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Abstract

We present  a  robust  RTE approach  which  is 
built as one module incorporating all possible 
knowledge  sources  in  form  of  different  fea-
tures.  This  way  we  can  easily  include  or  re-
move  knowledge  sources  which  are  involved 
into the process of judging the entailment rela-
tion. We perform numerous tests in which we 
analyse  the  contribution  of  different  types  of 
features  based  on  word  forms,  structural  in-
formation, lexical  semantics and named entity 
recognition to this process. The core of our sys-
tem is our own deterministic dependency parser 
MDParser, which is based on a fast linear clas-
sification  approach.  We  use  the  RTE6  chal-
lenge as an opportunity to evaluate its perform-
ance in a real-world application against another 
state of the art parser MaltParser. In our official 
submissions  we  achieve  an  f-score  of  39.81 
with  MaltParser  and  38.26  with  MDParser. 
However,  the parsing speed with MDParser is 
26 times higher.

1 Introduction

Textual  entailment  is  a  relation  between text 
fragments, which states whether the meaning of 
one fragment is contained in the other one. The 
entailing text fragment is usually called text (T), 
the entailed fragment is usually called hypothesis 
(H), and both are usually referred to as T/H pair. 
Being able to recognise this relation can signific-
antly support many NLP applications in numer-
ous fields, such as IE – finding different text vari-
ants  that  entail  the  same  target  relation,  QA – 
finding texts, which entail  the expected answer, 
IR  –  retrieved  documents  entail  the  query,  or 
summarisation – the summary is entailed by the 

original  text  (Dagan,  Glickman  and  Magnini, 
2006). Another particularly interesting and novel 
application  of  textual  entailment  has  been  tried 
out in the Semeval-2 workshop (task #12 - PETE) 
in order to evaluate parsers independently of the 
grammar  formalism  they  are  based  on  (Yuret, 
Han and Turgut, 2010). 

Our team has been actively participating in the 
RTE challenges  organised over the past several 
years. However, since the conditions of the chal-
lenges, as well as the used data vary every year, 
our approaches and systems also undergo signi-
ficant changes from year to year. 

In the  beginnings of RTE the data  sets  were 
rather  small  and  the  number  of  important  phe-
nomena required to deal with was rather limited. 
Thus we had tried to identify the most important 
phenomena and to develop a solution to deal with 
the  fragments  involving  these  phenomena.  The 
resulting systems consisted then of a collection of 
problem-specific  modules,  which were used de-
pending on the input and of a fallback strategy,  
which was used in case no problem-specific solu-
tion existed for the given data. The decision about 
which module to use for which problem, usually 
consisted of a rule-based voting mechanism (cf. 
Wang and Neumann, 2007a; Wang and Neumann 
2007b). 

Starting  from  the  last  year,  however,  the 
amount  of data has grown significantly.  On the 
one hand the task became more challenging, since 
the increased data size diversified the linguistic 
problems one has to deal with. On the other hand 
it  became  possible  to  develop  robust  systems, 
which are able to deal with RTE in more realistic 
conditions,  since  the  larger  data  collections  re-
quired the  systems  to  be  more  general  and not 



tuned to the particular data. Additionally, the lar-
ger  amounts  of  data  allowed  to  apply  machine 
learning techniques  more efficiently.  In  particu-
lar, the voting mechanism could be automatised, 
since it became possible to learn which source of 
information  should  be  used  for  judging  textual 
entailment and to what extent. 

For last year's task our team has tried to extract 
both syntactic and semantic information from text 
fragments  (Wang,  Zhang  and  Neumann,  2009). 
As the source for syntactic information a depend-
ency analysis of the text fragments was used. For 
semantic  information  a  number  of  components, 
including semantic role labelling, and lexical se-
mantics resources, such as VerbOcean and Word-
Net, as well as a coreference resolver, were used. 
As  in  previous years  the  system consisted  of  a 
sophisticated component,  which tried to classify 
each T-H-pair and of a simple fallback compon-
ent in case the module was not applicable.

In this year's task the focus lied on the explora-
tion of  contribution  of  different  linguistic  com-
ponents to the overall  result  of an RTE system. 
Therefore, and for the reasons of robustness, we 
have  designed  one  single  component  (no  main 
and fallback strategies as before), which incorpor-
ates  all  possible  knowledge sources,  which  one 
desires  to  include.  This  way it  is  very  easy to 
add/remove one of the knowledge sources and to 
measure its contribution. The voting mechanism, 
automated  or  not,  whether  to  apply  a  main 
strategy  or  a  fallback  strategy  is  no  longer  a 
factor.  Since  we  were  very  fond  of  the  PETE 
shared task, we have decided to also use RTE6 as 
an opportunity to evaluate the role of parsers in 
RTE. However, for time reasons we were able to 
compare only two parsers: our own dependency 
parser MDParser1 and a well-known state of the 
art parser MaltParser (Nivre et al., 2006).

We have focused our work on the main task of 
this year's challenge. Even though we have sub-
mitted two runs for the Novelty Detection task as 
well,  and achieved 78.87 F-measure  as  primary 
score and 36.76 as justification score with MD-
Parser,  and  79.26  f-score  as  primary  score  and 
36.43 as justification score with MaltParser,  the 
approach was not adopted to this task in any way. 
That is why we will restrict ourselves exclusively 
to the Main task in this paper.

1 http://mdparser.sb.dfki.de/  

This year we have tried out a feature-based ap-
proach in order to control which linguistic com-
ponents are used  for judging the entailment rela-
tion. In Section 2 we describe our parser, which is 
the core of our RTE system. In Section 3 we in-
troduce the representation which we produce for 
all  T-H-pairs.  In Section 4 we explain how we 
classify whether H is entailed by T. In Section 5 
we list all the features we have used in our mod-
els and in Section 6 describe how the models are 
trained. In Section 7 we explain our ablation tests, 
which were mandatory for all participants. In Sec-
tion 8 we present the comparison between MD-
Parser  and  MaltParser.  Finally,  we  discuss  and 
summarise our results in Section 9.

2 MDParser

MDParser stands for multilingual dependency 
parser and is a data-driven system, which can be 
used  to  parse  text  of  an  arbitrary  language  for 
which  training  data  is  available.  It  is  a  trans-
ition-based parser  and  uses  a  deterministic  ver-
sion  of  the  Covington's  algorithm  (Covington, 
2000).

The models of the system are based on various 
features, which are extracted from the words of 
the  sentence,  including word forms  and part  of 
speech tags. No additional morphological features 
or lemmas are currently used in our models, even 
if they are available in the training data, since the 
system is especially designed for processing plain 
text in different languages, and such components 
are not available for every language.

The  preprocessing  components  of  MDParser 
include a.)  a  sentence splitter2,  since  the  parser 
constructs a dependency structure for individual 
sentences,  b.)  a tokenizer,  in order to recognise 
the elements between which the dependency rela-
tions will be built3, and c.) a part of speech tagger, 
in  order  to  determine  the  part  of  speech  tags, 
which are intensively used in the feature models4.

MDParser is an especially fast system because 
it  uses  a  linear  classification  algorithm  L1R-
LR(L1  regularised  logistic  regression)  from the 
2http://morphadorner.northwestern.edu/morphadorner/sen-
tencesplitter/
3http://morphadorner.northwestern.edu/morphadorner/word-
tokenizer/
4The part of speech tagger was trained with the SVMTool 
http://www.lsi.upc.edu/~nlp/SVMTool/

http://mdparser.sb.dfki.de/


machine learning package LibLinear (Lin et al., 
2008) for constructing its dependency structures 
and therefore  it  is  particularly suitable  for  pro-
cessing very large amounts of data. Thus it can be 
used as a part of larger applications in which de-
pendency structures are desired. 

Additionally,  significant efforts were made in 
order to make the gap between our linear classi-
fication and more advanced methods as small as 
possible,  e.g.  by  introducing  features  conjunc-
tions, which are complex features built out of or-
dinary features, as well as methods for automatic-
ally measuring feature usefulness in order to auto-
mate and optimise feature engineering.

3 Triple Representation

Every parser  usually produces  its  own some-
how special  representation  of  the  sentence.  We 
have created such a representation, which we will 
call  triple representation and have implemented 
an  automatic  transformation  of  the  results  of 
MaltParser, and of course MDParser into it. We 
have  also  managed  to  transform  the  results  of 
Stanford Parser into this format, as well as to ad-
opt MDParser's dependencies to the same annota-
tion format5,  but  could not  manage  to  compare 
our RTE systems with this parser before the dead-
line.

The triple representation of a sentence is a set 
of  triple  elements  of  the  form  <parent,  label, 
child>, where child and parent elements stand for 
the head and the modifier words and their parts of 
speech, and label stands for the relation between 
them.  E.g.  <have:VBZ,  SBJ,  Somebody:NN>. 
Moreover each triple contains the indexes for the 
child and parent words in order to be able to con-
struct a dependency tree out of the set of triples, if 
necessary.  A full  triple  could  thus  look as  fol-
lows:  <triple  parentIndex=”2”  childIndex=”1”> 
have:VBZ, SBJ, Somebody:NN</triple>.

This information is extractable from the results 
of any dependency parser.

4 Predicting Entailment

Given a corpus, a hypothesis H, and a set of 
"candidate" sentences retrieved by Lucene from 

5Stanford Parser uses stanford dependencies, whereas Malt-
Parser (typically) uses CoNLL-X dependencies. MDParser 
can produce structures of both types.

that corpus for H, the RTE system was required to 
identify all the sentences that entail H. We have 
constructed triple representations for all candidate 
sentences (T's) and hypotheses (H's) and have for-
mulated  a  large set  of  feature  templates6 which 
are applied to each pair of T and H in order to 
measure  the  similarity  of  both  sentences  and 
judge  the  entailment  relation.  The  feature  tem-
plates intended to capture: 

a) how similar are the dependency structures of 
T and H

b)  how  similar  are  the  words  and  their  se-
mantics in T and H

c) how similar are the named entities in T and 
H.

We will now describe each of these important 
aspects of our comparison in more details.

Structural Similarity
In  our  former  work  (Volokh  and  Neumann, 

2010) we have found out that in order to compare 
the dependency structures of two sentences it is 
sensible  to  analyse  and  compare  only  the  top-
level structure of the dependency trees rather than 
the complete trees, because

a) the most important pieces of information are 
usually encoded as the root of the sentence and/or 
its arguments rather than somewhere deeply em-
bedded.

b) the chances that the dependency parsers will 
produce  absolutely  accurate  results  up  to  the 
depth of 3 or more is rather low, so its more ro-
bust  to  restrict  oneself  to  the  top-level  depend-
ency relations which are also the ones which can 
be usually recognised with the least effort

Word-level Similarity
Very often the triples will not perfectly match 

because the word forms  used may vary.  In this 
case  it  is  important  to  investigate  whether  the 
words used for expressing certain relations are at 
least semantically related, if they do not have the 
same word forms.

Therefore we have used two similarity meas-
ures based on WordNet: Jcn (Jiang and Conrath, 
1997) and Lin (Lin, 1998). Both of them are im-
plemented in the package we have used - JWNL 
(Java WordNet Library). Additionally this pack-
age contains an English dictionary and methods 
for looking up lemmas for any word forms.

Named Entities
6The full set of used feature templates will be presented in 
Section 5



Named  entities  are  a  special  case  of  nouns, 
which often occur in very important positions and 
for which the measurement of semantic similarity 
is at least as important as for other content words. 
However, the method based on WordNet, which 
we have described above will not work for named 
entities since they are not part of the dictionary. 

Therefore we have used the LingPipe Named 
Entity Recogniser (Alias-i, 2008) in order to be 
able to tell, whether a named entity occurring in a 
certain position in H and a different named entity 
occurring in the same position in T are at least of 
the same type (PERSON, LOCATION; ORGAN-
IZATION; DATE, NUMBER). 

5 Feature Model

In this section we describe the features used in 
our system: 

1. Similarity of root triples of T and H
I) same roots
II) different roots

2. For each dependent triples of the root of 
H  examine  whether  such  triple(a  triple 
with the same label) is also present in T
I) dependent is not present in T
II) dependent is present in T
  IIa) and both  child and  parent are the 
same
  IIb) and the  child is  the same but the 
parent is different
  IIc) and the  parent is different but the 
child is the same
  IId) but both the child and the parent are 
different 

3. For each dependent of the dependents of 
the root of H (depth 2 in the dependency 
tree) examine the corresponding triple in 
T. The values are computed the same way 
as in 2.

4. For all triple-pairs which are being com-
pared according to 2 or 3, the following 
feature templates are used:
a) the word form of the H-triple' child is 
taken 
b) the word form of the H-triple's parent 
is taken
c) the word form of the T-triple's child is 
taken
d) the word form of the T-triple's parent 
is taken

e)  the  POS-tag  of  the  H-triple'  child  is 
taken 
f) the POS-tag of the H-triple's parent is 
taken
g) the POS-tag of the T-triple's  child is 
taken
h) the POS-tag of the T-triple's parent is 
taken

5. For all triple-pairs which are being com-
pared according to 2 or 3, the following 
feature templates are used:
a)  The similarity of  H-triple's  child  and 
T-triple's child is measured with JCn and 
according to  it  the following values are 
used:
I) JCn similarity is < 0.5, else
II) JCn similarity is < 1, else
III) JCn similarity is < 1.5, else
IV) JCn similarity is < 2, else
V) JCn similarity is < 2.5, else
VI) otherwise
b) The similarity of H-triple's  child and 
T-triple's child is measured with Lin and 
according to  it  the following values are 
used:
I) Lin similarity is < 0.2, else
II) Lin similarity is < 0.4, else
III) Lin similarity is < 0.6, else
IV) Lin similarity is < 0.8, else
V) Lin similarity is < 1, else
VI)  otherwise(actually  the  only  case  is 
Lin=1)

6. The  percentage  of  the  verbs  and  nouns 
occurring  in  H  also  occurring  in  T  is 
computed:
I) Less than 20% of verbs and nouns oc-
curring in H are present in T, else
II) Less than 40%, else
III) Less than 60%,
IV) Less than 80%
V) 100% 

7. The percentage of the named entities oc-
curring in H also occurring in T is com-
puted:
I) Less than 20% of named entities occur-
ring in H are present in T, else
II) Less than 40%, else
III) Less than 60%,
IV) Less than 80%
V) 100% 



8. For every type of named entities (PER-
SON,  LOCATION,  ORGANIZATION) 
in H check whether entities of the same 
type are also present in T:
I) There are entities of the same type
II) There are no entities of the same type

6 Classification

We use the same machine learning approach as 
we have used for training the models for our pars-
er  and  train  models  based  on  the  features  de-
scribed  in  the  previous  section.  Thus  we  get  a 
classifier able to distinguish between “YES” and 
“NO” candidates. For the training we have used 
all  available  candidate  sentences.  However, 
among  those  overall  15955 T-H-pairs  only 897 
belong to the category “YES” and the other al-
most 95% of the candidates get the label “NO”. 
This  highly  imbalanced  training  set  causes  the 
classifier to tend to classify most of the candid-
ates as “NO”.

However,  since  the  classification  method  we 
have used is a probabilistic one, the classification 
result  is  not  simply  one  of  the  two  possible 
classes,  namely  “YES”  or  “NO”,  but  rather  a 
probability distribution over  these classes.  Thus 
we could decide to classify a candidate as “YES” 
not only when the probability of this event was 
above 50%, but we were free to define a threshold 
and to treat a T-H-pair as entailed already when 
the  probability  of  the  “YES”  class  was  above 
13%, 15%, 17% or any other value.

In our official submission we have used 17% 
as the threshold. In two of our ablation runs we 
have varied this value in order to test its influence 
on the overall performance. 

7 Results

The result of our official submission with MD-
Parser was: precision = "53.31", recall = "29.84", 
F-measure = "38.26". The results of our submis-
sions, where MaltParser was used in order to con-
struct the triple representations, was: precision = 
"55.94"  recall  =  "30.90"  F-measure  =  "39.81". 
This  score  is  ranked 7th out  of  18  participating 
systems.  The  result  of  MaltParser  is  thus  1.55 
higher than the one of MDParser.  However, we 
will treat the system with MDParser as our main 

system  and  our  ablation  tests,  which  we  will 
present later, are based on this system.

We  have  also  submitted  some  runs  for  the 
Novelty Detection task, which ranked 4th out of 9 
(F-measure = “78.87”). For these runs exactly the 
same system, i.e. without absolutely any adapta-
tions to the task, was used.

8 Parser Comparison

Our whole approach is based on the comparis-
on of triple representations of T and H. Thus the 
approach is  highly dependent  on  the  quality  of 
these structures, which are constructed by a de-
pendency parser.

The results presented in this paper are based on 
our own dependency parser – MDParser,  which 
was shortly introduced in the section 2. MDParser 
uses a very fast machine learning technique and 
usually  achieves  slightly  inferior  results  (using 
UAS/LAS  evaluation  metrics  on  standard  test 
data, e.g. CoNLL(cf. Buchholz and Marsi, 2006)) 
in comparison to other parsers, which for example 
use  kernel-based  classification  or  other  more 
sophisticated  methods.  One  of  our  motivations 
was to evaluate the performance of our parser not 
only on the standard test data sets, but also in a 
concrete real life application. 

We have already known from our former ex-
perience, e.g. from participating in the SemEval-2 
Task #12 (Volokh and Neumann, 2010), that des-
pite the straightforwardness of our system, in real 
life applications, where only the most important 
dependency relations  have  to  be  identified  cor-
rectly and not the complete structure, the differ-
ence in accuracy between our system and other 
more sophisticated systems fades and the differ-
ence in parsing speed remains.

We have used the RTE6 task as another oppor-
tunity in order to evaluate the performance of our 
parser in comparison to more sophisticated sys-
tems. However, due to time reasons we have only 
managed to compare MDParser with MaltParser. 
For a comparison between MDParser and Stan-
frodParser we required a different model,  which 
operates with Stanford dependencies and not with 
CoNLL dependencies  and we have managed to 
achieve that only after the submission deadline.

As far as parsing times are concerned it takes 
73188ms to parse 3376 different sentences, con-
sisting overall  of  74326 tokens,  from the RTE6 



test  data  set  with MDParser  and 1954684ms to 
parse the same sentences with MaltParser (pars-
ing  time  averaged  over  3  runs,  since  it  varied 
slightly from run to run). 

The following table summarises the figures of 
the comparison:

Parsing 
Time

Sentences
per Second

Tokens per 
Second

MDParser 73.188s 46.128 1015.55

MaltParser 1954.684s 1.73 38.02

The result of MDParser is thus 1.5 points worse 
in  terms  of  F-measure,  but  can be achieved 26 
times faster.

The results  described above are based on the 
MaltParser model we have trained ourselves. We 
have used the following options for training:

LibSVM  options:  “-s_0_-t_1_-d_2_-g_0.2_-
c_1.0_-r_0.4_-e_0”
root_handling: strict
parsing_algorithm: nivrestandard
data_split_column: POSTAG
data_split_threshold: 100

We  are  aware  that  especially  the  option 
root_handling=strict made  the  system  slower 
than  it  would  be  with  root_handling=normal, 
however during the development phase the accur-
acy of  our approach was much higher with the 
triple  representation  constructed  with  the  strict 
root_handling, so we have stayed with these op-
tions.

9 Ablation Tests

We have performed 10 ablation tests in order to 
examine how much the different types of features 
presented in Section 5 contributed to the overall 
performance of the system and whether the inclu-
sion of some of them was a mistake, since a better 
result could otherwise be achieved. 

Here is the overview of the test with a short de-
scription which types of features were left out in 
each of the tests (the numbers correspond to the 
Section 5 feature description). 

Test
#

F 
Measure

Impact Left out Features

1 35.31 2.95 1 (root features)

2 39.11 -0.85 2 (depth 1 features)

3 38.54 -0.28 3 (depth 2 features)

4 33.27 4.99 4 (word form and 
pos features)

5 19.22 19.04 6 (content word fea-
tures)

6 36.04 2.22 7 (named entities 
features)

7 38.49 -0.23 5 (WordNet similar-
ity features)

8 36.72 1.54 Coreference resolu-
tion features. No ad-
ditional features 
were introduced or 
left out, but the con-
tent of all T-H-pairs 
was first processed 
with the LingPipe 
coreference resolu-
tion tool. 

9 39.10 -0.84 Threshold 0.15

10 39.11 -0.85 Threshold 0.13
From these results we can infer that our models 

were far from optimal. On the one hand some fea-
tures  were  apparently  harmful  and  the  system 
could have performed better without them. On the 
other hand some features, e.g. coreference resolu-
tion were not included, which turned out to be a 
mistake, since they would have had a positive im-
pact.  Last  of  all,  the threshold for classifying a 
candidate  as  entailed  was  not  chosen  optimally 
neither.

Otherwise we see, that all levels of comparison 
between the text of T and the text of H turned out 
to be useful. The most important step is to analyse 
the similarity of the texts on the word level (abl. 
tests 5 and 7); structural comparison (test 1-4) and 
named entity comparison(test 6) improve the per-
formance further to a slightly smaller degree.

10 Conclusions

We present a robust feature-based approach in 
order to judge the entailment relation. The archi-
tecture of our system allows us to easily include 
or remove knowledge sources and measure their 
contribution to the overall result. We perform nu-
merous tests in order to measure the influence of 



different linguistic components on the overall res-
ult.  Most  of  the features are extracted from the 
output of a dependency parser, which is the core 
of our system. We use a particularly fast determ-
inistic  dependency  parser  MDParser,  which  is 
based on linear classifiers in order to produce the 
dependency structures for the RTE data. In order 
to compare the performance of our parser we also 
try out our approach with a different state of the 
art dependency parser MaltParser. The MaltParser 
is slightly better for the accuracy of our system 
but is significantly slower.
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