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1 Introduction 

In addition to the familiar tasks of update 

summarization and automatic summary evaluation, 

the TAC 2010 summarization track includes a new 

task: guided summarization. It is designed to 

“encourage a deeper linguistic (semantic) analysis 

of the source documents” in order to generate a 

summary guided by a given set of aspects. The 

new task is an upgrade of query-focused 

summarization in that an automatic summary is to 

meet more specific and semantically structured 

user need. The upgrade demonstrates the growing 

inclination for semantically oriented 

summarization, whilst posing new challenges to 

traditional frameworks and techniques. The update 

summarization and the automatically evaluating 

summaries of peers (AESOP) tasks are similar to 

those included in the TAC 2009 summarization 

track.  

The PolyU team has participated in both tasks of 

the TAC 2010 summarization track, including the 

guided summarization task and the AESOP. The 

guided summarization task is an unfamiliar one, 

with few success or failure stories. Our team takes 

up this new challenge, not widely studied in the   

summarization community, with techniques based 

on Information Extraction (IE). For the AESOP 

task, we also experiment with some new 

techniques. In the following, we report the system 

design for the tasks as well as findings and 

diagnoses from our experimentation. 

2 Aspect-Guided Summarization 

For this part, a 100-word summary is to be 

generated for a document set of a certain category 

that is expected to contain as many aspects as 

possible. The categories and aspects are preset and 

most of the aspects are specific to categories. Since 

a word frequency-based summarization scheme 

does not meet the task requirement (and is actually 

discouraged by NIST), we experimented with an 

aspect recognition-based pipeline scheme, 

consisting of: 1) aspect-bearing sentence 

recognition; 2) sentential aspect recognition; 3) 

aspect-based sentence ranking. 

2.1 Aspect-bearing Sentence Recognition 

We observe from annotated data (Table 1) that 

aspects are heterogeneous and distributed unevenly 

in a news article. It might be more difficult to 

locate individual aspects in a document than to 

recognize aspect-bearing sentences. Inspired by the 

architectural design of Patwardhan (2010), we 

adopt two-stage pipeline aspect recognition. In the 

first stage, aspect-bearing sentences are recognized, 

which constitute the candidate pool for summary-

worthy sentences. In the second stage, individual 

aspect instances are recognized in all the aspect-

bearing sentences, providing the necessary 

information for sentence ranking and selection. 

The two-stage design has two perceivable 

advantages: 1) the sentence-level recognition can 

benefit from an aggregation of all aspect-level 

annotated data which leads to high recognition 

accuracy; 2) the pool of aspect-bearing sentences is 

a bottom-line guarantee for sentence selection 

because even if the subsequent aspect recognition 

fails, selecting sentences from this pool ensures 

that all summary sentences will contain aspects 

and the summary is still aspect-guided. 

For our purpose, aspect recognition is a 

supervised learning task that requires aspect-

annotated data. Because of the lack of such data, 

we manually constructed a training corpus for the 

TAC 2010 summarization task by selecting news 

articles belonging to one of the five target 

categories (“accidents and natural disasters”, 

“attacks”, “health and safety”, “endangered 

resources”, and “investigations and trials”) from 

past DUC/TAC test data, all of which come from 

the AQUAINT and AQUAINT-2 collections to 

ensure domain and style consistency. For each of 

the articles of a certain category, we annotated the 



 

 

target aspects in the format of NIST-provided 

samples. Table 1 gives the details of our corpus 

size. 

 

Category 
Number of 

Documents  

Number of 

Aspect Instance  

Accidents 160 3355 

Attacks 171 4194 

Health_safety 160 3639 

Resources 160 2944 

Investigations 292 5502 

 

Table 1. Training Corpus Size 

 

For each category, we trained an SVM classifier 

with a linear kernel using all frequent words 

(Freq > 10) as features. We did 10-fold cross 

validation on our training data and achieved 

relatively high accuracy with the five classifiers 

(average accuracy > 80%).  

2.2 Sentential Aspect Recognition 

We observe from our annotated data that aspect 

instances are all sentence-bound, spanning from 

one word to a whole sentence. Therefore the 

second-stage aspect recognition is treated as 

essentially an IE task – extracting aspect instances 

from the aspect-bearing sentences.  

To facilitate aspect extraction from annotated 

aspect instances, we adopt a bottom-up scheme of 

regular expression pattern induction, which has 

been successfully applied to similar IE tasks 

(Califf and Mooney 2003). 

The main idea of bottom-up aspect extraction is 

to induce from training instances as many useful 

regular expression patterns as possible by doing 

string-level match and pattern generalization. The 

main algorithm, pattern_induce(str1, str2), is 

shown in figure 1. 

 
pattern_induce(str1, str2): 

# recursively induce regular 
expression patterns from str1 and str2 

for each (m1, m2) in 
max_len_match(str1, str2): 

split str1 into: left_sub1 + m1 + 
right_sub1 

 split str2 into: left_sub2 + m2 + 
right_sub2 

p_middle = pattern_generalize(m1, m2) 
p_left = pattern_induce(left_sub1, 

left_sub2) 
p_right = pattern_induce(right_sub1, 

right_sub2) 
return pattern_merge(p_left, p_middle, 

p_right) 
 

 

Figure 1. The pattern_induce Algorithm 

 

Pattern_induce( ) recursively induces patterns 

from the two aspect strings by each time focusing 

on aligned substrings corresponding to the longest 

possible match in the current string pair 

(max_len_match) and the remaining left and right 

substrings. After patterns are induced from the left, 

middle, and right substrings, they are merged into 

one pattern (pattern_merge) as the final result.  

Pattern_generalize( ) is the core component of 

this algorithm, which is based on the regular 

expression pattern induction in (Califf and Mooney 

2003). For two aspect strings, we generalize a 

three-component regular expression pattern 

according to their lexical, POS, and semantic 

attributes. In the following example, Sa and Sb are 

two matched (sub)strings. The tags “lex”, “pos”, 

and “sem” indicate their lexical, POS, and 

semantic attributes. 

 

Sa: {lex: „earthquake‟, pos: NN, sem: <natural 

phenomenon>} 

Sb: {lex: „floods, pos: NNS, sem: <natural 

phenomenon>} 

 

For each attribute pair, pattern_generalize( ) 

generates one or two patterns. If the attributes are 

an exact match (e.g., Sa.sem and Sb.sem), one 

pattern is generated (e.g., <natural phenomenon>). 

If they do not match (e.g., Sa.lex and Sb.lex), two 

patterns are generated: a disjunction pattern (e.g., 

„earthquake‟ | „floods‟) that matches either one 

string and a wildcard pattern (e.g., *) that matches 

any string. Then the attribute-level patterns are 

combined to generate a number of three-attribute 

patterns, representing all possible combinations. 

For our example, four such patterns can be 

generalized: 

 

P1: {lex: „earthquake‟ | „floods‟, pos: NN | NNS, 

sem: <natural phenomenon>} 

P2: {lex: *, pos: NN | NNS, sem: <natural 

phenomenon>} 



 

 

P3: {lex: „earthquake‟ | „floods‟, pos: *, sem: 

<natural phenomenon>} 

P4: {lex: *, pos: *, sem: <natural phenomenon>} 

 

The semantic classes are derived from WordNet 

Domains (Bentivogli et al. 2004). Obviously, each 

matched pair can generate up to 2
3
 = 8 generalized 

patterns. If each pair of aspect instances from our 

training corpus is compared, the resultant pattern 

collection will be huge. In fact, a fair proportion of 

such patterns are low-fidelity, i.e., patterns that 

cannot apply to most of the instances. In order to 

filter them, we follow (Califf and Mooney 2003) 

by checking the induced patterns against all the 

unused instances. All the patterns with recognition 

precision < threshold (0.75) are deleted. 

In our implementation, the pattern generalization 

process is computationally expensive and it is 

impractical to generate all the possible patterns 

based on all aspect instance pairs. Therefore, we 

only sample a proportion of such pairs. 

2.3 Sentence Ranking and Summary 

Generation 

In our design, the focus of the TAC 2010 

summarization task is on aspect recognition. After 

aspect-bearing sentence recognition and sentential 

aspect recognition are done, sentence ranking and 

selection are rather straightforward. Since aspects 

are realized as words or phrases bounded by 

sentences, they can be reformulated as the “words” 

in generic summarization. Using this reformulation, 

we can theoretically apply any popular word 

frequency-based summarizer (e.g., Carbonell and 

Goldstein 1998) to aspect-guided summarization. 

Different from the case of generic summarization, 

sentences are ranked according to their aspect 

number and diversity. For aspect ai and its jth 

instance aij, we score aij according to the frequency 

of ai (freq(ai)) and the percentage of patterns that 

recognize aij (support(aij)), thus preferring high-

fidelity and rare aspect instances. 

 

Score(aij) = support(aij) / freq(ai) 

 

The sentence score is the sum of all its aspect 

instance scores normalized by sentence length. 

 

    Score(S) = max( ( )) /
i

ia S
Score a S

  

 

where Score(ai) is the sum of all the ith aspect 

instance scores in S. We use max(Score(ai)) 

because it is possible for a sentence fragment to be 

recognized as different aspect instances. 

    In the spirit of MMR (Carbonell and Goldstein 

1998), after the highest-ranking sentence is 

selected to generate the summary, all the Score(aij) 

are discounted with reference to the similarity 

between aij and any same-aspect instances 

contained in the selected sentence. We iterate the 

process until the summary word length is reached. 

2.4 Update Summarization 

According to our design, the update summarization 

task is rather simple. The two-stage aspect 

recognition is still central to this task. After that 

and before ranking and selecting sentences from 

document set B, we discard any sentence that is 

highly similar to any sentence in document set A 

of the same topic. In our implementation, sentence 

similarity is the cosine similarity between their 

term vectors and “highly similar” is translated to a 

value above threshold (0.75). 

3 Automatically Evaluating Summaries 

of Peers (AESOP) 

The AESOP tasks include ranking only for the 

system summaries and ranking for both the human 

summaries and the system summaries. Generally, 

most system summaries are composed by 

sentences extracted from the original documents. 

By contrast, human summaries are usually 

abstracts. As reported in previous studies, the 

evaluation results on extractive and abstractive 

summaries may also be different. As to the 

ROUGE evaluation, it is more efficient in ranking 

the extractive system summaries than 

differentiating the abstractive human summaries 

and the extractive system summaries. In our study, 

we consider a ROUGE-style method as our starting 

point and then try to improve it by several different 

strategies. 

We submit a total of four runs of evaluations to 

the AESOP task, which are introduced below. The 

first one is a baseline run, followed by three 

extensive runs.  

3.1 The Baseline System 

In the baseline system, we use a typical matching-

based evaluation method, which is indeed similar 



 

 

to ROUGE. First of all, a simple hypothesis is 

made that the words appearing in more human 

summaries are better at differentiating the system 

summaries. Therefore, the actual importance of a 

word to the topic is estimated by its document 

frequency in the human summaries, i.e., score(w) = 

DF(w). Then the total score of a summary S is 

calculated by the sum of the scores of the words in 

it:   ( )
iw S

score S DF w


 . Since the summaries 

are limited by the fixed length, this score can be 

directly used to evaluate the content of the 

summary without length normalization. 

3.2 Extending strategy 1: Filtering the non-

indicative words 

As a matter of fact, the free-style human abstracts 

may probably contain some words that may be 

hardly discovered by summarization systems, such 

as the words that never appear or are very rare in 

the documents. But system summaries may happen 

to cover these words. Therefore, we consider a 

filtering strategy that only uses a subset of the 

words in the human summaries for evaluation. The 

words in this subset tend to be discovered by the 

summarizing systems. We expect that this can 

more accurately gauge the ability of the 

summarizing methods in discovering the important 

content according to the given human summary.  

We consider two types of words here, including 

insignificant words and general words that are 

identified by their high frequency in the document 

set and an entropy-based measure respectively. 

Assume that the frequency of the word w in a TAC 

topic T is TF(w,T), the entropy of the word over all 

the topics in the TAC corpus is calculated as: 

  
( , ) ( , )

*
( ) ( )

i

i i

T

TF w T TF w T
En w log

TF w TF w
  , 

where TF(w) is the total frequency of the word in 

the corpus that equals ( , )
i

i

T

TF w T . This measure 

indicates how likely a word belongs to a specific 

topic. Words that have too large entropy are 

considered as general words and are filtered. In 

practice, the words that satisfy either TF(w,T) < 4 

or En(w) > 3 are ignored in our evaluation method. 

3.3 Extending Strategy 2: Normalizing the 

word importance 

In this run, we try to emphasize the core words in a 

different way. Usually, there are several core 

words in a given topic that should be included into 

the summary, such as the words “American”, 

“Indian”, “reservation” in a topic about American 

Indian reservation. These words may be more 

significant in differentiating the abilities of the 

summaries in discovering the important content of 

the given topic. Here we consider the document 

frequency in the human summaries as an indicator 

of the significance level of a word. We propose a 

normalization strategy that gives more importance 

to the words that appear in more human summaries. 

If we denote the set of words whose document 

frequency in human summaries is i as Li, the score 

of a word in Li is then changed from i to 1/ | |iL . In 

fact, the total score of the words in Li for each i is 

just 1 according to this strategy. Therefore, it can 

also be regarded as the evaluation of the summary 

quality by its ability in covering every set Li. 

3.4 Extending strategy 3: Graph-based 

ranking model 

In the third extension, we consider the effect of the 

submitted summaries for improving the evaluation 

method. The basic idea of this strategy is that good 

summaries usually have more overlap with other 

summaries. We adopt a PageRank-style ranking 

model here to calculate the ranking scores of the 

summaries.  

To apply the graph-based ranking model, we 

need to define the similarity measure between two 

summaries. For two summaries S1 and S2, the 

similarity 1 2( , ) Sim S S is calculated by the 

overlapping words, i.e., 1 2| |S S . The self-

similarity of a summary is set to 0. By calculating 

the pair-wise similarity between any two 

summaries, we can obtain the similarity matrix M. 

Using the similarity matrix, the score of a 

summary is calculated by the sum of the scores 

passed from all other summaries, i.e., 

 

   1 (

)

)

( ,
* ( )*

( , )
j

k

i i

j i

j

S j kS

score S d InitialScore S

Sim S S
d score S

Sim S S

  




 



 

 

 

where  iInitialScore S  is the prior importance 

and here is set as 1/4 for reference summaries and 

0 for non-reference summaries. d is set to 0.85 as 

in most PageRank-style ranking models. 

The ranking process is first setting the initial 

scores of the summaries and then iteratively 

calculating the scores using the above formula. The 

matrix form of the process can be written as 

 

 1 1 * *n n

Score InitialScore ScoreV d V d M V     

 

Following the power iteration process, the final 

scores are used as the scores for the summaries in 

the evaluation scheme. 

For the NoModel track, all the four human 

summaries are used as reference summaries for 

evaluating the system summaries. For the AllPeers 

track, the Jackknifing technique is adopted. Each 

time three human summaries are used as reference 

summaries for evaluating the other human 

summary and all the system summaries. Finally, 

the evaluating results of four evaluating rounds are 

averaged to get the final scores of all the 

summaries. 

4  TAC 2010 Evaluation and Diagnoses 

4.1 Guided Summarization 

For this task, the PolyU team submitted two runs. 

PolyU1 has been described in section 2. PolyU2 is 

a reordered version of PolyU1. For each summary, 

we reordered the sentences based on aspect 

relations (e.g., WHAT, WHEN, WHERE should 

precede WHY or COUNTERMEASURES) 

according to some heuristically designed rules. The 

reordered summaries are expected to be more 

coherent than the original ones. 

To our disappointment, our two runs (37 and 33) 

perform rather poorly among all the submitted 

peers. We did follow-up experiments to diagnose 

problems, which helps us to identify two sources 

of the poor performance: technical and algorithmic. 

Technically, our runs suffered from some bugs, 

one of which leads to the collapse of five different 

per-category classifiers to one. The other major 

problem is with the summary length. For our 

submitted runs, if a summary exceeds the 100-

word length limit, the last sentence is discarded, 

not truncated so that the whole summary has 

exactly 100 words. As a result, the average word 

length of our summaries is about 75-80 words, 

leading to “unfair” comparison with other 100-

word peers, especially in terms of recall measures. 

Algorithmically, the aspect-bearing sentence 

recognition performance is not as good as we 

expected. We manually inspected the recognized 

aspect-bearing sentences after debugging and 

found that the recognition precision is only about 

60%, despite the fact that on our training corpus 

the recognition precision can reach above 80%. 

This discrepancy is attributed to the difference 

between our training corpus and the TAC 2010 test 

set. Second, sentential aspect recognition is 

incomplete due to the reason described in 2.2, 

resulting in small subsets of all patterns 

generalizable from the training data. Last but not 

least, sentence extraction is IE-driven. Compared 

with the robust IR-driven techniques widely 

adopted by the summarization community, our 

method is more sensitive to the quality of 

specialized information (aspects in the TAC 2010 

task) recognition.  

In our post-evaluation study, we debugged the 

code, resized summaries to exactly 100 words, 

manually filtered aspect-bearing sentences and 

experimented with an IR-driven extraction 

technique. Table 2 lists the result of our 

experimentation measured by the popular ROUGE 

metrics. 

PolyU1 is our summited run (peer 37), with all 

the problems described above (buggy, <100 words, 

low-quality aspect-bearing sentences). Baseline1 

and Baseline2 are provided by NIST, and 

Baseline3 is a simple but robust IR-driven system 

from SumFocus (Vanderwende et al. 2007), 

implementing high-frequency word weighting, 

position weighting, redundancy control, and title 

word (provided by NIST) overlap. We observe 

obvious performance gain of our system, from 

debugging, using higher-quality aspect-bearing 

sentences, and extending the summary length to 

100 words. The resultant PolyU1.h is significantly 

better than PolyU1. A little unexpectedly, it is still 

inferior to the simpler Baseline3. We reckon that 

the PolyU1.* summaries are plagued by their IE-

based design. With low-quality aspect-bearing 

sentence sets (note that manual checking only 

improves precision, not recall) and lower-quality 

phrase-level aspect patterns, our system is easily 

outperformed by a robust IR-based system. 



 

 

Nevertheless, we cannot rush to the conclusion that 

IE-based systems are inferior to IR-based systems 

for the TAC 2010 system because we have not 

unleashed the full power of IE. 

A more valuable finding is that the IE element 

and the IR element can complement, instead of 

competing with, each other. In our experimentation, 

we simply rewarded aspect-bearing sentences with 

a multiplicative coefficient (1.3) on top of 

Baseline3 and produced an IR/IE hybrid system 

(Baseline3 + aspect sentences (100 words)). 

Evaluation result shows that although combined on 

such a shallow level, the hybrid system 

outperforms all the other runs we tried in our 

experimentation, with ROUGE scores much closer 

to the best submission (peer 22) than our original 

submission. Encouraged by this result, we will 

continue to explore aspect-guided summarization 

by improving the IE element and designing better 

IR/IE hybridization.  

4.2 AESOP 

The performance of our submissions to the AESOP 

 task is shown in Table 3. From the results we have 

some observations.  

(1) Generally, the performance of the proposed 

systems is among the better-performing half of all 

the submitted systems. 

(2) In the NoModel track, the baseline ROUGE-

2 can even perform as well as the best system, 

which means that ROUGE is indeed a good 

method in evaluating extractive summarization 

systems. Our systems have comparable 

performance but are still worse than ROUGE-2. 

    (3) In the AllPeers track, our systems are not 

much different from ROUGE-2, but much worse 

than the best systems. This may mean that the 

evaluation methods based on pure word-matching 

are not capable of evaluating abstractive 

summaries. 

(4) Among all the four submitted systems, the 

baseline system Run1 is the worst in the NoModel 

track but the best in the AllPeers track. It may 

imply that we should adopt simpler evaluation 

methods when evaluating different types of 

summary. 

 

 

ROUGE-1 

recall 

ROUGE-2  

recall 

ROUGE-

SU4 recall 

Best (peer 22) 0.36832 0.0959 0.12893 

Baseline1 0.27784 0.05428 0.08519 

Baseline2 0.28686 0.05862 0.0894 

Baseline3 0.33752 0.08006 0.11177 

PolyU1 (peer 37, <100 words) 0.27988 0.04773 0.08151 

PolyU1.d (Debugged, <100 words) 0.28642 0.05353 0.08758 

PolyU1.m (manual filtering of aspect sentences, <100 words) 0.31211 0.06631 0.0988 

PolyU1.h (manual filtering of aspect sentences, 100 words) 0.33654 0.07042 0.10626 

Baseline3 + aspect sentences (100 words) 0.34603 0.08265 0.11598 

 

Table 2. Diagnostic Result 

 

 NoM A No M B All P A All P B 

Run1 0.919 0.865 0.911 0.821 

Run2 0.917 0.897 0.846 0.717 

Run3 0.916 0.906 0.904 0.814 

Run4 0.923 0.889 0.848 0.732 

Best 0.978 0.964 0.969 0.958 

R-2 0.978 0.963 0.895 0.861 

 

Table 3 AESOP Result 

 



 

 

5 Conclusion  

The PolyU team has experimented with an IE-

based technology to tackle the new challenge of 

aspect-guided summarization. The follow-up 

study results show that the IE element is 

certainly helpful and can be integrated with IR-

based technology. We also hypothesize that the 

less salient aspects are in the document, the 

worse the IR-based baselines will be. 

Several new approaches are implemented in 

the AESOP task and the evaluation results show 

that more work needs to be done, especially in 

designing a more effective way to handle 

abstractive and extractive summaries. 
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