate NIL prediction into the learning pro-
cess by augmenting Y to include the answer NIL .
We then add a feature function that returns 1 only
if y = NIL . This enables the algorithm to learn
a threshold for NIL answers by tuning the weight
given to the NIL feature function. Additionally, we
can add arbitrary features for the NIL label.

2.1 Features
Since SVMs robustly learn with many features, we
added a large number of features to our system
(about 200 atomic features). The features were com-
puted for each candidate query/KB pair that passed
an initial triage phase. Since we used a linear ker-
nel, we explicitly combined certain features (e.g.,
acroynym-match AND known-alias) to model corre-
lations. This included combining each feature with
the predicted type of the entity, allowing the algo-
rithm to learn prediction functions specific to each
entity type. With feature combinations, the total
number of features used by the learner was 26,569.

We organized these features into 55 classes for the
purpose of internal analysis, which are summarized
in Table 1. Due to space restrictions we provide high
level feature descriptions in the following sections.

2.1.1 Triage Features
While feature extraction and classification are rel-

atively fast, considering all nodes in the KB for ev-
ery query is prohibitively expensive. Instead, we
opted for a two-phase process. We first compute
a limited set of triage features and select candidate
KB nodes based on these features alone. Our second
phase then applies the supervised learning approach
described above, extracting the full set of features
for the smaller set of KB candidate nodes, then rank-
ing them using the learned ranking function. In our
experiments, these triage features served to identify
a candidate list for each query that was three to four
orders of magnitude smaller than the full set of KB
nodes.

The goal for our triage features was to achieve
high recall (i.e., to miss few correct entries) and to
generate reasonably sized candidate sets. Nearly all
of these features were based simply on the strings of
the query name q and the KB node name k.

On our development dataset, described below, we
attained a recall of 98.8% in this candidate indenti-
fication phase. Many of our misses had to do with
inexact acronyms; for example, we missed: ABC
(Arab Banking; ‘Corporation’ is missing), ASG
(Abu Sayyaf; ‘Group’ is missing), and PCF (French
Communist Party; in French the order of the pre-
nominal adjectives is reversed). We also missed In-
ternational Police (Interpol) and Becks (David Beck-
ham; Mr. Beckham and his wife are collectively re-
ferred to as ‘Posh and Becks’).

String Equality. If the query name q and KB node
name k are identical, this is a strong indication that
perhaps q might be linked to k. Of course this may
not be the case, particularly because names are am-
biguous.

The KB is derived from Wikipedia where arti-
cle titles are distinct; as a consequence, node name
strings in the KB are unique. Similar or identical
names that refer to distinct entities are often quali-
fied with parenthetical expressions or short clauses.
As an example, E0001618 “London, Kentucky” is
distinguished from E0026729 “London, Ontario”,
E0104817 “London, Arkansas”, E0104817 “London
(novel)”, and E0397283 “London”.

Other string equality features were used in the
candidate ranking phase, such as whether names are
equivalent after some transformation. For example,
“Baltimore” and “Baltimore City” are exact matches
after removing a common GPE word like city; “Uni-
versity of Vermont” and “University of VT” match
if VT is expanded to Vermont.

Approximate String Matching. Name strings oc-
curring in article text may resemble KB node names
but may not be exact matches. Thresholds on Dice
coefficients comparing sets of letters or of letter bi-
grams were used, as were nearly exact matches us-
ing left or right Hamming distance. These were use-
ful for detecting minor spelling variations or mis-
takes.

KB nodes were also considered if q was wholly
contained in k, or vice-versa. This was useful for
handling ellipsis (e.g., “United States Department of
Agriculture” vs. “Department of Agriculture”).

In the candidate ranking phase, additional fuzzy
matches were considered. The ratio of the recur-
sive longest common subsequence (Christen, 2006)



Type Features Details
acro 4 Acronym match.
alias 3 Names match using alias lists.
bbnalias 1 An alias match using a list provided by BBN Technologies.
bs 6 Basic string similarity metrics. Includes Hamming distance, Dice scores using skip bigrams or regular

trigrams, ratio of longest common subsequence to total string length, and string equality.
bs2 5 Additional string similarity metrics, including equivalence with acronym expansion or string equality with

organization and geographic terms removed (e.g., Inc., Corp., Province).
dice 2 Dice coefficient for words in the KB facts or KB text and the query document text.
facts 3 Presence of KB facts words in near query name mention or in query document.
filt1 1 Triage feature. Exact string match.
filt2 1 Triage feature. Query or KB name contained in the other (e.g., Nationwide and Nationwide Insurance).
filt3 1 Triage feature. Query name matches first letters of KB name (e.g., OA and Olympic Airlines).
filtalias 3 Triage feature. PER, ORG, and GPE specific alias lists derived from Wikipedia.
filter 3 Triage feature. Strong string similarity: character Dice score > 0.X , skip bigram Dice score > 0.X , or

Hamming distance <= 2.
goognil 2 Top Wikipedia pages ranked by Google for query name are missing from KB.
googtop 2 KB node corresponds to Wikipedia page ranked in top pages ranked by Google in Web search for query

name.
googwiki 3 KB node corresponds to Wikipedia page ranked in top pages ranked by Google in search of query name at

en.wikipedia.org.
kbtext 1 Query name appears early in KB article text.
kbtype 4 An assignment of ’PER, ORG, GPE, or RARE’ based on manually compiled list for the classes listed in the

knowledge base.
kname 5 Attributes about KB node name, such as having a comma, having parenthesis, or containing words indica-

tive of a GPE or organization (e.g., Inc., Corp.)
ldctype 4 The entity type provided for the KB node in the knowledge base (one of PER, ORG, GPE, or UKN).
name 4 Word-based name matching between query and KB name, such as sharing an ’organization’ word (e.g.,

company, bank, team, hospital etc.).
namedoc 4 Variations of KB node name appearing in the query article.
namedocp 7 Variations of KB node name appearing in the query article, where KB node name is first normalized, such as

by removing a parenthetical part of the name (e.g., Mike Quigley (footballer) would match Mike Quigley).
nand 1 A good string similarity match exists, but isn’t the current KB node under consideration.
nil, nilon 3 Whether the current pair is a NIL candidate.
nilstat 21 The max, mean, and difference between max and mean for 7 atomic features for all KB candidates consid-

ered for the given query.
nilvec 4 Whether no, one, or several candidate nodes have matching names. (These feature are intended to give

negative evidence for choosing the NIL candidate.)
nilvec2 3 Whether no, one, or several candidate nodes have matching names using fuzzier matching than with nilvec.
qname 4 Attributes about query name, such as containing words indicative of a GPE or organization.
qrytext 3 Whether the KB name appears near the query name or in the query article at all.
serifcovall 6 Coverage of the mentions identified in the query article by the SERIF tagger in KB facts or KB article text.
serifcovqry 9 Coverage of the mentions identified by SERIF in the query article and which are deemed coreferent with

the query, in KB facts or KB article text.
serifq 26 Type or subtype assigned by SERIF to the query name in the article.
strcmp 4 One of four buckets for name matching based on Dice scores using skip bigrams.
tfidf 8 Cosine similarity between KB facts or text and the query article using TF/IDF weighting. Also information

about the relative ranking of the KB node.
tfidfctxt 2 Cosine similarity between KB facts or text and the local context of the query name in the provided article,

using TF/IDF weighting.
trans 12 A similarity measure based on an probabilistic finite state transducer recognize the names as being accepted

variants of one another using a PER/ORG/GPE-trained model.
wt 4 A good match using Wikitology.
wtattr 12 Attributes about the link graph for the Wikipedia page corresponding to the KB node (e.g., number of

inlinks).
wtnil 4 Whether any KB node is a top match based on Wikitology.

Table 1: Major classes of features.



to the shorter of q or k is effective at handling some
deletions or word reorderings (e.g., “John Adams”
and “John Quincy Adams”, or “Li Gong” and “Gong
Li”). Checking whether all of the letters of q are
found in the same order in k can be indicative (e.g.,
“Univ Maryland” would match “University of Mary-
land”).

Acronyms. Consideration of acronyms enables
matches between “MIT” and “Madras Institute of
Technology” or “Ministry of Industry and Trade.”

Aliases. Many aliases or nicknames are non-trivial
to guess. For example JAVA is the stock symbol for
Sun Microsystems, and “Ginger Spice” is a stage
name of Geri Halliwell. We used multiple lists, in-
cluding class-specific lists (i.e., for PER, ORG, and
GPE) lists based on Wikipedia redirects.

2.1.2 Document Features
In the candidate ranking phase we considered fea-

tures that used document information from either
the document d provided with the query or the text
present in the KB node (KB text).

Entity Mentions. Some features were simply
based on presence of names, that is, whether q was
found in the KB text, or whether k was present in d.
Additionally we ran a named-entity tagger and rela-
tion finder, SERIF (Boschee et al., 2005), identified
name and nominal mentions that were deemed co-
referent with q in d, and tested whether these nouns
were present in the KB text.

KB Facts. KB nodes contain infobox attributes (or
facts); we tested whether these words of the facts
were present in d, both locally to a mention of q, or
anywhere in the provided article.

Document Similarity. We measured document
similarity between d and the KB text in two
ways: using cosine similarity with TF/IDF weight-
ing (Salton and McGill, 1983); and using the Dice
coefficient over bags of words. IDF values were ap-
proximated using counts from the Google 5-gram
dataset as by Klein and Nelson (2008)

2.1.3 KB Node Attributes
Entity Classification. KB nodes contained classes
(i.e., the original Wikipedia Infobox class) which
can be assigned to PER, ORG, GPE, or other. The

Type Reference KB COE types
PER 14.0% 21.8%
ORG 6.8% 7.2 %
GPE 14.2% 19.4%
UKN 64.9% -
BAD - 38.3%

RARE - 13.3%

Table 2: Entity classes in the reference KB.

reference knowledge base provided a type, which we
used as a feature. However, the types in the refer-
ence KB were incomplete. Table 2 shows that only
35% of KB nodes were assigned a tag of PER, ORG,
or GPE; the remainder were typed UKN (unknown).

Working through classes by frequency of occur-
rence we created an independent list that assigned
types to 87% of nodes. In addition to PER, ORG,
and GPE, we labelled many classes as BAD, mean-
ing they could not be a PER, ORG, or GPE. This was
helpful for discouraging selection of eponymous
nodes named after famous entities (e.g., E0381570
“Michael Collins (film)” vs. E046674, the Irish
political figure; or, the former U.S. president vs.
E0194013 “John F. Kennedy International Airport”).
We marked the remaining uncategorized classes as
RARE.

Popularity. Though for some text genres it may
be a dangerous bias to prefer common entities, it
seemed helpful for this task to estimate measures of
popularity. We did this in two ways. Our first ap-
proach, which was based on intrinsic properties of
the KB nodes, used the fact that the nodes were de-
rived from a snapshot of Wikipedia. We associated
with each KB node several graph-theoretic proper-
ties of its corresponding Wikipedia page, namely,
the number of in-links and out-links, and the page
length (in bytes). These served as a weak approx-
imation to PageRank. Our second approach used
a PageRank calculation – we submitted the query
string to Google and used the ranks of Wikipedia
pages in the list of results as an attribute for their
corresponding KB nodes.

NIL Indications. Some features can indicate
whether it is likely or unlikely that there is a match-
ing KB node for a query. For example, if many can-
didates have good name matches, it is likely that one
of them is correct. Conversely, if no node has high



node-text/article similarity, or overlap between facts
and the article text, it is likely that the entity is absent
from the KB.

FST Model of Name Equivalence. Another mea-
sure of surface similarity between the query and
a candidate was computed by training finite-state
transducers similar to those described in Dreyer et
al. (2008). These transducers assign a score to any
string pair by summing over all alignments and scor-
ing all contained character n-grams; we used n-
grams of length 3 and less. The scores are com-
bined using a global log-linear model. Since dif-
ferent spellings of a name may vary considerably in
length (e.g., J Miller vs. Jennifer Miller) we elimi-
nated the limit on consecutive insertions used in pre-
vious applications (Dreyer et al., 2008).2 We also
added a latent variable to the model that determines
the direction in which the transducer is being used.

Wikitology. Documents can be indexed with hu-
man or machine generated metadata consisting of
keywords or categories in a domain-appropriate
taxonomy. Using a system called Wikitology,
Syed et al. (2008) investigated use of ontology
terms obtained from the explicit category system in
Wikipedia as well as relationships induced from the
hyperlink graph between related Wikipedia pages in.
Following this approach we computed top-ranked
categories for the input articles in the entity link-
ing queries and used this information as features. If
none of the candidate KB nodes had corresponding
highly-ranked Wikitology pages, we used this as a
feature for the NIL condition (i.e., absent from the
KB).

2.2 Feature Combination
We identified several features that we believed to
be particularly useful; we then created combination
features from the cross-product of this set with the
entire list of features. The combination features in-
cluded a feature for entity classification; a popularity
feature based on Google’s rankings; document com-
parison using TF/IDF; coverage of co-referential
nouns in the KB node text; and name similarity. The
combinations were cascaded, so it was possible to

2Without such a limit, the objective function may diverge for
certain parameters of the model; we detect such cases and learn
to avoid them during training.

end up with a feature that represented, for example,
kbtype-is-per AND google-rank-is-low AND high-
tfidf-score AND low-name-similarity. The combined
features increased the number of features from about
200 to roughly 26,000.

2.3 Training Data
Since our approach to entity linking is based on su-
pervised learning we needed to obtain training data.
To facilitate query generation we developed a tool
to search the document collection and the KB, and
to output training data in a suitable format. About
a half-dozen members of our research group do-
nated training queries. We also used the 119 sample
queries provided by LDC as part of LDC2009E20.
In total we trained our models using 1615 exam-
ples, of which 539 (33.4%) were PER, 618 (38.3%)
were ORG, and 458 (28.4%) were GPE. 1301 of the
examples (80.5%) were found in the KB, matching
300 unique entities; 314 examples (19.4%) were not
present in the KB.

2.4 Experimental Results
We split our development data (N=1615) into two
parts, dev train (N=908) and dev test (N=707) for
in-house development; however all of the exemplars
were used to construct the final model that we used
for our submitted runs.

We submitted three runs for the entity linking
task. The first run (COE-1) used our entire fea-
ture set. The second and third runs removed
several features each, deletion of which had im-
proved performance on our development dataset.
COE-2 did not use the following feature classes:
conjoin-strcmpMedHiStrCmp, nand, and conjoin-
aliasSomeAlias (See Table 1). COE-3 did not use:
wattr and nil.

Use of our entire feature set (run COE-1) yielded
the best performance on the official evaluation met-
ric, micro-averaged accuracy measured against all
3904 queries. Tables 3 and 4 give performance for
all three runs averaged over all queries, broken out
by presence in the KB (non-NIL vs. NIL ) .

Micro-average accuracies of roughly 80% were
obtained for the test set for all three submissions.
Prediction of absent entities (˜85%) was higher than
linkage of entities present in the KB (˜70%), a trend
that was also apparent in the best and median runs.



Best Median COE-1 COE-2 COE-3
All 0.8217 0.7108 0.7984 0.7951 0.7941
non-NIL 0.7725 0.6352 0.7063 0.7164 0.6639
NIL 0.8919 0.7891 0.8677 0.8542 0.8919

Table 3: Micro-averaged accuracy for our submitted runs
compared to best and median performance.

Best Median COE-1 COE-2 COE-3
All 0.7704 0.6861 0.7695 0.7665 0.7704
non-NIL 0.6696 0.5335 0.6097 0.6160 0.5593
NIL 0.8789 0.7446 0.8464 0.8390 0.8721

Table 4: Macro-averaged accuracy for our submitted runs
compared to best and median performance.

Our overall scores are substantially above median
and near the top score reported. Run COE-3 had
the best overall macro-averaged accuracy, but was
2.8% below the top score using micro-averages. In
comparison, a strawman approach of always predict-
ing that entities were absent from the KB (i.e.,NIL )
would receive an overall score of 0.5710.

Our candidate selection phase was the same for
all three runs and we considered the correct answer
98.6% of the time; this is consistent with perfor-
mance on our in-house development set. Some of
the difficult cases that we failed to consider include:
EL1687 (Iron Lady) which refers metaphorically to
Yulia Tymoshenko; EL2885 (PCC), the Spanish-
origin acronym for the Cuban Communist Party;
and, EL2974 (Queen City), a former nickname for
the city of Seattle, Washington.

There was a wide range in the number of candi-
dates we considered per query. The mean was 76,
but the median was 15 and the maximum 2772.3 In
about 10% of cases there were four or fewer candi-
dates and in 10% of cases there were more than 100
candidate KB nodes.

Among the entity types we observed that ORGs
were more difficult to associate, which we attribute
to the greater variation and complexity in the naming
of organizations, along with the fact that they can be
named after persons or locations. Table 5 breaks the
results for COE-1 down by entity type.

77% of the distinct GPEs in the queries were
present in the KB, but for PERs and ORGs these
percentages were significantly lower, 19% and 30%

3For the query Texas.

Class N All non-NIL NIL
PER 627 0.8309 0.7098 0.9140
ORG 2710 0.7804 0.6367 0.8662
GPE 567 0.8483 0.8771 0.7750
All 3904 0.7984 0.7063 0.8677

Table 5: COE-1 performance by entity type.

Class Subgroups
acroynym acro
alias alias, bbnalias
baseline filt1, filt2, filt3, filtalias, filter
facts facts
graph wtattr
nes namedoc, namedocp, qrytext, serifcovall, ser-

ifcovqry, serifq
nil goognil, nil, nilon, nilstat, nilvec, nilvec2
popularity goog, googtop, googwiki
string bs, bs2, kname, name, nand, qname, strcmp
text dice, kbtext, tfidf, tfidfctxt
transducer trans
type kbtype, ldctype
wikit wt, wtnil

Table 6: Grouping classes of features.

respectively.

2.5 Feature Effectiveness

To estimate the contributions of certain types of fea-
tures, we first group features into a smaller set of
classes (Table 6). We then perform two analyses.
Our additive study starts by using only our triage
features, and measures the change when adding each
of the feature groups. (No feature combinations are
used in the additive study.) Our ablative study starts
using all of the features and measures the change
when subtracting each feature group.

Feature Addition. Table 7 shows the changes that
occur when different groups of features are added
to our baseline, or triage set of features. The base-
line condition, which only includes features based
on string similarity or aliases, is not effective at
finding correct alignments when target entities are
present in the KB; the non-NIL percentage is only
46.21%. Inclusion of features based on analysis of
named-entities, popularity measures (e.g., Google
rankings), and text comparisons (e.g., query and kb
document similarities) provided the largest gains.



Class All non-NIL NIL
baseline 0.7264 0.4621 0.9251
acroynym 0.7316 0.4860 0.9161
alias 0.7226 0.5081 0.8838
facts 0.6965 0.5558 0.8022
graph 0.6629 0.5248 0.7667
nes 0.7661 0.7181 0.8022
nil 0.7303 0.4884 0.9121
popularity 0.7597 0.7421 0.7730
string 0.6970 0.5099 0.8376
text 0.7313 0.6699 0.7775
transducer 0.7016 0.4812 0.8672
type 0.7139 0.5015 0.8735
wikit 0.7318 0.4549 0.9399

Table 7: Additive analysis: micro-averaged accuracy.

Feature Ablation. Table 8 reports the micro-
averaged accuracy when feature groups are removed
from our learning algorithm.

The overall changes are fairly small, roughly plus
or minus 1%; however changes in non-NIL preci-
sion are larger, about plus or minus 5%. The rela-
tively small degree of change indicates that there is
considerable redundancy across our feature group-
ings.

In several cases, performance would have been
improved by removing features - removing all fea-
ture combinations would have improved overall per-
formance to 81.05%, apparently by gaining on non-
NIL for a small decline on NIL detection.

3 Slot Filling

To explore the properties of the slot filling task and
evaluate its difficulty, we built a multi-phase system.
In the first phase, we identify sentences in the doc-
ument collection that are likely to be relevant to the
given query. The next phase extracts candidate an-
swers from the selected sentences. We then filter and
process these answers to address the requirements of
the task, e.g., limiting single slot answers, providing
document support for an answer, etc.

Our system aggressively pruned sentences to en-
sure only the most relevant sentences were used;
nonetheless, we produced many incorrect answers,
both false positives and false negatives. In particu-
lar, in generating our official submission, a configu-
ration error caused us to over-produce sentences for
extraction, which in turn led to the inclusion of many
sentences that were not relevant to the queries. After

Class All non-NIL NIL
acroynym 0.7969 0.7051 0.8659
alias 0.8025 0.7331 0.8546
baseline 0.7853 0.7278 0.8286
facts 0.7874 0.7206 0.8376
graph 0.8035 0.6943 0.8856
nes 0.7841 0.6740 0.8630
nil 0.7941 0.7224 0.8479
popularity 0.7569 0.6519 0.8359
string 0.7874 0.7540 0.8125
text 0.8076 0.7499 0.8511
transducer 0.7951 0.7475 0.8309
type 0.7843 0.6961 0.8506
wikit 0.7976 0.7284 0.8497
conjoin Alias 0.7989 0.7075 0.8677
conjoin Popularity 0.8058 0.7296 0.8632
conjoin NE 0.7964 0.7218 0.8524
conjoin String 0.7994 0.7260 0.8546
conjoin Text 0.7915 0.7313 0.8367
conjoin Type 0.7966 0.7337 0.8439
No Combinations 0.8105 0.7755 0.8367
No ablation 0.7984 0.7063 0.8677

Table 8: Ablation analysis: micro-averaged accuracy.

our official submission, we corrected the parameter
settings and reran our system to produce a more con-
strained set of relevant sentences. We include both
our official scores and scores for our subsequent cor-
rected run.

3.1 Document Filtering

The goal of our filtering stage is to find all seg-
ments of text in the document collection that are
relevant to the provided queries. We select relevant
segments on a sentence level, determining whether
each sentence is related or un-related to the query
entity. We begin by indexing the document col-
lection, then searching all relevant documents using
the entity name as a query. We look for documents
that match the entity name exactly. We would have
preferred to use our entity linking system both for
this task and for sentence selection below; however,
shortness of time prevented us from doing so.

Our next task is to identify the sentences in the
matched documents that mention the entity. Again,
we relied on heuristics here instead of our entity
linking system. We developed several approaches
to selecting relevant sentences including, from most
to least restrictive: 1) only select sentences that con-
tain an exact reference to the entity; 2) return sen-



tences that refer to the entity (we detect references to
entities using SERIF and select coreference chains
within the document that include an exact match for
the entity); and 3) return sentences in close prox-
imity to the entity (i.e., those that occur just before
or after a sentence mentioning the entity). We ex-
perimented with all three and found that while the
first yields a small number of sentences, it ensures
relatively higher precision. Our official runs mistak-
enly contained sentences using the least restrictive of
these filters, including some sentences that mistak-
enly passed through our filters unchecked. Our un-
official run described below contains sentences from
the first filter only.

3.2 Answer Extraction
The second phase of our system extracts candidate
answers from sentences that are relevant to the query
entity. Since we used a restrictive sentence selector
for the first pass, we opt for a more aggressive ex-
traction system. Rather than rely on high precision
patterns, we apply low precision patterns, using do-
main models to extract answers of the correct type.

To generate patterns, we used the knowledge base
as a source of seed knowledge. We identified sen-
tences in the document collection containing both
the name of an entity and a fact from that entity’s
KB entry. This produced (noisy) training sentences
for each slot. We then extracted patterns for these
slots using the pattern construction approach of Gar-
era and Yarowsky (2009). We sorted these patterns
based on their frequency of match to the sample sen-
tences. The resulting patterns were then manually
curated to select patterns that appeared to be of a
high quality.

Next, we constructed a domain model for each
slot. For many of the slots, this entailed creating
a list of valid answers for the slot, such as religion,
political party, education, etc. To generate these lists
we selected answers that occurred multiple times in
the knowledge base for each slot. Again, these lists
were manually pruned to ensure only high-quality
values.

Using these two resources, we constructed a rule
based extraction system for each slot. Rules used
a span identifier to detect which part of the sen-
tence contained a likely answer. Options for detect-
ing spans included using the patterns crafted above,

the context for manually selected keywords related
to each slot, contexts of given regular expressions,
the context of the entity mention, or the entire sen-
tence. For domain models, slots used either a fixed
list of slot fills (as described above), a typed named
entity, a number, a date within a predefined range, or
a URL. For named entity detection we used SERIF.
We created slot extractors by pairing these two com-
ponents, which then aggressively searched the pro-
vided sentences for possible answers. Table 9 pro-
vides a list of the answer span identifiers and domain
models used for each slot.

As an example, consider the slot title for a per-
son entity type. Our system extracted terms that ap-
peared near the query entity in the sentence that also
appeared in our list of person titles. For the entity
George Kennedy and sentence: “It’s a mystery to me
why (U.S.) publishers think people will pay more
for less, especially when the online world offers so
many alternatives, said George Kennedy, a profes-
sor emeritus at the University of Missouri School
of Journalism who spent the summer in London.”
our system extracted the candidate answer “profes-
sor emeritus” since it appeared in our list of titles.
The advantage to such an approach is that it is ro-
bust to changes in sentence syntax and surrounding
terms, although in some cases the aggressiveness of
the extractions leads to incorrect answers.

Another example slot is website for organizations.
We use predefined patterns, such as visit X and then
look for URLs near the pattern, such as in “For more
information on International Monetary Fund, visit
http://www.imf.org.”

3.3 Answer Post-Processing
After extracting candidate answers, we processed
them to conform to the track guidelines. We used
simple heuristics to make decisions at this stage;
there is clearly room for more intelligent processing.

Our processing included removing answers that
are stopwords, those that appear in hand-crafted
blacklists and those that have high string similar-
ity with the slot fill of the existing KB node for
the entity. To avoid redundancy in our answers we
merged candidate answers that had high string simi-
larity with other candidate answers for the same en-
tity. Finally, we selected the candidate answer that
we extracted the most times for single value slots



Type Slot Span Identifier Domain Model
PER Age Keywords Numbers

Alternate Names Patterns Named Entity (PER)
Cause of Death Patterns List
Charges Patterns List
Children Patterns Named Entity (PER)
Date of Birth Keywords Date
Date of Death Keywords Date
Employee of Patterns Named Entity (ORG, GPE)
Member of Patterns Named Entity (ORG, GPE)
Origin Query List
Parents Patterns Named Entity (PER)
Other Family Patterns Named Entity (PER)
Place of Birth Patterns Named Entity (GPE, LOC, Fac)
Religion Sentence List
Residences Patterns Named Entity (GPE, LOC)
Siblings Patterns Named Entity (PER)
Spouse Patterns Named Entity (PER)
Title Query List

ORG Alternate Names Patterns Named Entity (ORG)
Dissolved Regex Date
Founded by Patterns Named Entity (PER)
Founded Regex Date
Headquarters Patterns Named Entity (GPE, LOC)
Member of Patterns Named Entity (ORG, GPE)
Members Patterns Named Entity (PER, ORG)
Number of Employees Patterns Number
Parents Patterns Named Entity (ORG)
Political Religious Affiliation Query List
Shareholders Patterns Named Entity (PER, ORG)
Subsidiaries Patterns Named Entity (ORG)
Top Members Employees Patterns Named Entity (PER)
Website Sentence URL

GPE Alternate Names Patterns Named Entity (GPE)
Capital Patterns List
Currency Patterns List
Established Regex Date
Political Parties Patterns List
Population Patterns Number
Subsidiary ORGs Patterns Named Entity (ORG)
Top Employees Patterns Named Entity (PER)

Table 9: The answer span identifier and domain model used for each slot.



Single List SF
Slot NN Slot NN Value

NIL base 0.847 0 0.741 0 0.794
Median 0.514 0.154 0.439 0.141 0.461
Best 0.816 0.436 0.742 0.292 0.779
hltcoe1 0.765 0 0.518 0.035 0.641
hltcoe2 0.722 0 0.450 0.052 0.586
fixed 0.816 0 0.496 0.035 0.656
oracle 0.859 0 0.692 0.073 0.776

Table 10: Evaluation of slot-filling performance com-
pared to best, median and the strong NIL baseline, in-
cluding two unofficial runs. Columns are for single and
list slots, including evaluation on Non-NIL (NN) only.

and took at most the top three frequently extracted
answers for list slots.

3.4 Experimental Results
Our two official runs used the approach described
above. hltcoe1 used strict passage filtering, while
hltcoe2 used less strict filtering.

A coding error for our official runs let many non-
relevant sentences through that should have been re-
moved. We corrected the filter and created new runs,
which we evaluated by counting answers unjudged
by NIST as incorrect. The fixed run used the
strict filter we had intended to apply to our official
submission; it selected sentences containing exact
matches to the query entity name, or those with a
mention that SERIF deemed coreferential with an
exact match.4 We also did an oracle experiment,
using only those sentences containing both the ex-
act query string and the exact string answer found
in the qrels. About seventy percent of the correctly
assessed answers occur in such sentences. While
both these runs are “improved” by the official scor-
ing, they only did so because they returned fewer
answers, and thus approached the strong NIL base-
line.

4 Conclusions

Our machine learning approach to entity linking
worked well on the TAC 2009 data. While there
are domains for which our current feature set will
be less directly applicable, nonetheless we see our
framework as a good one for the entity linking task

4SERIF output was available only for about half of the doc-
uments in the collection.

at large. We are currently improving the speed of
our system to allow its use in slot filling and other
language processing tasks.

Our approach to slot filling was a disappointment
on these data. Our overall approach had worked well
in other situations (Garera and Yarowsky, 2009).
Significant factors that limited our performance on
the TAC 2009 task included the low occurrence of
slot fills in the document collection, heuristic selec-
tion of mentions that matched the query entity, sen-
tence selection that was too broad, noisy patterns,
patterns that did not identify both ends of the re-
lation being extracted, impoverished domain mod-
els, heuristic combination of slot fills, and coding
errors. We are performing further failure analysis on
our slot filling system, and are reengineering it to
ameliorate some of the problems we have identified.

References
E. Boschee, R. Weischedel, and A. Zamanian. 2005. Au-

tomatic information extraction. In First International
Conference on Intelligence Analysis, pages 2–4.

Peter Christen. 2006. A comparison of personal name
matching: Techniques and practical issues. Technical
Report TR-CS-06-02, Australian National University.

Markus Dreyer, Jason Smith, and Jason Eisner. 2008.
Latent-variable modeling of string transductions with
finite-state methods. In EMNLP, pages 1080–1089.

Nikesh Garera and David Yarowsky. 2009. Structural,
transitive and latent models for biographic fact extrac-
tion. In European Chapter of the Assocation for Com-
putational Linguistics (EACL).

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Knowledge Discovery and
Data Mining (KDD).

Martin Klein and Michael L. Nelson. 2008. A compari-
son of techniques for estimating IDF values to generate
lexical signatures for the web. In WIDM ’08: Proceed-
ing of the 10th ACM workshop on Web information and
data management, pages 39–46, New York, NY, USA.
ACM.

Gerard Salton and Michael McGill. 1983. Introduction
to Modern Information Retrieval. McGraw-Hill Book
Company.

Zareen Syed, Tim Finin, and Anupam Joshi. 2008.
Wikipedia as an ontology for describing documents.
In Proceedings of the Second International Conference
on Weblogs and Social Media. AAAI Press.


