A Joint Syntactic-Semantic Representation for Recognizing Textual *Relatedness*

Rui Wang Saarland University, Germany

Yi Zhang & Günter Neumann DFKI GmbH, Germany

RTE from 2-Way to 3-Way

- + From RTE-3 pilot task
 - + YES → Entailment
 - + NO → Contradiction / Unknown

- + Performance
 - + RTE-4 (3-way): 0.51
 - + RTE-4 (2-way): 0.57
 - + RTE-3 (2-Way): 0.61

An Example

+ Text: At least five people have been killed in a head-on train collision in north-eastern France, while others are still trapped in the wreckage. All the victims are adults.

+ Hypothesis: A French train crash killed children.

An Example

+ Text: At least five people have been killed in a head-on train collision in north-eastern France, while others are still trapped in the wreckage. All the victims are adults.

+ Hypothesis: A French train crash killed children.

+ Contradictory but Related!

Entailment vs. Relatedness

- + Textual Entailment
 - + Unidirectional
 - + Meaning preserved
 - + Entailment vs. Non-entailment
- + Textual Relatedness
 - + Bidirectional
 - + Weaker than similarity and stronger than co-occurrence
 - + Related vs. Non-related (Unknown)

Strategies for 3-Way RTE

- + Traditional 2-way classification
 - + Split E cases first: ECU → E/CU
- + Contradiction recognition (de Marneffe et al., 2008)
 - + Split C cases first: ECU → C/EU
- + Others
 - + Three-way classification: ECU → E/C/U
 - + Split U cases first: ECU → U/EC

Strategies for 3-Way RTE

- + Traditional 2-way classification
 - + Split E cases first: ECU → E/CU
- + Contradiction recognition (de Marneffe et al., 2008)
 - + Split C cases first: ECU → C/EU
- + Others
 - + Three-way classification: ECU → E/C/U
 - + Split U cases first: ECU → U/EC

Baseline

- + RTE-4 dataset
 - + 500 E, 150 C, 350 U
 - + NaiveBayes classifier, 10-fold CV
 - + BoW + SynDep features (Wang and Neumann, 2007)

Three-Way		Two-Stage	
E/C/U	$E/CU \rightarrow E/C/U$	$C/EU \rightarrow C/E/U$	$U/EC \rightarrow U/E/C$
53.20%	50.00%	53.50%	54.20%
/	82.80%	68.70%	84.90%

Outline

- + Recognizing Textual Relatedness
 - + Related Work
 - + Definition
- + The Joint Representation
 - + Syntactic and Semantic dependency
 - + Co-reference
- + Experiments & Results
- + Conclusion & Future Work

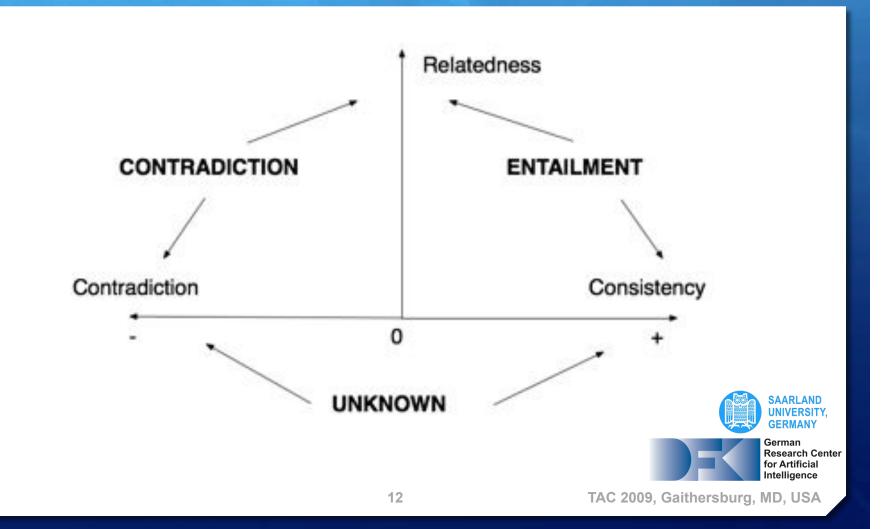
RTE vs. RTR

+ RTE

- + Direct three-way classification (e.g. Agichtein et al., 2009); different rules simultaneously (Clark and Harrison, 2009)
- + Contradiction recognition (de Marneffe et al., 2008)

+ Alignment

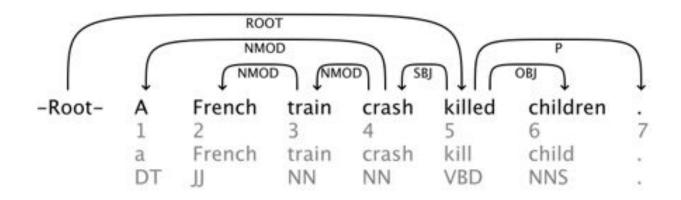
- + Phrased-based and dependency-graph-based (Pado et al., 2009)
- + Ontology-based (Siblini and Kosseim, 2009)
- + Dependency-path-based (Wang and Neumann, 2007)

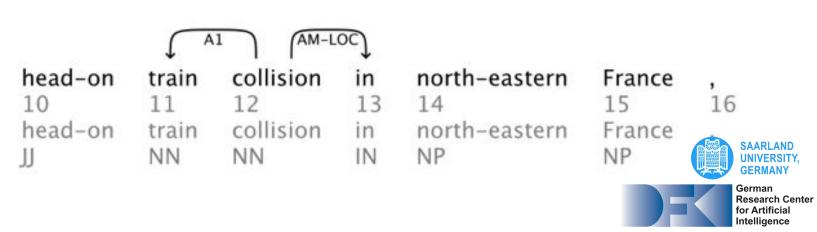


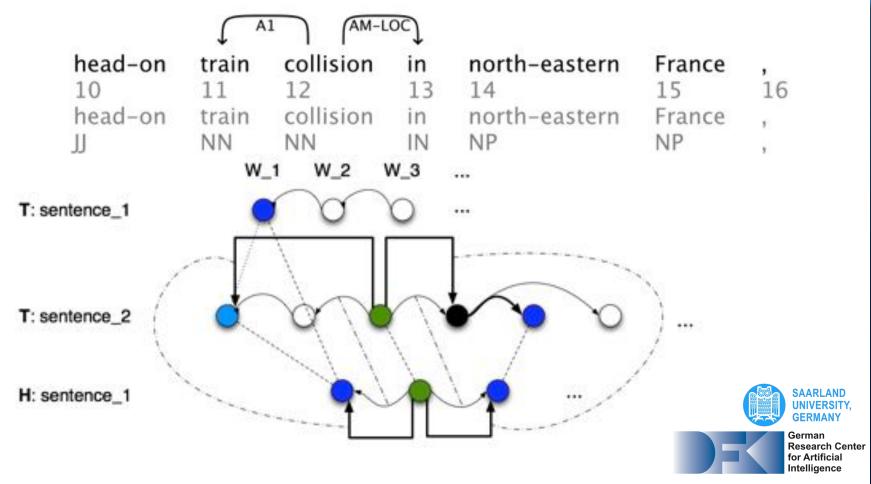
Textual Relatedness

- + Wang and Zhang (2009)
 - + If **H** is fully relevant to part of **T**, **H** is semantically related to **T**.
- + Relatedness
 - + (Weaker than) Similarity
 - + Surface string, semantic, etc.
 - + (Stronger than) Co-occurrence
 - + Distributionally or ontologically

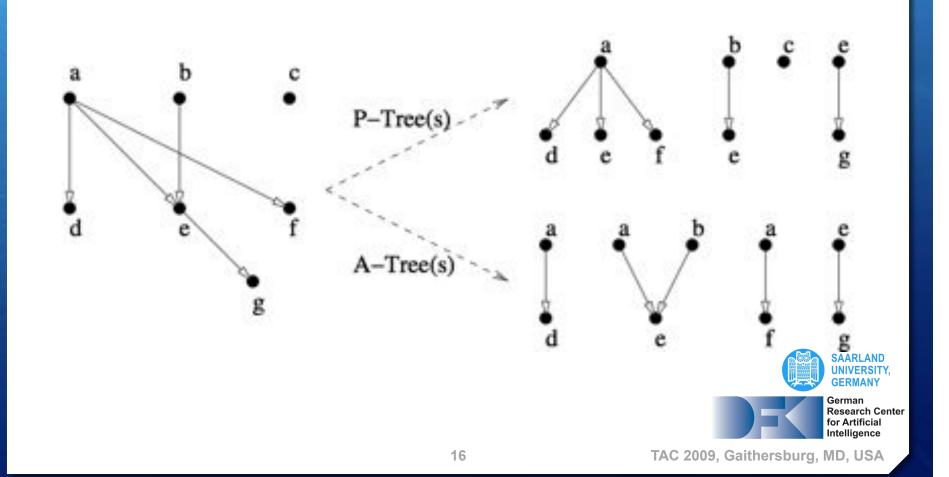
Relationship between Relations

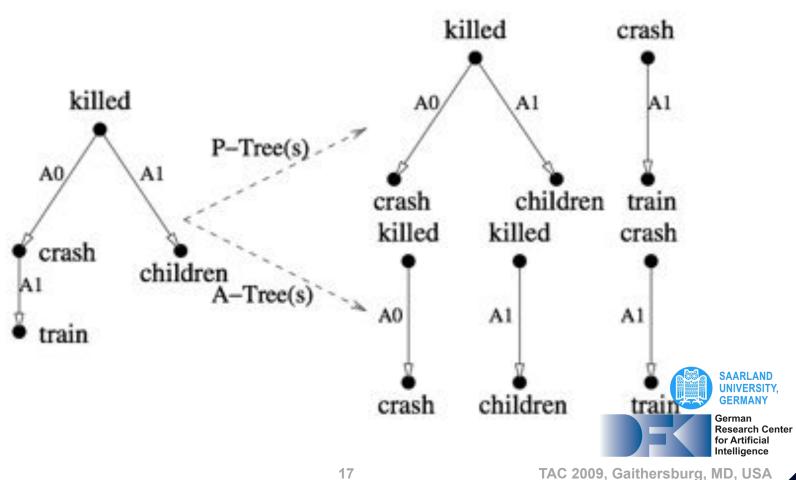

Recognizing Textual Relatedness


- + Preprocessing
- + Dependency Parsing (MSTParser McDonald et al. (2005))
- + Semantic Role Labeling (Zhang et al., 2008)
 - + The CoNLL shared task (2008, 2009): 70~80%
- + Co-reference Resolution (BART Versley et al. (2008))



Syntactic and Semantic Dependency




The Joint Representation

Decomposition of the Joint Graph

Decomposition (cont.)

Equations

$$R(T,H) = \max_{1 \leq i \leq r, 1 \leq j \leq s} \left\{ R(Tree_{T_i}, Tree_{H_j}) \right\}$$

$$R(Tree_{T}, Tree_{H}) = \min_{1 \leq i \leq n, 1 \leq j \leq m} \left\{ R(\langle P_T, D_{T_i}, A_{T_i} \rangle, \langle P_H, D_{H_j}, A_{H_j} \rangle) \right\}$$

$$R(\langle P_T, D_T, A_T \rangle, \langle P_H, D_H, A_H \rangle) = \left\{ \begin{array}{c} \text{Full} \quad R(P_T, P_H) = R(D_T, D_H) = R(A_T, A_H) = 1 \\ \text{NotFull} \quad R(P_T, P_H) = R(D_T, D_H) = 1 \\ \text{Other} \quad \text{Otherwise} \end{array} \right.$$

Lexical Semantic Resources

+ String matching of lemmas

+ Predicate

- VerbOcean (Chklovski and Pantel, 2004)
- + Normalized Google Distance (NGD) (Cilibrasi and Vitanyi, 2007)
- + Argument
 - + WordNet: synonym, hypernym, hyponym, antonym
 - + NGD (available online)

Experiments

- + Run1
 - + Wang and Zhang's system + a backup using features from BoW and syntactic dependency
- + Run2
 - + The main system (lenient) + a backup using features from BoW, syntactic, and semantic dependency
- + Run3
 - + The main system (strict) + a backup using features from BoW and joint representation

Results

Runs	Main	Main -VO	Main -WN	Main -VO-WN
DFKI1	50.7%	50.5%	50.7%	50.5%
DFKI2	63.7%	63.2%	63.3%	63.0%
DFKI ₃	63.5%	63.3%	63.3%	63.3%
RTE-3	53.69%	53.19%	53.50%	52.88%
RTE-4	56.60%	56.00%	56.10%	55.7 SAARLAND UNIVERSITY,

Results (cont.)

DFKI2		Gold-Standard			
		E	C	U	Total
	E	238	60	77	375
System	C	4	21	10	35
	U	58	9	123	190
	Total	300	90	210	600

Results (cont.)

Runs	Main	Main -VO	Main -WN	Main -VO-WN
DFKI1	62.5%	62.5%	62.7%	62.5%
DFKI2	66.8%	66.5%	66.7%	66.3%
DFK13	68.5%	68.3%	68.3%	68.3%

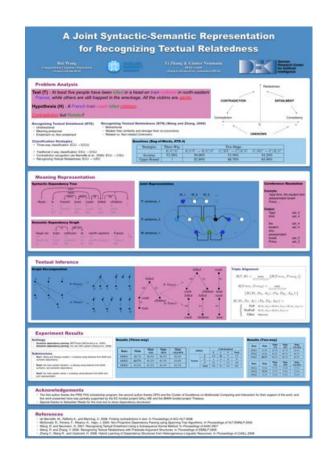
Runs	Main	Main -VO	Main -WN	Main -VO-WN	
DFKI1	FKI1 74.0% 73.79		73.8%	73.7%	
DFKI2	74.3%	73.7%	73.8%	73.5%	
DFKI3	72.3%	72.2%	72.2%	72.2%	

German
Research Center
for Artificial
Intelligence

Summary

- + Strategy
 - + 2-stage binary classification for 3-way RTE
- + Approach
 - + Textual relatedness
 - + Use a joint representation measure it
- + Result
 - + Improved (combination)
 - + Lexical resources

Future Work


- + Two styles of alignment
 - + Predicate (Dinu and Wang, 2009)
 - + Argument (paraphrase resources?)
- + Entailment vs. Contradiction
 - + Fine-grained RTE
 - + Specialized RTE modules
- + Named-Entity vs. common nouns

Thank you!

+ Questions?

+ Or later $\rightarrow \rightarrow \rightarrow$

