
CUNY-BLENDER TAC-KBP2010
Entity Linking and Slot Filling System Description

Zheng Chen, Suzanne Tamang, Adam Lee, Xiang Li, Wen-Pin Lin,
Matthew Snover, Javier Artiles, Marissa Passantino, Heng Ji*

Computer Science Department
Queens College and Graduate Center

City University of New York
New York, NY 11367, USA

*hengji@cs.qc.cuny.edu

Abstract

The CUNY-BLENDER team participated in
the following tasks in TAC-KBP2010: Reg-
ular Entity Linking, Regular Slot Filling and
Surprise Slot Filling task (per:disease slot).

In the TAC-KBP program, the entity linking
task is considered as independent from or a
pre-processing step of the slot filling task. Pre-
vious efforts on this task mainly focus on uti-
lizing the entity surface information and the
sentence/document-level contextual informa-
tion of the entity. Very little work has at-
tempted using the slot filling results as feed-
back features to enhance entity linking. In the
KBP2010 evaluation, the CUNY-BLENDER
entity linking system explored the slot fill-
ing attributes that may potentially help dis-
ambiguate entity mentions. Evaluation results
show that this feedback approach can achieve
9.1% absolute improvement on micro-average
accuracy over the baseline using vector space
model.

For Regular Slot Filling we describe t-
wo bottom-up Information Extraction style
pipelines and a top-down Question Answer-
ing style pipeline. Experiment results have
shown that these pipelines are complementary
and can be combined in a statistical re-ranking
model. In addition, we present several novel
approaches to enhance these pipelines, includ-
ing query expansion, Markov Logic Networks
based cross-slot/cross-system reasoning. Fi-
nally, as a diagnostic test, we also measured
the impact of using external knowledge base
and Wikipedia text mining on Slot Filling.

1 Introduction

The CUNY-BLENDER team participated in the
Regular Entity Linking, Regular Slot Filling and
Surprise Slot Filling (per:disease slot) tasks in the
TAC Knowledge Base Population 2010 track. We
submitted two runs for regular entity linking, one is
based on VSM model using tf-idf similarity between
context document of the query and knowledge base
(KB) text, and the other run is to incorporate some
semantic features extracted from slot filling into the
VSM model. In this paper we will focus more on the
description of our slot filling system which achieved
more competitive results.

The Slot Filling task requires a system to auto-
matically distill information from a large document
collection and return answers for a query entity with
specified attributes (‘slots’), and use them to expand
the Wikipedia infoboxes while validating the answer
with a cited document from the collection. Many
existing techniques could be used to solve this task
such as (1) mapping Information Extraction (IE) re-
sults to slot answers (Bikel et al., 2009), (2) training
new pattern-matching systems, or (3) using a Ques-
tion Answering (QA) system to fill slots (Li et al.,
2009). There has been a question whether bottom-
up style IE methods or top-down style QA meth-
ods are more suitable for slot filling. While these
methods each have their own inherent strengths and
weaknesses, we decided to investigate the extent to
which automatic combination of these techniques
might exceed their individual limitations. We will

compare the detailed techniques in these pipelines
and the lessons we have learned from experiments
and error analysis. In general we found that the su-
pervised IE pipeline performs worse than the oth-
er two because about many instances require cross-
sentence and cross-slot inferences which are beyond
traditional IE task. The pattern matching pipeline
achieves the highest recall while the QA pipeline
has the highest precision. We shall further demon-
strate that these three pipelines are complementary
and can be combined effectively in a novel statisti-
cal re-ranking module based on Maximum Entropy.
The features used in learning-to-rank include local
evidences such as baseline confidence, name type,
slot type, gazetteer constraints and dependency pars-
ing.

In addition to this core combined system, sev-
eral novel approaches were used to enhance these
pipelines, including query expansion and Markov
Logic Networks based cross-slot/cross-system rea-
soning. In the slot filling task, each slot is often de-
pendent on other slots, but the previous systems usu-
ally ignore these dependencies and process each slot
individually. We developed a reasoning component
to approach a real world acceptable answer in which
all slot dependencies are satisfied. All of these new
methods achieved significant improvements over the
baseline pipelines.

Finally, for diagnostic analysis, we will briefly
present the impact of using external knowledge base
and Wikipedia text mining on Slot Filling. For the
surprise slot filling task we will show that using a
small list of common disease names can perform as
well as a much larger list.

2 Entity Linking System Overview

Figure 1 depicts the general procedure of our ap-
proach.

3 Entity Linking Approach

3.1 Preprocessing

In the preprocessing step we use Lucene1 to index
the knowledge base according to the following fields
(Table 1):

1http://lucene.apache.org/

Figure 1: Framework of CUNY BLENDER Entity Link-
ing System

Field Description
title the entity name in wiki format
id a unique KB node ID, e.g., E000001
type the entity type, PER, ORG, GPE or UKN
name the entity name in plain format
facts attribute-value pairs extracted from in-

fobox
text KB text

Table 1: Fields Indexed in the Knowledge Base

In the candidate disambiguation step we will be
using the field “name” to retrieve candidate KB n-
odes and the field “text” to retrieve KB text.

Then we index the source text corpus by three
fields: docID, title, and text.

Finally we use the Java Wikipedia Library Toolk-
it2 to process the Wikipedia English dump3 obtained
in July, 2010. Processed results are stored in a
MySQL database which allows us to access the vast
amount of entity knowledge (e.g., redirections, dis-
ambiguation tables) instantly.

3.2 Query Expansion

It is usually not sufficient to retrieve candidate KB
nodes just using the query’s name string. There-
fore, we expand the query in various ways. We

2http://www.ukp.tu-darmstadt.de/software/jwpl/
3http://download.wikimedia.org/

use the following notations: Q means a query,
Q.querystring for the query’s name string, Q.text
for the query’s context text, Q.fullname for query’s
full name if Q.querystring is an acronym and
Q.expandset for the query’s expanded set.

1. Initially, add Q.querystring into Q.expandset.

2. If Q.querystring contains all capital letters, we
consider it as an acronym. We expand it to
Q.fullname by searching the text span around
Q.querystring in Q.text. Q.fullname match-
es the pattern of “Q.fullname (Q.querystring)”
and concatenate all the capital letters in
Q.fullname to form Q.querystring. We add
Q.fullname into Q.expandset if Q.fullname is
not empty.

3. Get the Wikipedia page P whose title is
Q.querystring. If P is a redirect page, we ad-
d the target page’s title into Q.expandset.

4. Get the Wikipedia page P whose title is
“Q.querystring (disambiguation)”. If P ex-
ists, we get the list of Wikipedia page links
in P which refer to different meanings of
Q.querystring. We add the titles of those tar-
get pages into Q.expandset.

5. If at this point, Q.expandset only contain-
s Q.querystring which means the name string
may be a misspelling. We get the suggested
string (“did you mean” functionality) using the
spellchecker in Lucene. If such string exists,
we add it into Q.expandset.

6. If at his point, Q.expandset still only contain-
s Q.querystring, we apply a fuzzy search in
the knowledge base, and retrieve the names
which share at least two common words with
Q.querystring. If any such names exist, we add
them into Q.expandset.

3.3 Candidate Generation

For each string in Q.expandset, we form a Phrase-
Query by treating the words in the string as an
“AND” relation. We then form a BooleanQuery by
concatenating the PhraseQueries as an “OR” rela-
tion and use Lucene to retrieve top 100 candidate

KB nodes from the knowledge base (only search-
ing the field “name” in the index). We use the no-
tation Q.candidateset={Q.kb1, Q.kb2, . . . , Q.kbK}
to represent the set of candidate KB nodes.

3.4 Candidate Disambiguation

If Q.candidateset is empty, which means that we
cannot find any candidate KB nodes, we simply re-
turn NIL as the answer. If Q.candidateset only con-
tains one item, we select it as the final answer. When
there are multiple items in the set, we should disam-
biguate the candidates and find the most probable
one as the answer; meanwhile we need to distinguish
NIL and non-NIL if possible.

We implemented two approaches for candidate
disambiguation as follows.

3.4.1 Basic VSM Model: Bag-of-Word(BOW)
The intuition behind the basic vector space mod-

el (VSM) is that the more similar (based on word
co-occurrence information) between the KB text
Q.kbk.text with the context text of the query Q.text,
the more likely the KB node refers to the query.
We constructed this baseline model based on bag-
of-word features, with stop words removed.

Once we computed every similarity for Q.kbk
(1 ≤ k ≤ K), we select the candidate with the
largest similarity. In order to distinguish NIL from
non-NIL, we introduce a threshold T . If the largest
similarity is lower than T , the system returns NIL,
otherwise returns the candidate.

3.4.2 Enhanced VSM Using Attributes
The intuition behind enhanced VSM is that enti-

ties can be disambiguated by their attributes, e.g.,
the “Michael Jordan” as a basketball player can be
differentiated from the “Michael Jordan” as a politi-
cian by the attribute of “title”. We define the pro-
file of an entity as a list of attribute-value pairs.
We use attribute vectors A1 = {a11, . . . , a1n} and
A2 = {a21, . . . , a1n} to represent Q.profile and
Q.kbk.profile respectively. Each item (e.g., a11)
in the vector is a set of values for some type of at-
tribute (some attributes are single-valued, and some
attributes are list-valued).

The KBP2010 Slot Filling task defines 26 at-
tributes for PERSON, and 16 attributes for OR-
GANIZATION. Therefore attribute vectors can be

formed by applying slot filling. For Q, it is usually
not enough to extract any information from a sin-
gle context text Q.text, hence, top K similar docu-
ments can be retrieved from the source text corpus
which contains Q.querystring and then slot filling is
applied on the set of documents. The other issue
concerned with Q is that Q does not give the enti-
ty type explicitly; therefore, entity tagger should be
applied to tag the entity type of Q in Q.text. The en-
tity type determines whether person or organization
attributes should be extracted. For Q.kbk, slot fill-
ing can be applied solely on the KB text Q.kbk.text
because the KB text is usually rich in information
of the entity. Furthermore, Q.kbk explicitly tells the
entity type.

The similarity between Q.profile and
Q.kbk.profile is computed as:

sim(Q.profile,Q.kbk.profile) =

n∑
i=1

f (a1i, a2i)/n

where f(a1i, a2i) is a boolean function which re-
turns 1 if a1i and a2i share any similar values (simi-
lar is defined as equal, substring or a standard Leven-
shtein distance between the two strings smaller than
2); otherwise, the function returns 0.

In our implementation we have simplified the
computation of the boolean function by skipping s-
lot filling on the clustered set of documents. We
assume that slot filling on the clustered set of doc-
uments may be much harder than slot filling on
Q.kbk.text because the sentences in Q.kbk.text are
much more coherently organized. For each value
in a2i extracted from Q.kbk.text, we check whether
Q.querystring and the value occur simultaneously in
some document from the clustered documents of Q.
If it is true, the function returns 1. We check all the
values in a2i, if there is not any such document, the
function returns 0.

We derive a hybrid similarity by combining the
similarity from BOW and from attributes:

simhybrid = αsim (Q.text,Q.kbk.text)+

(1− α) sim(Q.profile,Q.kbk.profile)

4 Slot Filling System Overview

The general procedure of our approach is shown in
Figure 2. Our approach begins with an initial query
processing stage where query expansion techniques
are used to improve recall. Each query is then pro-
cessed along three different pipelines, representing
three alternative approaches to the KBP task: IE,
pattern matching and QA. The best answer candi-
date sets are generated from each of the individual
pipelines and are combined in a statistical re-ranker.
The resulting answer set, along with confidence val-
ues are then processed by a cross-slot reasoning sys-
tem, resulting in the final system outputs.

Figure 2: Slot Filling System Overview

5 Slot Filling Baselines

We developed a multi-system approach that includes
four pipelines for KBP regular slot filling. These
pipelines are organized in two forms: bottom-up IE
based approaches that extract all possible attributes
for a given query and then fill in the slots by mapping
and inference (sections 5.1-5.3); and a top-down QA
based approach that searches for answers construct-
ed from target entities and slot types (section 5.4). In
addition, we exploited an external knowledge base
(Freebase) and automatic Wikipedia text mining for
answer validation (section 5.5).

5.1 Pattern Matching

In the pattern matching approach, we learn and rank
patterns from query-answer (q-a) pairs, and then ap-
ply these patterns to find answers to unseen queries.
For example, given the pair (Michael Jackson, 50)
for the per:age slot, we can extract sentences in
which Michael Jackson and 50 co-occur:

Michael Jackson died at the age of 50; Michael
Jackson (50).

A pattern can be constructed as:
{Q} died at the age of {A}; {Q} ({A}).

This approach consists of the following steps:
(1) Selection of query-answer pairs
We extract q-a pairs from the facts listed in

Wikipedia infobox by some mappings infobox fields
to KBP slots. q-a pairs are split into two sets: half
for pattern extraction, and the other half for pattern
assessment.

(2) Pattern extraction
For each q-a pair from the training set, we use a

search engine to retrieve the top 1000 documents in
the source collection, and select thoses sentences in
which the query and answer co-occur. In addition
to populating static patterns for different q-a pairs,
we also apply entity type replacement and regular
expressions to make patterns as general as possible.

(3) Pattern assessment
For each q-a pair from the development set, we

search the top 1000 documents and pick out the sen-
tences in which the query occurs. We apply patterns
for each sentence and if it can be matched, extrac-
t the entity as the answer. We sort the patterns in
descending order of precision (matching rate), and
filter those with precision below a threshold.

(4) Pattern matching
To obtain candidate answers for slot filling, we lo-

cate those sentences where q occurs, apply the pat-
terns generated by step (3) and extract the answer
which matches any pattern. We then rank the an-
swers according to the sum of precisions of all pat-
terns that produce the answer.

5.2 Supervised Feature-based IE Mapping

We apply an English IE system (Grishman et al.,
2005; Ji and Grishman, 2008) to extract relations
and events defined in NIST Automatic Content Ex-

traction Program (ACE 2005) . Relation extraction
and event extraction are based on maximum entropy
models, incorporating diverse lexical, syntactic, se-
mantic and ontological knowledge. We apply the
following mappings between ACE relations/events
and KBP slots:

(1) Given a 3-tuple {emi, emj, r} from relation
extraction which indicates that the entity mentions
emi and emj holds a relation r, and if r matches a
slot type r and emi matches the query entity q in slot
filling, then the answer in the incomplete 3-tuple {q,
a, r} for slot filling is emj.

(2) Given a 3-tuple {t, arg, e} and arg = {emi}
from event extraction which indicates that the trigger
word t indicates an event type e and the involving
arguments in arg include emi, emj, and so on. If the
event type e matches a slot type e, emi matches the
query entity q in slot filling and emj satisfies the role
constraint, then the answer is emj.

ACE2005 defines 6 main relation types and 18
subtypes; 8 event types and 33 subtypes. Table 2
shows the possible mappings from KBP2010 slots
to ACE 2005 relations/events.

5.3 Answer Filtering
We set a low threshold to include more candidate an-
swers, and then remove the following errors to dis-
till the best answers from both of the IE and pattern
matching pipelines:

• answers with inappropriate entity types (e.g.
the family members lots should have person an-
swers);

• erroneous answers that don’t match dictionary
constraints (e.g., the country dictionary for slot
per:country of birth);

• answers that are similar with the query names
(except for alternative name slots);

• some slot types (e.g. per:parents and
per:children) cannot share the same answer, re-
move the answer with lower confidence;

• remove alternative names and title answers
with low confidence;

• inappropriate answers whose dependency pars-
ing paths to the query do not satisfy cer-
tain constraints (e.g., for slots org:subsidiaries,

Table 2: Mappings from KBP2010 slots to ACE2005 re-
lations/events

org:parents, the query and the answer should
not have a conjunction relation);

5.4 Question Answering
We also apply an open domain QA system, OpenE-
phyra (Schlaefer et al., 2007) to retrieve candidate
answers for the slot filling task. Since candidate
answers must be validated, additional answer pro-
cessing is necessary to determine the candidate an-
swer’s relevance and retrieve the corresponding do-
cid(s) from the source collection.

To estimate the relevance, R, of a q-a pair we use
the joint probability of observing both the query and
answer by means of the answer pattern probability:

P (q, a) = P (q NEAR a)

where NEAR is defined as q-a existing within the
same sentence. At the sentence level, we calculate
the frequency of q-a pair occurrence in the reference
corpus and modify the related Corrected Conditional

Probability (CCP) formula to assess relevance:
R(q,a) = frequency(q NEAR a) × #(total sen-

tences) ÷ (frequency(q) × frequency(a))

After the relevance scores are calculated, the val-
ues for each slot are rescaled to be between 0 and
1 in order to facilitate the comparison of relevance
values among different slots.

5.5 External Knowlege Base Search and
Validation

We exploited external knowledge bases to discover
and validate more complete and reasonable answers.

The first resource we used is Freebase ((Bollack-
er et al., 2008)), which harvests information from
many open data sets (for instance Wikipedia and
MusicBrainz), as well as from user contribution-
s. In Freebase, there are many different categories
of data according to different criteria, for example,
“American football” is one category, which also in-
cludes many specific divisions (football coach, foot-
ball player, player game statistics and etc). We s-
elected some categories and mapped them to corre-
sponding KBP slot types, as shown in Table 3. For
example, we could map the coach of a football team
to the slot org:topmembers employees. As we can
see from Table 3, most of the Freebase entries in-
volve celebrities and only cover 17 KBP slot types
in total. Some slots need additional processing, for
example, the place slots from Freebase need to be
further divided into countries/states/cities.

In addition, we also conducted automatic
Wikipedia text mining by running the above three
pipelines on Wikipedia texts and storing the results
as an offline knowledge base.

For a given query q and a slot type, we search this
offline knowledge base. If a candidate answer a is
obtained, we try to validate the pair {q, a} for rel-
evance to the source text collection using the same
search method and co-occurrence metric as the QA
pipeline. Since Freebase provides accurate and up-
to-date information, we set the confidence of {q, a}
pairs obtained from Freebase to 1. For the answer
obtained from Wikipedia texts, we increase the con-
fidence of {q,a} if q and a co-occurred in the same
Wikipedia text.

In the final combined system, we assign the an-
swers obtained from this external knowledge base

Table 3: Mappings from Freebase to KBP Slots
Freebase slots KBP slots #entries

academic_post 299
cyclist 3593
employment_tenure 75592
golfer 1542
government_position_held 13941
person 296718
profession 363554
US_president 43
US_vice_president

per:title

47
baseball_historical_managerial_position 263
baseball_manager 31
basketball_coach 138
company_founder 5277
football_coach 38
organization_committee_membership 142
organization_founder

org:top_members/employees,
per:member/employee_of

910
baseball_historical_roster_position 475
basketball_historical_roster_position 247
boxer 4342
employment_tenure 100674
cricket_coach

per:employee_of

11
cause_of_death per:cause_of_death 25729
company_name_change org:alternate_names 787
company_shareholder org:shareholders 2354
founding_figure 102
person

per:religion
33162

marriage per:spouse 12877
organization_board_membership org:top_members/employees,

per:member_of
5004

organization_membership per:member_of 4416
person per:children, per:parents 38398
person (ethnicity) 30846
person (nationality)

per:origin
370421

place_lived per:residence 164053
sibling_relationship per:siblings 8229
subsidiary_relationship org:subsidiaries 6333
person per:place_of_birth 303653
person per:date_of_birth 763897

higher priorities than baseline pipelines.

6 Slot Filling Enhancement

We enhance the above pipelines based on the fol-
lowing extensions. We hypothesize that cleverly de-
signed query expansion techniques (section 6.1) will
improve the recall of candidate answers to the query.
In addition, most slot filling methods often produce
logically incoherent answers. We design a nov-
el cross-slot reasoning approach based on Markov
Logic Networks (MLN) to further refine the quality
of answers and predict new answers. Furthermore,
we take advantage of the redundancy from multiple
pipelines to conduct cross-system reasoning (section
6.2). We applied several heuristic rules (section 6.3)

to remove inexact and redundant answers compared
to the knowledge base, as required by the task defi-
nition.

6.1 Query Expansion

6.1.1 Name expansion
The query name may be mentioned in its alter-

native names in the corpus, thus, name expansion
can help improve the recall of slot filling. Wikipedi-
a uses redirect links to indicate navigations among
pages that mention the same entity. For example,
the entity name “Seyed Ali Khamenei” is redirect-
ed to “Ali Khamenei”. We mine redirect links from
our Wikipedia database (a static copy retrieved on
March, 2010) and use them to form extra query

names.
Similar to query expansion in Entity Linking (sec-

tion 3.2), a query name in slot filling is expanded by
taking all the following cases into consideration:

1) If the query name is an acronym, search in the
context doc and find the full name near the acronym;

2) Find the redirect name by a redirect dictionary
from Wikipedia;

3) If the query name is an organization, find the
acronym by connecting the capital letters in the
name, and validate the acronym by searching in the
source text corpus;

4) If the query name is a person name, expand it
with the last name.

Step 2 above normally produces very reliable an-
swers for org:alternative name slots as well, and so
they are propagated into the final output directly.

6.1.2 Template expansion

In order to generate informative natural language
questions from each pair of {query name, slot type},
we developed the following expansion methods.

We generated 68 question templates for the 16 or-
ganization slots and 68 question templates for the
26 person slots. For example, the following se-
mantically equivalent questions are generated for the
org:founded by slot type:

• Who founded {org}?

• Who established {org}?

• {org} was created by who?

During candidate answer generation, the tag
{org} is replaced by the target. On average, each tar-
get value produced an initial set of 112 candidates.
After filtering with stop words and sufficient query-
answer co-occurrence in the source collection, each
query generates an average of 4.9 for the baseline
results, which suggests a very high rate of spurious
results from the QA module. For this reason, query
expansion is a necessary step in the QA pipeline.
A rough estimate using a small set of queries with-
out enhanced expansion suggests the impact of this
step on recall leads to approximately a four-fold im-
provement.

6.2 Cross-system and Cross-slot Reasoning

In the slot filling task, each slot is often depen-
dent on other slots. In particular, the family slot-
s include such dependency relationships (e.g. X is
per:children of Y → Y is per:parents of X; X is
per:spouse of Y→ Y is not likely to be per:siblings
of X). Therefore we develop a reasoning component
to approach a real world acceptable answer in which
all slot dependencies are satisfied. Similarly, we can
design propagation rules to enhance recall, for ex-
ample, X’s per:date of birth is Y → X has per:age
which is approximately (the current year Y).

We noticed that heuristic inferences are highly
dependent on the order of applying rules, and the
performance may have been limited by the thresh-
olds which may over fit a small development cor-
pus. We use Markov Logic Networks (Richardson
and Domingos, 2006), a statistical relational learn-
ing language, to model these inference rules more
declaratively. Markov Logic extends first order logic
in that it adds a weight to each first order logic for-
mula, allowing for violation of those formulas with
some penalty. We use the Alchemy toolkit (Kok et
al., 2007) to encode inference rules such as those
based on traversing family trees.

Markov Logic will make it possible to compact-
ly specify probability distributions over these com-
plex relational inferences, and easily capture non-
deterministic (soft) rules that tend to hold among s-
lots but do not have to. We incorporate hard rules
such as name/date/number/title format constraints
for slots, as well as soft rules such as per:birthofdate
to per:age propagation.

Finally we apply the following additional heuris-
tic rules to improve the precision of slot filling:

• Format Validation

(1) per:date of birth and per:date of death:
Answer has to be in a date format (e.g. m-
m/dd/yyyy)

(2) per:age: Answer has to evaluate to an inte-
ger that is between 0 and 150.

(3) org:number of employees/members and
org:founded: Answer has to be an integer.

• Gazetteer based Validation

We apply gazetteers to filter out incor-
rect answers for the following slots:
per:country of birth, per:city of birth,
per:origin, per:country of death,
per:city of death, per:countries of residence,
per:cities of residence, per:title,
org:country of headquarters, and
org:city of headquarters.

• Regular Expression based Generation

We apply the following high-precision regular
expression based patterns to obtain answers:

(1) org:alternate names: ANSWER
(QUERY NAME)

Comparing to the query name expansion tech-
nique, this pattern has the advantage of ob-
taining answers include tokens which are not
represented by the abbreviation name, e.g.
Gay, Lesbian and Straight Education Network
(GLSEN).

(2) org:website:

http://*QUERY NAME*.(gov|com|edu|org)
This pattern found most of the website answers
by checking whether the query name exists
within the web address.

(3) per:age: QUERY NAME, ANSWER,

Some age answers were missed by the general
pattern learning component due to name tag-
ging errors. This pattern can discover many
high-precision answers.

• Regular Expression based Filtering

In the slot filling task, a system is required not
only to return the answer, but also a context
document to support the answer. So it is also
important to validate the document or context
sentences. We have implemented the follow-
ing regular expression based rules to filter out
incorrect answers as well as contexts.

(1) org:subsidiaries Filtering

If a candidate answer match one of the follow-
ing patterns, then remove this answer for the
org:subsidiaries slot:

(a) Context sentence contains the word ”con-
tract”

(b) QUERY NAME * to ANSWER

For example, in the sentence “Halliburton re-
ferred questions to Petrobras, which has said it
has backup copies of the information”, “Petro-
bras” is unlikely to be the answer of the query
“Halliburton”.

(c) QUERY NAME *competitor|has been|and
* ANSWER

For example, “Schlumberger Ltd.” is the com-
petitor instead of a subsidiary of “Hallibur-
ton” in the following sentence: “Last week,
Halliburton’s chief competitor, Schlumberger
Ltd., said its third-quarter profit jumped 35
percent, but weaker-than- expected results in
North America drove its shares down sharply.”

(d) ..., QUERY, ...ANSWER,

If the query and answer candidate appears in
the middle of a very long comma delimited list,
then the answer is unlikely to be a correct sub-
sidiary.

(2) per:employee of Filtering

(a) QUERY NAME told ANSWER

When the query is a news agency, the slot fill-
ing pipelines cannot distinguish the reporter
and the witness well. In these cases, if the
query and answer are involved in a “tell” event,
then we remove the answer candidate. For ex-
ample, in the following sentence “David Ban-
da” is not an employee of “AFP”:

“I only met Madonna and her husband once in
court when we were signing the first documents
for adoption in 2006,” Yohane Banda told AFP
by telephone from his village of Mchinji, 110 k-
ilometres (70 miles) from the capital Lilongwe.

(3) org:number of employees/members Fil-
tering

(a) QUERY NAME in ANSWER

Sometimes the baseline pipelines can-
not distinguish numbers from years, and
thus generated incorrect answers for the
org:number of employees/members slot. We
use this simple pattern to remove some er-
rors. For example, in the sentence “Previous

estimates from India’s National AIDS Con-
trol Organisation (NACO) had put the HIV
caseload at 5.2 million while UNAIDS in
2006 estimated 5.7 million cases.”, “2006”
is not org:number of employees/members of
“UNAIDS”.

(4) org:top members-employees Filtering

(a) QUERY NAME * said ANSWER

Dependency relations are generally crucial to
filter out incorrect family and employment slot
answers. However when the dependency pars-
er fails, we apply some hard constraints such as
the above pattern to filter out some incorrect an-
swers for org:top members-employees. For ex-
ample, in “A FEMA spokeswoman, Allsee To-
bias, said Anna Johns...”, “Anna Johns” is not
a top employee of “FEMA”.

(5) Structured Data Identification and An-
swer Filtering

In the web data, some structured data such
as tables lost their original forms, which may
lead to many spurious answers. We apply
some specific patterns to automatically detec-
t these structures and filter out errors. For
example, in the following sentence “Samsung
Z720 @ 150usd Samsung Ultra Edition 5.9 @
270usd Samsung SGHP310 @ 155usd Sam-
sung SGHi830 @ 190usd Samsung SGHi718
@ 190uad Samsung SGHi600 @180usd Sam-
sung SGHF700 @ 200usd Samsung SGHB600
@ 300usd Samsung i760 @ 250uad”, we rely
on the common word “usd” to detect the tabu-
lar form and remove “SGHB” from the answer
list for the query “Samsung”, which was mis-
takenly recognized as an organization name in
the baseline pipelines.

6.3 Inexact and Redundant Answer Removal

We handled the following specific rule based on
within-document entity coreference resolution to
convert inexact answers to full strings.

• if {a, b} are coreferential, while a is a full name
while b is not, generate a as the answer to re-
place b.

In addition, we applied substring matching and
Levenshtein distance to remove redundancy from
the following different sources.

• 1) Redundancy between answer and knowledge
Base entry

• 2) Redundancy between query and answer

• 3) Cross-sentence answers

For (1) and (2), we remove the answer directly,
for example, the answer “David Lesar” is removed
because “David J. Lesar” exists in the knowledge
base with the same slot type for the same query; In
(3) we keep unique answer candidates for list-value
slots, while keep the answer with the highest confi-
dence for single-value slots.

Our redundancy removal methods effectively re-
moved a lot of incorrect answers but also some cor-
rect answers for alternative name slots due to step
(2). We considered substring matched names not as
alternative answers (e.g. “IBM Corp.” and “IBM”).
But this definition is not clear in the 2010 annota-
tion guidelines. In the 2010 assessment guidelines
which are used for human annotators, most substring
matched names are considered as correct answers.

7 Slot Filling System Combination

We apply a novel statistical re-ranking method to re-
rank the IE, QA and pattern pipelines because we
can incorporate rich features, and then apply a final
priority based combination step to combine with the
external knowledge base search pipeline and NYU
system (Grishman and Min , 2010).

7.1 Statistical Re-ranking
We develop a Maximum Entropy (MaxEnt) based
supervised re-ranking model to re-rank candidate
answers for the same slot. We incorporate the fol-
lowing semantics and global statistics based features
into the re-ranker:

• Baseline confidence.

• Answer Validation Score.

This feature provides confidence information
based on q-a co-occurrence of the query and
the answer hypothesis in the source document
collection.

• Answer Name Type.

We incorporate the name type of the candidate
answer as an additional feature for re-ranking.

• Slot Type.

Using the KBP slot type as a feature allows us
to re-rank slot types so that our QA system is
more likely to get correct answers for a slot
type with a higher confidence.

• Dependency Parse Tree of the main contex-
t sentence.

• Length of Dependency Parse.

Using the value of each individual system’s con-
fidence as the initial probability, we use the feature
weights obtained from the trained MaxEnt model to
boost the confidence of answers that are more likely
to be correct, and decrease the system confidence of
those answers more likely to be false. In this way,
we can effectively mitigate the impact of errors pro-
duced by co-occurrence. For example, the answer
”1976” did not have a high co-occurrence with the
query ”Moro National Liberation Front”, but was
bumped up by the re-ranker based on the slot type
feature org:founded.

7.2 Priority based Combination
After the above stastical re-ranking, we keep the
answers with re-ranking confidence values above
a threshold optimized from our development set.
However, there may be still some conflicting an-
swers produced from different pipelines or system-
s. In the KBP2010 evaluation, we submitted two
runs which are combined with NYU slot filling sys-
tem. For each single-value slot, we choose one an-
swer from all of the systems based on the follow-
ing priority order: External knowledge base search
> NYU > IE > QA > Pattern matching pipeline,
which is optimized based on the precision values ob-
tained from the development set. For each list-value
slot we merge all posible unique answers.

8 Surprise Slot Filling

CUNY-BLENDER team participated the per:disease
slot only in the surprise slot filling task.

We first retrieve relevant sentences based on co-
occurence of a query (and its coreferential mentions)

Corpus Source #mentions
PER ORG GPE

Training 2009 Training 627 2710 567
Web data 500 500 500

Testing Newswire 500 500 500
Web data 250 250 250

Table 4: Training and Testing for Entity Linking

and most common disease names from a list of com-
mon treatment and disease derived from the UMLS,
a Metathesaurous of health and biomedical concept-
s. If the query and the candidate answer co-occured,
then we used the same relevance metric employed
by the QA pipeline for answer validation against the
source collection.

We then apply a filtering scheme based on conflic-
tion resolution rules with the organization founded
slot, intervene word length constraint, query/answer
order and dependency parsing features.

In general we found that if we only use a small-
er list including common disease names, we ob-
tained the same answers as using the entire large
list. Most errors were caused by the confusion
between per:charity vs. per:disease, and between
query:disease vs. family member of query:disease.
Most errors we observed could have been avoided by
incorporating sentence level analysis. For example,
many instances where q is a well known or affluen-
t individual and has some done philanthropic work
related to a lethal illness or disease, such as AIDS or
cancer. Sentence level analysis can be used to ex-
clude certain event types, require a disease related
trigger or other more fine-grained method. extended
to at least include those slot answers that were not in
our candidate answer set.

9 Entity Linking Experiments

9.1 Data and Scoring Metric

For our experiments we use the KBP2010 entity
linking evaluation data for testing, and use the entity
linking training data released before the evaluation
for tuning parameters (as shown in Table 4).

We evaluated the results of our experiments with
the official scoring metric in KBP2010 (Micro-
average Accuracy).

Query Expansion
Strategy

training
(Coverage)

testing
(Coverage)

step (1) 84.2% 84.9%
(1)+(2) 87.7% 86.7%
(1)+(2)+(3) 92.1% 94.3%
(1)+(2)+(3)+ (3) 95.2% 95.0%
(1)+(2)+(3)+(3)+(5) 96.1% 96.0%
(1)+(2)+(3)+(3)+(5)+(6) 96.9% 96.8%

Table 5: Impact of Query Expansion

9.2 Impact of Query Expansion

In section 3.2, each step from (1) to (6) may intro-
duce more candidates into Q.candidateset, and thus
may have more chances to obtain the non-NIL an-
swer.

The Coverage evaluates the effectiveness of each
step in identifying the non-NIL answers. Coverage
is computed as follows:

Coverage =
#(non−NIL answer ∈ Q.candidateset)

#non−NIL answer

The experiments were conducted by incremental-
ly adding a step each time. The results on training
and testing corpus are shown in Table 5 (experiments
for testing corpus were done after KBP2010 keys
were released).

Table 5 shows that as we incrementally add steps,
the coverage for both training and testing corpus im-
proves. However, we observe that step (3) (redirect
page) leads to more gains on the testing corpus than
on the training corpus (7.6% gain on testing versus
4.4% training) while step (3) (disambiguation page)
brings more gains on training than on testing (3.1%
on training versus 0.7% on testing).

By analyzing the query mentions that fail to cover
non-NIL answer, we understand that some queries
are extremely challenging. Besides some difficult
cases discussed in (McNamee and Dang, 2009), we
observe two other cases that may need more ad-
vanced techniques for resolution:

1. co-reference - the answer is co-referential to the
query mention in the context text of Q. Without
resolving the query mention in Q.text, it is hard

VSM Model Micro-average
Accuracy

basic 0.621
enhanced 0.712

Table 6: Impact of Enhanced VSM Model

to find the answer in other means. One exam-
ple is that the query mention is ”The Lions”’,
and the answer is ”Singapore national football
team”.’

2. answer is from KB infobox or from KB text.
For example, query mention “Angela Dorothea
Kasner” is the birth name of the answer ”An-
gela Merkel” and it is only mentioned in the
KB text rather than redirect page.

9.3 Impact of Threshold T in Basic VSM
Model

Before the KBP2010 entity linking evaluation, we
tuned the threshold in the basic VSM model based
on the training corpus. Figure 2 shows that at thresh-
old = 0.1, the basic VSM model achieves the best in
micro-average accuracy. We then applied the model
on the testing corpus using the “best” threshold of
0.1, and produced the first run which coincidently
achieved the same score of 0.621 as on the training
corpus. After we got the keys for KBP2010 evalu-
ation, we conducted another set of experiments by
tuning the threshold on the testing corpus and ob-
served that the model still achieves the best at the
threshold of 0.1 (Figure 2).

Figure 3 shows the performance of NIL and non-
NIL on the training and testing corpus respective-
ly. For both training and testing, as the threshold
increases, the micro-average accuracy of NIL in-
creases while non-NIL drops. At threshold 0.5, the
micro-average accuracy of NIL quickly approaches
to 1 while the micro-average accuracy of non-NIL
approaches to 0. The overall micro-average accura-
cy at the tail of the curve on training is 55% which
is exactly the distribution of NIL queries in the cor-
pus (in training, NIL queries counts 55% of the total
queries) while on testing, it is close to 49%.

Figure 3: Impact of Threshold in Basic VSM

Figure 4: Non-NIL versus NIL

9.4 Impact of Enhanced VSM Model

We re-run the experiments after KBP2010 evalua-
tion since we had made some minor changes in s-
lot filling system which potentially improves the ex-
tracted results. Table 6 shows that enhanced model
achieves a little higher score than the one submitted
to KBP2010.

Since the slot filling system only extracts at-
tributes for PERSON and ORGANIZATION, the
gain comes from the candidate disambiguation of
persons and organizations.

We observe that some attributes are particularly
helpful for candidate disambiguation, for example,
“title” and “residence” attributes, partly because our
slot filling system can extract such attributes with

higher accuracy.

10 Slot Filling Experiments

In this section we present the overall performance of
our individual slot filling pipelines and break down
the performance to demonstrate the impact of key
techniques.

10.1 Data and Scoring Metric
We randomly select 50 queries (25 persons and 25
organizations) and the entire source collection from
KBP 2010 training corpora as a development set to
evaluate our methods. And we will also measure the
impact of some approaches on the KBP2010 evalu-
ation set.

However, as we will demonstrate later in section
10.4, a single human annotator can only achieve
lower than 50% recall. Therefore we followed the
human assessment procedure as in KBP evaluation
to expand the answer key of the development set.
We asked Amazon Mechanic Turk and human anno-
tators to manually check all those instances gener-
ated by the system but not in human annotation. If
an instance is correct, it will be added to form the
expanded answer key set. The final answer key for
these 50 queries include 711 non-NIL answers.

We follow the KBP 2010 scoring metric to eval-
uate each pipeline but ignoring document ID com-
parison. This is a uniform scoring metric based on
standard Precision, Recall and F-measure. A unique
answer instance {query, slot type, answer} is con-
sidered as correct if it matches any instance in the
answer key. We added additional answer normal-
izations to the scorer in order to get more reliable
scores and speed up human assessment (normalized
6% instances in the test set). The normalizations are
based on a list of 362 country name variants (e.g.
the United States = USA) and a list of 423 person
fullname-nickname pairs.

10.2 Top-down vs. Bottom-up
Figure 5 presents the breakdown scores of three in-
dividual pipelines for each slot type.

Although different slots obtained quite differ-
ent comparison results, overall pattern matching
achieved the best result. Supervised IE method per-
forms the worst because not all of the slot types have
corresponding relation and event types. QA method

Figure 5: Top-down and Bottom-up Pipeline Comparison
on Each Slot Type

obtained comparable precision but much lower re-
call because the candidate answers are restricted
by query template design and the annotations (e.g.
name tagging) used for answer validation.

10.3 Impact of Answer Filtering

Figure 6 demonstrates how the performance got im-
proved as we added more filtering steps to the pat-
tern matching pipeline. We can see that as we add
the filtering steps, we significantly enhanced preci-
sion (25.5%) with some loss in recall (11.4%), and
eventually obtained 27.4% absolute improvement on
f-measure.

10.4 Impact of Reasoning

Experimental results demonstrate the cross-slot and
cross-system reasoning approach can enhance the
quality of slot filling in two aspects: (1) It can gen-
erate new results for the slots which the pipelines
failed altogether; (2) It can filter out or correct logi-
cally incoherent answers. Table 7 presents the num-
ber of unique answers removed or added for the e-
valuation set. Occasionally this approach removed
some correct answers, for example, in the sentence
”She had two daughters with one of the MK’d West-
life singers, Brian McFadden, calling them M olly
M arie and Lilly Sue”, our reasoning approach mis-
takenly removed ”singers” from the per:title answer
for the query ”Brian McFadden” because ”singer-

Figure 6: Impact of Answer Filtering on Pattern Match-
ing Pipeline

s” is not in our title list. However, we can see that
overall this approach can significantly improve both
precision and recall.

Operations Total Correct Incorrect
Removal 277 244 33
Adding 16 16 0

Table 7: Impact of Cross-Slot and Cross-System Reason-
ing

10.5 Impact of Statistical Re-ranking

We evaluate the impact of re-ranking on . The rela-
tive Precision (P), Recall (R) and F-Measure (F) s-
cores are presented in Table 8. We can see that statis-
tical re-ranking significantly improved each pipeline
and outperformed a simple combination approach
based on pipeline priorities. Supervised Re-Ranking
helps to mitigate the impact of errors produced by s-
coring based on co-occurrence. For example, when
applied to our answer set, the answer Clinton for
the query Dee Dee Myers, had a system relevance
score for the attribute per:children due to frequen-
t co-occurrence that was reduced and consequently
removed by re-ranking. Alternatively, the query Mo-
ro National Liberation Front and answer 1976 did
not have a high co-occurrence in the text collection,
but was bumped up by the re-ranker based on the
slot type feature org:founded .

Methods P R F
Feature-based IE 24.2 14.2 17.9
Pattern Matching 21.9 37.7 27.7

Question-Answering 26.7 17.3 21.0
Priority-based Combination 30.5 26.6 28.4

Re-ranking 28.0 44.3 34.3

Table 8: Impact of Statistical Re-Ranking on Individual
Pipelines (%)

10.6 Impact of Using External Knowledge
We have exploited external knowledge base in
a more direct way than distant learning, namely
searching and validating the answers in the source
collection. Table 9 shows that using Freebase
and Wikipedia text mining can achieve slight gains
(1.3% F-Measure).

Using External KB P R F
No 27.99 26.02 26.97
Yes 28.74 27.85 28.29

Table 9: Impact of External Knowledge Base (%)

11 Related Work

The entity linking task involves aligning a textual
mention of a named-entity to an appropriate entry in
a knowledge base, which may or may not contain the
entity. There are two major difficulties in this task:

1. Name variation: entities can be referred to by
multiple name variants (e.g., aliases, acronyms,
misspellings). Entity linking must find an entry
despite changes in the mention form.

2. Name ambiguity: different entities can share
the same name, i.e., a single mention can match
multiple entries in the KB. Entity linking must
disambiguate name entities and find the most
appropriate entry for the mention.

To alleviate the two difficulties, a typical entity
linking system contains two crucial components:

1. Query expansion and candidate generation:
The aim of query expansion is to produce an ex-
panded query set including name variations and
its ambiguous forms given a query. The aim

of candidate selection is to produce a sufficien-
t and manageable candidate list which means
that too restrictive selection may miss a promis-
ing candidate but too loose selection may intro-
duce complexity and uncertainty in the second
component as described below.

2. Candidate disambiguation: this component is
to rank the KB nodes in the candidate set and
link the mention to the most probable one.
However, if the entity the mention refers to is
a new entity not present in the KB, NIL should
be returned.

For the first component, up-to-date techniques in-
clude:

1. Building a Knowledge Repository based on
Wikipedia which provides vast amount of
world knowledge of entities (Zhang et al.,
2010), e.g., redirect page, disambiguation page,
anchor text, “did you mean”.

2. Developing heuristic algorithms to identify the
acronym and its expanded form from the con-
text text of the query (Varma et al., 2010).

3. Developing metaphone algorithms to identify
spelling variations.

For the second component, the approaches may
vary from unsupervised learning to supervised learn-
ing. Many unsupervised approaches rank the candi-
dates based on VSM model which computes similar-
ity between mention and candidate KB nodes. How-
ever, it is hard to tune the threshold for identifying
NIL from non-NIL. Even with some annotated da-
ta, the threshold is till questionable since it is hard
to know whether the testing queries shares the same
data distribution with the training queries. Super-
vised approaches include SVM classification (Zhang
et al., 2010), SVM ranking (Dredze et al., 2010) and
ListNet (Zheng et al., 2010), all of which lead to
reasonable good performance. However, they must
utilize sufficient training data in which each instance
is a pair of query and KB node (or NIL).

Answer validation and re-ranking has been crucial
to enhance QA performance (e.g. (Magnini et al.,
2002); (Peas et al., 2007)). Recent work (Ravichan-
dran et al., 2003) has showed that high performance

for QA systems can be achieved using as few as
four features in re-ranking. Our results on the QA
pipeline support this finding. The same related work
(Huang et al., 2009) reports that systems viewed as a
re-ranker work clearly outperforms classifier based
approaches, suggesting a re-ranking was a bet-ter
implementation choice.

(Bikel et al., 2009) designed inference rules to
improve the performance of slot filling. We fol-
lowed their idea but incorporated inference rules into
Markov Logic Networks (MLN).

12 Conclusions

In this paper, we described two crucial components
in CUNY BLENDER entity linking system: one
component for query expansion and candidate gen-
eration, and the other component for candidate dis-
ambiguation. We also implemented two approaches
for candidate disambiguation. Especially for the en-
hanced VSM model, we incorporate the attributes
extracted from slot filling. Our experiments show
that the enhanced VSM model performs better than
the BOW model.

We developed three effective pipelines for the s-
lot filling task. We enhanced the performance of slot
fillingusing several novel approaches including sta-
tistical answer re-ranking and cross-slot reason-ing
based on Markov Logic Networks. Furthermore we
conducted combinations across human annotators
and systems, and proposed an effective approach to
enrich an-swer keys effectively and efficiently. Our
results showed that adding systems which used new
re-sources and achieved good performance can gen-
erate more correct answers than simply adding hu-
man annotators.

Acknowledgments

This work was supported by the U.S. Army Re-
search Laboratory under Cooperative Agreemen-
t Number W911NF-09-2-0053, the U.S. NSF CA-
REER Award under Grant IIS-0953149, Google,
Inc., DARPA GALE Program, CUNY Research
Enhancement Program, PSC-CUNY Research Pro-
gram, Faculty Publication Program and GRTI Pro-
gram. The views and conclusions contained in this
document are those of the authors and should not
be interpreted as representing the official policies,

either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Government purposes notwithstanding
any copyright notation here on.

References
Dan Bikel, Vittorio Castelli, Radu Florian and Ding-jung

Han. 2009. Entity Linking and Slot Filling through
Statistical Processing and Inference Rules. Proc. TAC
2009 Workshop.

K. Bollacker, R. Cook and P. Tufts. 2008. Free-
base: A Shared Database of Structured General Hu-
man Knowledge. Proc. Proc. National Conference on
Artificial Intelligence, (Volume 2).

M. Dredze, P. McNamee, D. Rao, A. Gerber and T. Finin.
2010. Entity Disambiguation for Knowledge Base
Population. Proc. COLING 2010.

Ralph Grishman, David Westbrook and Adam Meyers.
2005. NYU’s English ACE 2005 System Description.
Proc. ACE 2005 Workshop.

Ralph Grishman and Bonan Min. 2010. New York U-
niversity KBP 2010 Slot-Filling System. Proc. TAC
2010 Workshop.

Z.Huang and M. Thint and A. Celikyilmaz. 2009. Inves-
tigation of question classifier in question answering.
Proc. ACL 2009.

Heng Ji and Ralph Grishman. 2008. Refining Event Ex-
traction Through Cross-document Inference. Proc. A-
CL 2008.

S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon,
D. Lowd, and P. Domingos. 2007. The Alchemy sys-
tem for statistical relational AI. Technical report, De-
partment of Computer Science and Engineering, Uni-
versity of Washington..

Fangtao Li, Zhicheng Zheng, Fan Bu, Yang Tang, Xi-
aoyan Zhu and Minlie Huang. 2009. THU QUANTA
at TAC 2009 KBP and RTE Track. Proc. TAC 2009
Workshop.

Bernardo Magnini, Matteo Negri, Roberto Prevete and
Hristo Tanev. 2002. Mining Knowledge from Repeat-
ed Co-occurrences: DIOGENE at TREC-2002. Proc.
TREC-2002.

P. McNamee and H. Dang. 2009. Overview of the TAC
2009 Knowledge Base Population Track. Proc. NIST
TAC 2009 Workshop.

Anselmo Peas, lvaro Rodrigo and Felisa Verdejo. 2007.
Overview of the Answer Validation Exercise 2007.
Working Notes of CLEF 2007.

D. Ravichandran, E. Hovy and F. J. Och. 2003. Statisti-
cal QA -classifier vs. re-ranker: what’s the difference?.

Proc. ACL 2003 Workshop on Multilingual Summa-
rization and Question Answering.

Matt Richardson and Pedro Domingos. 2006. Markov
Logic Networks. Machine Learning, 62:107-136.

Nico Schlaefer, Jeongwoo Ko, Justin Betteridge, Guido
Sautter, Manas Pathak, Eric Nyberg. 2007. Semantic
Extensions of the Ephyra QA System for TREC 2007.
Proc. TREC 2007.

V. Varma,V. Bharat,S. Kovelamudi, P. Bysani, S. GSK,
K. K. N, K. Reddy, K. Kumar, N. Maganti. 2009. I-
IIT Hyderabad at TAC 2009. Proc. NIST TAC 2009
Workshop.

W. Zhang, J. Su, C. L. Tan and W.T. Wang. 2010. Entity
Linking Leveraging Automatically Generated Annota-
tion. Proc. COLING 2010.

Z. Zheng, F. Li, M. Huang, X. Zhu. 2010. Learning to
Link Entities with Knowledge Base. Proc. Proc. HLT-
NAACL2010.

