## Crafting Strong Predictors of a Summary's Quality: "Essentially, all models are wrong, but some are useful"\*

John M. Conroy<sup>1</sup>

Peter A. Rankel<sup>2</sup>

Judith D. Schlesinger<sup>1</sup>

Dianne P. O'Leary<sup>2</sup>

- 1. IDA Center for Computing Sciences, USA
- 2. University of Maryland

\*George E. P. Box, Univ. Wisconsin, Prof. Emeritis



#### Overview

- Our Models
  - Prediction via regression or eigenvectors
  - Features:
    - Content
    - Nouveau
    - Linguistic
  - Feature Selection

## Modeling Background

- Canonical Correlation: Harold Hotelling 1935
  - Finds optimal linear combination to maximize correlation: a LS problem; more generally an eigenvalue problem.
- ROUGE Optimal Summarization Evaluation. ROSE. [Conroy & Dang 2008]
- Nouveau-ROUGE, [Conroy, Schlesinger, O'Leary, Computational Linguistics 2011]
- Linear combination of average system scores not document set scores.

## Robust Regression and Non-Negative Least Squares

- We aim to predict human metrics:
  - Overall responsiveness or
  - Pyramid evaluation.

 $x = \arg\min \|Ax - b\|$ 

 $A=A_{2009}$  system-average-feature matrix,

 $b = b_{2009}$  is the human metric to predict,

II.II a norm that accounts for outliers.

 $\hat{b}_{2010} = A_{2010}x$ , our estimate for the 2010 metric.

Optionally, we can add contraint of non-negativity of x.

#### **Canonical Correlation**

 Find a linear combination of features and a linear combination of human judgments (pyramid, resp., ling.) with highest correlation.

$$(x,y) = \arg\max_{x \in \mathbb{R}^n, y \in \mathbb{R}^3} \rho(Ax, By)$$

- Where  $\rho()$  is Pearson correlation.
  - Training is solving a generalized eigenvalue problem.
  - Score using x only.

# Content Features and Newness Features (Nouveau-ROUGE)

$$R_i$$
  $i = 1,2,3,4,5,SU4,L$ 

- For update summaries the summaries should differ from what is already known.
- ROUGE scores that compare humangenerated summaries (models) in subset A (base) with summaries (peers) in subset B (update).

$$R_i^{(AB)}$$
  $i = 1,2,3,4,5,SU4,L$ 

## Linguistic Features: One Matrix and 7 Features

- 1. Log sum term overlap between consecutive sentences  $(L_{o1})$
- 2. Summary normalized term overlap  $(L_{o2})$
- 3. Redundancy Score 1:dist. to rank 1  $(L_{r1})$
- 4. Redundancy Score 2:dist. to rank 2  $(L_{r2})$
- 5. -log(number of sentences)  $(L_{sl})$
- 6. Term Entropy ( $L_{te}$ )
- 7. Sentence Entropy  $(L_{se})$

## **Training Models**

- Feature Selection:
  - Train 2<sup>14</sup>-1 models all proper subsets of 14 features computed from TAC 2008.
  - Evaluate (best correlation) on TAC 2009.
  - (Repeat for update set)
- Train best models on TAC 2009 and score for TAC 2010.

#### **AESOP Submissions:No Models**

| ID | Type   | Features                                                               | Target          |
|----|--------|------------------------------------------------------------------------|-----------------|
| 14 | NNLS   | $R_2, L_{o1}, L_{sl}$                                                  | Resp.           |
|    |        | $R_2,R_5,R_L,L_{o1}$                                                   |                 |
| 23 | CCA    | $R_2$ , $R_L$ , $L_{o1}$ , $L_{o2}$ , $L_{r1}$ , $L_{sl}$ , $L_{se}$   | Resp.,<br>Pyr., |
|    |        | $R_{1}, R_{3}, R_{4}, R_{SU4}, L_{o1}, L_{r1}, L_{r2}, L_{sl}, L_{se}$ | Ling.           |
| 19 | Robust | $R_1, R_2, R_{SU4}, L_{r2}, L_{sl}, L_{se}$                            | Resp.           |
|    | Reg.   | $R_2$ , $L_{o2}$ , $L_{r1}$ , $L_{r2}$ , $L_{sl}$ , $L_{se}$           |                 |
| 26 | Robust | $R_1,R_2,R_{SU4},L_{o1}$                                               | Pyramid         |
|    | Reg.   | $R_2,R_3,R_{SU4},L_{o1}$                                               |                 |
|    |        |                                                                        |                 |

#### Pyramid Initial (A): Error Bars

Top 20 Pyramid Correlating Metrics for Set NO MODELS A:Pearson



#### Responsiveness: Initial (A)

Top 20 Responsiveness Correlating Metrics for Set NO MODELS A:Pearson



## Pyramid: Update (Set B)



## Responsiveness: Update (B)



#### **All Peers Task**

- Training included human-generated summaries for TAC 2008-2009 similar to no models.
- Scoring for TAC 2010: jackknifing to compute content features.
  - Humans scored against 3 other humans.
  - Machine-generated content features are an average of scoring with 4 subsets of humans.
- Linguistic features as before.

## Pyramid: Update, ALL PEERS





#### Responsiveness: Update, ALL PEERS



#### Conclusions for NO MODELS.

- Combining content features (ROUGE and Nouveau-ROUGE) and simple linguistic produced top metrics to predict responsiveness.
- A family of [wrong] CCA models are useful to build higher responsive summarization systems.
- ROUGE-2 is still strong on pyramid!

# Conclusion for ALL PEERS and Thoughts for Future

- Nouveau-ROUGE-2 (a 2 feature model) significantly outperformed the ROUGE baselines on the update task in both responsiveness and pyramid.
- Future Work: Sharpen the linguistic features.
- Future TAC AESOP Tasks?:
  - Predicting responsiveness and linguistic SCORES.
    - Move from regression to classification.
  - Semi-automatic pyramid evaluation:Maybe an RTE Task?

## Aesop's Crow and Pitcher: Persistence is Rewarded



### All Peers Pyramid, Base (A)



#### All Peers Responsiveness. Base (A)

