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RTE from 2-Way to 3-Way

+ From RTE-3 pilot task

+ YES — Entailment
4+ NO — Contradiction / Unknown

+ Performance
+ RTE-4 (3-way): 0.51
+ RTE-4 (2-way): 0.57
+ RTE-3 (2-Way): 0.61
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An Example

+ Text: At least five people have been killed in a
head-on train collision in north-eastern France,
while others are still trapped in the wreckage. All
the victims are adults.

+ Hypothesis: A French train crash killed children.
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An Example

+ Text: At least five people have been killed in a
head-on train collision in north-eastern France,
while others are still trapped in the wreckage. All
the victims are adults.

+ Hypothesis: A French train crash killed children.

+ Contradictory but Related! ) e
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Entailment vs. Relatedness

4+ Textual Entailment
4+ Unidirectional
+ Meaning preserved

4+ Entailment vs. Non-entailment

+ Textual Relatedness
4+ Bidirectional

+ Weaker than similarity and stronger than co-occurrence
+ Related vs. Non-related (Unknown)
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Strategies for 3-Way RTE

+ Traditional 2-way classification
+ Split E cases first: ECU — E/CU

+ Contradiction recognition (de Marneffe et al., 2008)
+ Split C cases first: ECU — C/EU

4+ Others
+ Three-way classification: ECU — E/C/U
+ Spllt U cases first: ECU — U/EC AEEP\  SAARLAND
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Baseline

+ RTE-4 dataset
+ 5o0E,150C, 350U
+ NaiveBayes classifier, 10-fold CV
+ BoW + SynDep features (Wang and Neumann, 2007)

Three-Way
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Outline

+ Recognizing Textual Relatedness
+ Related Work
+ Definition

+ The Joint Representation
+ Syntactic and Semantic dependency
+ Co-reference

+ Experiments & Results

4+ Conclusion & Future Work
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RTE vs. RTR

+ RTE

+ Direct three-way classification (e.g. Agichtein et al., 2009);
different rules simultaneously (Clark and Harrison, 2009)

+ Contradiction recognition (de Marneffe et al., 2008)

+ Alignment
+ Phrased-based and dependency-graph-based (Pado et al., 2009)
+ Ontology-based (Siblini and Kosseim, 2009)

+ Dependency-path-based (Wang and Neumann, 2007) P SAARLAND
e
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Textual Relatedness

+ Wang and Zhang (2009)

+ If His fully relevant to part of T, H is semantically
related to T.

+ Relatedness
+ (Weaker than) Similarity

+ Surface string, semantic, etc.

+ (Stronger than) Co-occurrence

+ Distributionally or ontologically BE) Dversir
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Relationship between Relations

' Relatedness
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Recognizing Textual Relatedness

<+ Preprocessing

+ Dependency Parsing (MSTParser — McDonald et al. (2005))

+ Semantic Role Labeling (Zhang et al., 2008)
+ The CoNLL shared task (2008, 2009): 70~80%

+ Co-reference Resolution (BART —Versley et al. (2008)) @ sarano
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Syntactic and Semantic Dependency

French train crash killed children .
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The Joint Representation
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Decomposition of the Joint Graph
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Decomposition (cont.)
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Equations

R(T,H) = e gz}g{) & {R(TTCCT.,TI'CBHJ)}

R(Treer,. Treey) = min
( o H) 1<i<n,1<j<m

{R((Pr, DT,,AT.>, (PH’D”)’AHJ))}

R((PTs DT’AT>a(PH9DHaAH>) -

Full R(Pr,Py)=R(Dy Dy)=R(Ar,Ag)=1
NotFull R(P;,Py)=R(Dy,Dy)=1
Other Otherwise

TAC 2009, Gaithersburg, MD, USA




| exical Semantic Resources

+ String matching of lemmas

+ Predicate
+ VerbOcean (Chklovski and Pantel, 2004)
+ Normalized Google Distance (NGD) (Cilibrasi and Vitanyi, 2007)

+ Argument
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Experiments

-+ Runa

+ Wang and Zhang’s system + a backup using features
fromBoW and syntactic dependency

+ Run2

+ The main system (lenient) + a backup using features
from BoW, syntactic, and semantic dependency

+ Run3

+ The main system (strict) + a backup using features., .. ..
from BoW and joint representation
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50.7% 50.5% 50.7% 50.5%

DFKI2 63.7% 63.2% 63.3%
DFKI3 63.5% 63.3% 63.3% 63.3%

RTE-3 53.69% 53.19% 53.50% 52.88%
RTE-4 56.60% 56.00% 56.10% 55
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Results (cont.)
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Results (cont.)
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Summary

+ Strategy
+ 2—stage binary classification for 3—way RTE

+ Approach
+ Textual relatedness
+ Use ajoint representation measure it

4+ Result

+ Improved (combination)
+ Lexical resources i) onersir
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Future Work

+ Two styles of alignment
+ Predicate (Dinu and Wang, 2009)
+ Argument (paraphrase resources?)

+ Entailment vs. Contradiction
+ Fine-grained RTE
+ Specialized RTE modules

+ Named-Entity vs. common nouns
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A Joint Syntactic-Semantic Representation

+ Questions? et o

4+ Or later 2>
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