AESOP: Summarization and Metrics With Neither Sweet Lemons nor Sour Grapes

John M. Conroy Judith D. Schlesinger IDA Center for Computing Sciences, USA Dianne P. O'Leary, University of Maryland

Outline

- Content based metrics
 - ROSE (ROUGE Optimal Summarization Evaluation).
 - Nouveau ROUGE: measuring what's new.
- AESOP results.
- Uber-baseline: Towards automatic measures of coherence.

Best Linear Combination

- Canonical Correlation: Hotelling 1935
 - Finds optimal linear combination to maximize correlation: a LS problem; more generally an eigenvalue problem.
- ROUGE Optimal Summarization Evaluation.
 ROSE. [Conroy & Dang 2008]
- Linear combination of *average system scores not* document set scores.

Robust Regression

- We aim to predict human metrics:
 - Overall responsiveness or
 - Pyramid evaluation.
 - $x = \arg\min \|Ax b\|$
 - A_{2008} system-average-scaled-feature matrix,
 - b_{2008} is the human metric to predict,

||.|| a norm that accounts for outliers.

 $\hat{b}_{2009} = A_{2009}x$, our estimate for the 2009 metric.

Nouveau ROUGE: Newness Metrics

- For update summaries the summaries should differ from what is already known.
- ROUGE scores that compare peers in subset *B* with models in subset *A*. $R_i^{(AB)}$ i = 1, 2, 3, 4, 5, SU4, L

Classifier

- Predict 2009 document set responsiveness scores using a linear classifier with ROUGE [and Nouveau ROUGE] features.
- Responsiveness scores for 2008 are {1,2,3,4,5}.
- Classifier gives posterior probability for each class.
- Expected value computed as score:

$$s = \sum_{i=1}^{5} i p_i$$

AESOP Submissions

ID	Туре	Features	Target
25	Regress.	1,2,3,L,SU4	Resp.
6	Regress.	2	Resp.
23	Regress.	1,2,3,L,SU4	Pyramid
26	Classifier	2,3	Resp.

Pvramid Set A: Error Bars

Top 20 Pyramid Correlating Metrics 1 0.99 6 <u>26)15_</u>28 0.98 10 25 11 13 12 4 19 _24 _18 _16 _5 1 2 33 23 0.97 32 0.96 0.95 0.94 0.93 0.92 0.91 0.9 12 2 6 8 10 14 16 18 4 20 0

Responsiveness Set A

Top 20 Responsiveness Correlating Metrics

Pyramid Set B: Error Bars

Responsiveness Set B

Top 20 Responsiveness Correlating Metrics

Responsiveness: Set A

Tukey HSD Test:Subset A of Summarization Task

Responsiveness: Set B

Tukey HSD Test:Subset B of Summarization Task

8 groups have mean ranks significantly different from Group 1

Uber-Baseline

- Idea: Test to what extent sentence order affects linguistic quality and responsiveness.
- Execution: Permute sentences from a human summary (not the assessor for the topic set.)

Metrics on the Uber-Baseline

Metric	Uber	Human	p-value
pyr	0.656	0.662	9.40e-01
ling	5.682	8.773	5.92e-14
overall	6.273	8.591	6.04e-13

Uber vs The Top

Tukey HSD Test:Linguistic Scores

Conclusions

- While ROSE/Nouveau ROUGE and others had higher correlation than baseline metrics, none exceeded ROUGE-2 for predicting responsiveness.
- Linguistic quality of uber-baselines comparable to top performing systems; however, *significantly* less than human counterpart!
- Underscores need for coherence metrics.