
Combining Deterministic Dependency Parsing and Linear Classifica-
tion for Robust RTE

Alexander Volokh Günter Neumann Bogdan Sacaleanu
alvo01@dfki.de neumann@dfki.de bogdan@dfki.de

DFKI
Stuhlsatzenhausweg 3

66123 Saarbrücken, Germany

Abstract

We present a robust RTE approach which is
built as one module incorporating all possible
knowledge sources in form of different fea-
tures. This way we can easily include or re-
move knowledge sources which are involved
into the process of judging the entailment rela-
tion. We perform numerous tests in which we
analyse the contribution of different types of
features based on word forms, structural in-
formation, lexical semantics and named entity
recognition to this process. The core of our sys-
tem is our own deterministic dependency parser
MDParser, which is based on a fast linear clas-
sification approach. We use the RTE6 chal-
lenge as an opportunity to evaluate its perform-
ance in a real-world application against another
state of the art parser MaltParser. In our official
submissions we achieve an f-score of 39.81
with MaltParser and 38.26 with MDParser.
However, the parsing speed with MDParser is
26 times higher.

1 Introduction

Textual entailment is a relation between text
fragments, which states whether the meaning of
one fragment is contained in the other one. The
entailing text fragment is usually called text (T),
the entailed fragment is usually called hypothesis
(H), and both are usually referred to as T/H pair.
Being able to recognise this relation can signific-
antly support many NLP applications in numer-
ous fields, such as IE – finding different text vari-
ants that entail the same target relation, QA –
finding texts, which entail the expected answer,
IR – retrieved documents entail the query, or
summarisation – the summary is entailed by the

original text (Dagan, Glickman and Magnini,
2006). Another particularly interesting and novel
application of textual entailment has been tried
out in the Semeval-2 workshop (task #12 - PETE)
in order to evaluate parsers independently of the
grammar formalism they are based on (Yuret,
Han and Turgut, 2010).

Our team has been actively participating in the
RTE challenges organised over the past several
years. However, since the conditions of the chal-
lenges, as well as the used data vary every year,
our approaches and systems also undergo signi-
ficant changes from year to year.

In the beginnings of RTE the data sets were
rather small and the number of important phe-
nomena required to deal with was rather limited.
Thus we had tried to identify the most important
phenomena and to develop a solution to deal with
the fragments involving these phenomena. The
resulting systems consisted then of a collection of
problem-specific modules, which were used de-
pending on the input and of a fallback strategy,
which was used in case no problem-specific solu-
tion existed for the given data. The decision about
which module to use for which problem, usually
consisted of a rule-based voting mechanism (cf.
Wang and Neumann, 2007a; Wang and Neumann
2007b).

Starting from the last year, however, the
amount of data has grown significantly. On the
one hand the task became more challenging, since
the increased data size diversified the linguistic
problems one has to deal with. On the other hand
it became possible to develop robust systems,
which are able to deal with RTE in more realistic
conditions, since the larger data collections re-
quired the systems to be more general and not

tuned to the particular data. Additionally, the lar-
ger amounts of data allowed to apply machine
learning techniques more efficiently. In particu-
lar, the voting mechanism could be automatised,
since it became possible to learn which source of
information should be used for judging textual
entailment and to what extent.

For last year's task our team has tried to extract
both syntactic and semantic information from text
fragments (Wang, Zhang and Neumann, 2009).
As the source for syntactic information a depend-
ency analysis of the text fragments was used. For
semantic information a number of components,
including semantic role labelling, and lexical se-
mantics resources, such as VerbOcean and Word-
Net, as well as a coreference resolver, were used.
As in previous years the system consisted of a
sophisticated component, which tried to classify
each T-H-pair and of a simple fallback compon-
ent in case the module was not applicable.

In this year's task the focus lied on the explora-
tion of contribution of different linguistic com-
ponents to the overall result of an RTE system.
Therefore, and for the reasons of robustness, we
have designed one single component (no main
and fallback strategies as before), which incorpor-
ates all possible knowledge sources, which one
desires to include. This way it is very easy to
add/remove one of the knowledge sources and to
measure its contribution. The voting mechanism,
automated or not, whether to apply a main
strategy or a fallback strategy is no longer a
factor. Since we were very fond of the PETE
shared task, we have decided to also use RTE6 as
an opportunity to evaluate the role of parsers in
RTE. However, for time reasons we were able to
compare only two parsers: our own dependency
parser MDParser1 and a well-known state of the
art parser MaltParser (Nivre et al., 2006).

We have focused our work on the main task of
this year's challenge. Even though we have sub-
mitted two runs for the Novelty Detection task as
well, and achieved 78.87 F-measure as primary
score and 36.76 as justification score with MD-
Parser, and 79.26 f-score as primary score and
36.43 as justification score with MaltParser, the
approach was not adopted to this task in any way.
That is why we will restrict ourselves exclusively
to the Main task in this paper.

1 http://mdparser.sb.dfki.de/

This year we have tried out a feature-based ap-
proach in order to control which linguistic com-
ponents are used for judging the entailment rela-
tion. In Section 2 we describe our parser, which is
the core of our RTE system. In Section 3 we in-
troduce the representation which we produce for
all T-H-pairs. In Section 4 we explain how we
classify whether H is entailed by T. In Section 5
we list all the features we have used in our mod-
els and in Section 6 describe how the models are
trained. In Section 7 we explain our ablation tests,
which were mandatory for all participants. In Sec-
tion 8 we present the comparison between MD-
Parser and MaltParser. Finally, we discuss and
summarise our results in Section 9.

2 MDParser

MDParser stands for multilingual dependency
parser and is a data-driven system, which can be
used to parse text of an arbitrary language for
which training data is available. It is a trans-
ition-based parser and uses a deterministic ver-
sion of the Covington's algorithm (Covington,
2000).

The models of the system are based on various
features, which are extracted from the words of
the sentence, including word forms and part of
speech tags. No additional morphological features
or lemmas are currently used in our models, even
if they are available in the training data, since the
system is especially designed for processing plain
text in different languages, and such components
are not available for every language.

The preprocessing components of MDParser
include a.) a sentence splitter2, since the parser
constructs a dependency structure for individual
sentences, b.) a tokenizer, in order to recognise
the elements between which the dependency rela-
tions will be built3, and c.) a part of speech tagger,
in order to determine the part of speech tags,
which are intensively used in the feature models4.

MDParser is an especially fast system because
it uses a linear classification algorithm L1R-
LR(L1 regularised logistic regression) from the
2http://morphadorner.northwestern.edu/morphadorner/sen-
tencesplitter/
3http://morphadorner.northwestern.edu/morphadorner/word-
tokenizer/
4The part of speech tagger was trained with the SVMTool
http://www.lsi.upc.edu/~nlp/SVMTool/

http://mdparser.sb.dfki.de/

machine learning package LibLinear (Lin et al.,
2008) for constructing its dependency structures
and therefore it is particularly suitable for pro-
cessing very large amounts of data. Thus it can be
used as a part of larger applications in which de-
pendency structures are desired.

Additionally, significant efforts were made in
order to make the gap between our linear classi-
fication and more advanced methods as small as
possible, e.g. by introducing features conjunc-
tions, which are complex features built out of or-
dinary features, as well as methods for automatic-
ally measuring feature usefulness in order to auto-
mate and optimise feature engineering.

3 Triple Representation

Every parser usually produces its own some-
how special representation of the sentence. We
have created such a representation, which we will
call triple representation and have implemented
an automatic transformation of the results of
MaltParser, and of course MDParser into it. We
have also managed to transform the results of
Stanford Parser into this format, as well as to ad-
opt MDParser's dependencies to the same annota-
tion format5, but could not manage to compare
our RTE systems with this parser before the dead-
line.

The triple representation of a sentence is a set
of triple elements of the form <parent, label,
child>, where child and parent elements stand for
the head and the modifier words and their parts of
speech, and label stands for the relation between
them. E.g. <have:VBZ, SBJ, Somebody:NN>.
Moreover each triple contains the indexes for the
child and parent words in order to be able to con-
struct a dependency tree out of the set of triples, if
necessary. A full triple could thus look as fol-
lows: <triple parentIndex=”2” childIndex=”1”>
have:VBZ, SBJ, Somebody:NN</triple>.

This information is extractable from the results
of any dependency parser.

4 Predicting Entailment

Given a corpus, a hypothesis H, and a set of
"candidate" sentences retrieved by Lucene from

5Stanford Parser uses stanford dependencies, whereas Malt-
Parser (typically) uses CoNLL-X dependencies. MDParser
can produce structures of both types.

that corpus for H, the RTE system was required to
identify all the sentences that entail H. We have
constructed triple representations for all candidate
sentences (T's) and hypotheses (H's) and have for-
mulated a large set of feature templates6 which
are applied to each pair of T and H in order to
measure the similarity of both sentences and
judge the entailment relation. The feature tem-
plates intended to capture:

a) how similar are the dependency structures of
T and H

b) how similar are the words and their se-
mantics in T and H

c) how similar are the named entities in T and
H.

We will now describe each of these important
aspects of our comparison in more details.

Structural Similarity
In our former work (Volokh and Neumann,

2010) we have found out that in order to compare
the dependency structures of two sentences it is
sensible to analyse and compare only the top-
level structure of the dependency trees rather than
the complete trees, because

a) the most important pieces of information are
usually encoded as the root of the sentence and/or
its arguments rather than somewhere deeply em-
bedded.

b) the chances that the dependency parsers will
produce absolutely accurate results up to the
depth of 3 or more is rather low, so its more ro-
bust to restrict oneself to the top-level depend-
ency relations which are also the ones which can
be usually recognised with the least effort

Word-level Similarity
Very often the triples will not perfectly match

because the word forms used may vary. In this
case it is important to investigate whether the
words used for expressing certain relations are at
least semantically related, if they do not have the
same word forms.

Therefore we have used two similarity meas-
ures based on WordNet: Jcn (Jiang and Conrath,
1997) and Lin (Lin, 1998). Both of them are im-
plemented in the package we have used - JWNL
(Java WordNet Library). Additionally this pack-
age contains an English dictionary and methods
for looking up lemmas for any word forms.

Named Entities
6The full set of used feature templates will be presented in
Section 5

Named entities are a special case of nouns,
which often occur in very important positions and
for which the measurement of semantic similarity
is at least as important as for other content words.
However, the method based on WordNet, which
we have described above will not work for named
entities since they are not part of the dictionary.

Therefore we have used the LingPipe Named
Entity Recogniser (Alias-i, 2008) in order to be
able to tell, whether a named entity occurring in a
certain position in H and a different named entity
occurring in the same position in T are at least of
the same type (PERSON, LOCATION; ORGAN-
IZATION; DATE, NUMBER).

5 Feature Model

In this section we describe the features used in
our system:

1. Similarity of root triples of T and H
I) same roots
II) different roots

2. For each dependent triples of the root of
H examine whether such triple(a triple
with the same label) is also present in T
I) dependent is not present in T
II) dependent is present in T
 IIa) and both child and parent are the
same
 IIb) and the child is the same but the
parent is different
 IIc) and the parent is different but the
child is the same
 IId) but both the child and the parent are
different

3. For each dependent of the dependents of
the root of H (depth 2 in the dependency
tree) examine the corresponding triple in
T. The values are computed the same way
as in 2.

4. For all triple-pairs which are being com-
pared according to 2 or 3, the following
feature templates are used:
a) the word form of the H-triple' child is
taken
b) the word form of the H-triple's parent
is taken
c) the word form of the T-triple's child is
taken
d) the word form of the T-triple's parent
is taken

e) the POS-tag of the H-triple' child is
taken
f) the POS-tag of the H-triple's parent is
taken
g) the POS-tag of the T-triple's child is
taken
h) the POS-tag of the T-triple's parent is
taken

5. For all triple-pairs which are being com-
pared according to 2 or 3, the following
feature templates are used:
a) The similarity of H-triple's child and
T-triple's child is measured with JCn and
according to it the following values are
used:
I) JCn similarity is < 0.5, else
II) JCn similarity is < 1, else
III) JCn similarity is < 1.5, else
IV) JCn similarity is < 2, else
V) JCn similarity is < 2.5, else
VI) otherwise
b) The similarity of H-triple's child and
T-triple's child is measured with Lin and
according to it the following values are
used:
I) Lin similarity is < 0.2, else
II) Lin similarity is < 0.4, else
III) Lin similarity is < 0.6, else
IV) Lin similarity is < 0.8, else
V) Lin similarity is < 1, else
VI) otherwise(actually the only case is
Lin=1)

6. The percentage of the verbs and nouns
occurring in H also occurring in T is
computed:
I) Less than 20% of verbs and nouns oc-
curring in H are present in T, else
II) Less than 40%, else
III) Less than 60%,
IV) Less than 80%
V) 100%

7. The percentage of the named entities oc-
curring in H also occurring in T is com-
puted:
I) Less than 20% of named entities occur-
ring in H are present in T, else
II) Less than 40%, else
III) Less than 60%,
IV) Less than 80%
V) 100%

8. For every type of named entities (PER-
SON, LOCATION, ORGANIZATION)
in H check whether entities of the same
type are also present in T:
I) There are entities of the same type
II) There are no entities of the same type

6 Classification

We use the same machine learning approach as
we have used for training the models for our pars-
er and train models based on the features de-
scribed in the previous section. Thus we get a
classifier able to distinguish between “YES” and
“NO” candidates. For the training we have used
all available candidate sentences. However,
among those overall 15955 T-H-pairs only 897
belong to the category “YES” and the other al-
most 95% of the candidates get the label “NO”.
This highly imbalanced training set causes the
classifier to tend to classify most of the candid-
ates as “NO”.

However, since the classification method we
have used is a probabilistic one, the classification
result is not simply one of the two possible
classes, namely “YES” or “NO”, but rather a
probability distribution over these classes. Thus
we could decide to classify a candidate as “YES”
not only when the probability of this event was
above 50%, but we were free to define a threshold
and to treat a T-H-pair as entailed already when
the probability of the “YES” class was above
13%, 15%, 17% or any other value.

In our official submission we have used 17%
as the threshold. In two of our ablation runs we
have varied this value in order to test its influence
on the overall performance.

7 Results

The result of our official submission with MD-
Parser was: precision = "53.31", recall = "29.84",
F-measure = "38.26". The results of our submis-
sions, where MaltParser was used in order to con-
struct the triple representations, was: precision =
"55.94" recall = "30.90" F-measure = "39.81".
This score is ranked 7th out of 18 participating
systems. The result of MaltParser is thus 1.55
higher than the one of MDParser. However, we
will treat the system with MDParser as our main

system and our ablation tests, which we will
present later, are based on this system.

We have also submitted some runs for the
Novelty Detection task, which ranked 4th out of 9
(F-measure = “78.87”). For these runs exactly the
same system, i.e. without absolutely any adapta-
tions to the task, was used.

8 Parser Comparison

Our whole approach is based on the comparis-
on of triple representations of T and H. Thus the
approach is highly dependent on the quality of
these structures, which are constructed by a de-
pendency parser.

The results presented in this paper are based on
our own dependency parser – MDParser, which
was shortly introduced in the section 2. MDParser
uses a very fast machine learning technique and
usually achieves slightly inferior results (using
UAS/LAS evaluation metrics on standard test
data, e.g. CoNLL(cf. Buchholz and Marsi, 2006))
in comparison to other parsers, which for example
use kernel-based classification or other more
sophisticated methods. One of our motivations
was to evaluate the performance of our parser not
only on the standard test data sets, but also in a
concrete real life application.

We have already known from our former ex-
perience, e.g. from participating in the SemEval-2
Task #12 (Volokh and Neumann, 2010), that des-
pite the straightforwardness of our system, in real
life applications, where only the most important
dependency relations have to be identified cor-
rectly and not the complete structure, the differ-
ence in accuracy between our system and other
more sophisticated systems fades and the differ-
ence in parsing speed remains.

We have used the RTE6 task as another oppor-
tunity in order to evaluate the performance of our
parser in comparison to more sophisticated sys-
tems. However, due to time reasons we have only
managed to compare MDParser with MaltParser.
For a comparison between MDParser and Stan-
frodParser we required a different model, which
operates with Stanford dependencies and not with
CoNLL dependencies and we have managed to
achieve that only after the submission deadline.

As far as parsing times are concerned it takes
73188ms to parse 3376 different sentences, con-
sisting overall of 74326 tokens, from the RTE6

test data set with MDParser and 1954684ms to
parse the same sentences with MaltParser (pars-
ing time averaged over 3 runs, since it varied
slightly from run to run).

The following table summarises the figures of
the comparison:

Parsing
Time

Sentences
per Second

Tokens per
Second

MDParser 73.188s 46.128 1015.55

MaltParser 1954.684s 1.73 38.02

The result of MDParser is thus 1.5 points worse
in terms of F-measure, but can be achieved 26
times faster.

The results described above are based on the
MaltParser model we have trained ourselves. We
have used the following options for training:

LibSVM options: “-s_0_-t_1_-d_2_-g_0.2_-
c_1.0_-r_0.4_-e_0”
root_handling: strict
parsing_algorithm: nivrestandard
data_split_column: POSTAG
data_split_threshold: 100

We are aware that especially the option
root_handling=strict made the system slower
than it would be with root_handling=normal,
however during the development phase the accur-
acy of our approach was much higher with the
triple representation constructed with the strict
root_handling, so we have stayed with these op-
tions.

9 Ablation Tests

We have performed 10 ablation tests in order to
examine how much the different types of features
presented in Section 5 contributed to the overall
performance of the system and whether the inclu-
sion of some of them was a mistake, since a better
result could otherwise be achieved.

Here is the overview of the test with a short de-
scription which types of features were left out in
each of the tests (the numbers correspond to the
Section 5 feature description).

Test
#

F
Measure

Impact Left out Features

1 35.31 2.95 1 (root features)

2 39.11 -0.85 2 (depth 1 features)

3 38.54 -0.28 3 (depth 2 features)

4 33.27 4.99 4 (word form and
pos features)

5 19.22 19.04 6 (content word fea-
tures)

6 36.04 2.22 7 (named entities
features)

7 38.49 -0.23 5 (WordNet similar-
ity features)

8 36.72 1.54 Coreference resolu-
tion features. No ad-
ditional features
were introduced or
left out, but the con-
tent of all T-H-pairs
was first processed
with the LingPipe
coreference resolu-
tion tool.

9 39.10 -0.84 Threshold 0.15

10 39.11 -0.85 Threshold 0.13
From these results we can infer that our models

were far from optimal. On the one hand some fea-
tures were apparently harmful and the system
could have performed better without them. On the
other hand some features, e.g. coreference resolu-
tion were not included, which turned out to be a
mistake, since they would have had a positive im-
pact. Last of all, the threshold for classifying a
candidate as entailed was not chosen optimally
neither.

Otherwise we see, that all levels of comparison
between the text of T and the text of H turned out
to be useful. The most important step is to analyse
the similarity of the texts on the word level (abl.
tests 5 and 7); structural comparison (test 1-4) and
named entity comparison(test 6) improve the per-
formance further to a slightly smaller degree.

10 Conclusions

We present a robust feature-based approach in
order to judge the entailment relation. The archi-
tecture of our system allows us to easily include
or remove knowledge sources and measure their
contribution to the overall result. We perform nu-
merous tests in order to measure the influence of

different linguistic components on the overall res-
ult. Most of the features are extracted from the
output of a dependency parser, which is the core
of our system. We use a particularly fast determ-
inistic dependency parser MDParser, which is
based on linear classifiers in order to produce the
dependency structures for the RTE data. In order
to compare the performance of our parser we also
try out our approach with a different state of the
art dependency parser MaltParser. The MaltParser
is slightly better for the accuracy of our system
but is significantly slower.

Acknowledgements

The work presented here was partially suppor-
ted by a research grant from the German Federal
Ministry of Economics and Technology (BMWi)
to the DFKI project Theseus Ordo TechWatch
(FKZ: 01MQ07016). We thank Joakim Nivre and
Johan Hall for their support and tips when train-
ing models with MaltParser. Additionally, we are
very grateful to Sven Schmeier for providing us
with a trained part of speech tagger for English
and for his support when using this tool.

References
Michael A. Covington, 2000. A Fundamental Al-

gorithm for Dependency Parsing. In Proceedings of
the 39th Annual ACM Southeast Conference.

Dan Klein and Christopher D. Manning, 2003. Accur-
ate Unlexicalized Parsing. Proceedings of the 41st
Meeting of the Association for Computational Lin-
guistics, pp. 423-430.

Lin D, 2003. Dependency-Based Evaluation Of Mini-
par. In Building and using Parsed Corpora Edited
by: Abeillé A. Dordrecht: Kluwer; 2003.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of CONLL-X, pages 149–164, New
York.

Ido Dagan, Oren Glickman and Bernardo Magnini.
The PASCAL Recognising Textual Entailment
Challenge. In Quinonero-Candela, J.; Dagan, I.;
Magnini, B.; d'Alche-Buc, F. (Eds.), Machine
Learning Challenges. Lecture Notes in Computer
Science, Vol. 3944, pp. 177-190, Springer, 2006.

Nivre, J., J. Hall and J. Nilsson, 2006. MaltParser: A
Data-Driven Parser-Generator for Dependency
Parsing. In Proceedings of the fifth international

conference on Language Resources and Evaluation
(LREC2006), pp. 2216-2219, May 24-26, 2006,
Genoa, Italy.

Alexander Volokh and Günter Neumann, 2010.
372:Comparing the Benefit of Different Depend-
ency Parsers for Textual Entailment Using Syntact-
ic Constraints Only. In Proceedings of the SemEv-
al-2010 Evaluation Exercises on Semantic Evalu-
ation.

Rui Wang and Günter Neumann, 2007. Recognizing
textual entailment using sentence similarity based
on dependency tree skeletons. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, pp. 36-41, Prague, Czech Repub-
lic.

Rui Wang and Günter Neumann, 2007. Recognizing
Textual Entailment Using a Subsequence Kernel
Method. In Proceedings of AAAI 2007.

R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin,
2008. LIBLINEAR: A Library for Large Linear
Classification. Journal of Machine Learning Re-
search, 9(4): 1871–1874.

Rui Wang, Yi Zhang, and Günter Neumann. 2009. A
Joint Syntactic-Semantic Representation for Recog-
nizing Textual Relatedness. In Text Analysis Con-
ference TAC 2009 WORKSHOP Notebook Papers
and Results, Pages 1-7, National Institute of Stand-
ards and Technology (NIST), Gaithersburg, Mary-
land, USA

Deniz Yuret, Aydın Han and Zehra Turgut, 2010. Se-
mEval-2010 Task 12: Parser Evaluation using Tex-
tual Entailments. In Proceedings of the SemEval-
2010 Evaluation Exercises on Semantic Evaluation.

Maltparser. http://maltparser.org/

MDParser: Multilingual Dependency Parser.
http://mdparser.sb.dfki.de/

Alias-i. 2008. LingPipe 4.0.0. http://alias-i.com/ling-
pipe

http://mdparser.sb.dfki.de/

