Crafting Strong Predictors of a Summary's Quality: "Essentially, all models are wrong, but some are useful"*

John M. Conroy¹

Peter A. Rankel²

Judith D. Schlesinger¹

Dianne P. O'Leary²

- 1. IDA Center for Computing Sciences, USA
- 2. University of Maryland

*George E. P. Box, Univ. Wisconsin, Prof. Emeritis

Overview

- Our Models
 - Prediction via regression or eigenvectors
 - Features:
 - Content
 - Nouveau
 - Linguistic
 - Feature Selection

Modeling Background

- Canonical Correlation: Harold Hotelling 1935
 - Finds optimal linear combination to maximize correlation: a LS problem; more generally an eigenvalue problem.
- ROUGE Optimal Summarization Evaluation. ROSE. [Conroy & Dang 2008]
- Nouveau-ROUGE, [Conroy, Schlesinger, O'Leary, Computational Linguistics 2011]
- Linear combination of average system scores not document set scores.

Robust Regression and Non-Negative Least Squares

- We aim to predict human metrics:
 - Overall responsiveness or
 - Pyramid evaluation.

 $x = \arg\min \|Ax - b\|$

 $A=A_{2009}$ system-average-feature matrix,

 $b = b_{2009}$ is the human metric to predict,

II.II a norm that accounts for outliers.

 $\hat{b}_{2010} = A_{2010}x$, our estimate for the 2010 metric.

Optionally, we can add contraint of non-negativity of x.

Canonical Correlation

 Find a linear combination of features and a linear combination of human judgments (pyramid, resp., ling.) with highest correlation.

$$(x,y) = \arg\max_{x \in \mathbb{R}^n, y \in \mathbb{R}^3} \rho(Ax, By)$$

- Where $\rho()$ is Pearson correlation.
 - Training is solving a generalized eigenvalue problem.
 - Score using x only.

Content Features and Newness Features (Nouveau-ROUGE)

$$R_i$$
 $i = 1,2,3,4,5,SU4,L$

- For update summaries the summaries should differ from what is already known.
- ROUGE scores that compare humangenerated summaries (models) in subset A (base) with summaries (peers) in subset B (update).

$$R_i^{(AB)}$$
 $i = 1,2,3,4,5,SU4,L$

Linguistic Features: One Matrix and 7 Features

- 1. Log sum term overlap between consecutive sentences (L_{o1})
- 2. Summary normalized term overlap (L_{o2})
- 3. Redundancy Score 1:dist. to rank 1 (L_{r1})
- 4. Redundancy Score 2:dist. to rank 2 (L_{r2})
- 5. -log(number of sentences) (L_{sl})
- 6. Term Entropy (L_{te})
- 7. Sentence Entropy (L_{se})

Training Models

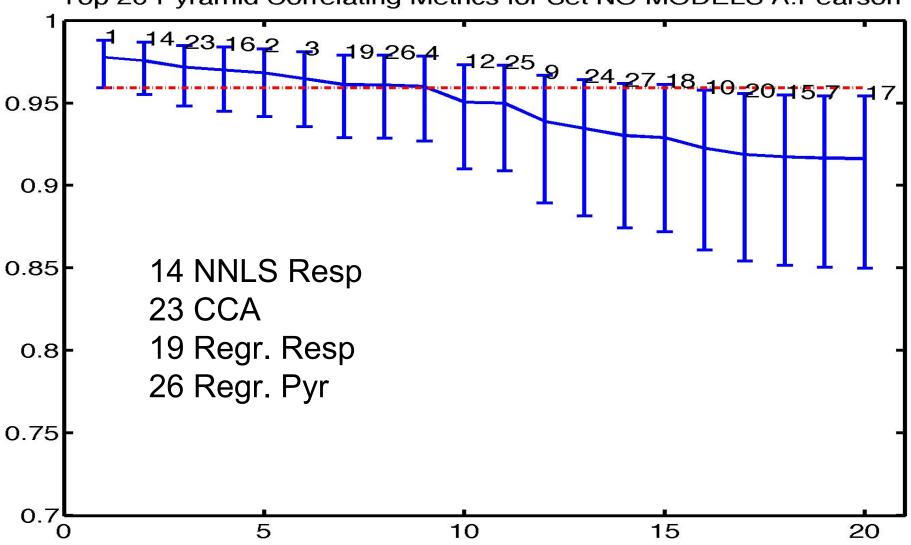
- Feature Selection:
 - Train 2¹⁴-1 models all proper subsets of 14 features computed from TAC 2008.
 - Evaluate (best correlation) on TAC 2009.
 - (Repeat for update set)
- Train best models on TAC 2009 and score for TAC 2010.

AESOP Submissions:No Models

ID	Type	Features	Target
14	NNLS	R_2, L_{o1}, L_{sl}	Resp.
		R_2,R_5,R_L,L_{o1}	
23	CCA	R_2 , R_L , L_{o1} , L_{o2} , L_{r1} , L_{sl} , L_{se}	Resp., Pyr.,
		$R_{1}, R_{3}, R_{4}, R_{SU4}, L_{o1}, L_{r1}, L_{r2}, L_{sl}, L_{se}$	Ling.
19	Robust	$R_1, R_2, R_{SU4}, L_{r2}, L_{sl}, L_{se}$	Resp.
	Reg.	R_2 , L_{o2} , L_{r1} , L_{r2} , L_{sl} , L_{se}	
26	Robust	R_1,R_2,R_{SU4},L_{o1}	Pyramid
	Reg.	R_2,R_3,R_{SU4},L_{o1}	

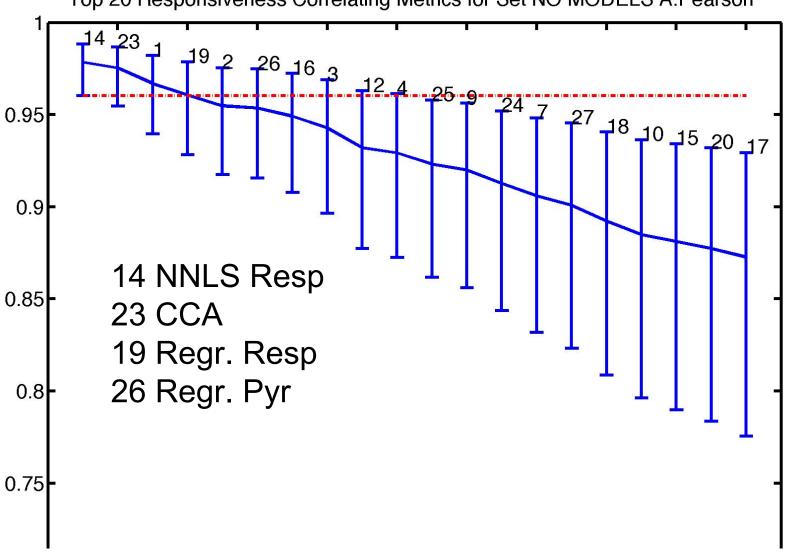
Pyramid Initial (A): Error Bars

Top 20 Pyramid Correlating Metrics for Set NO MODELS A:Pearson

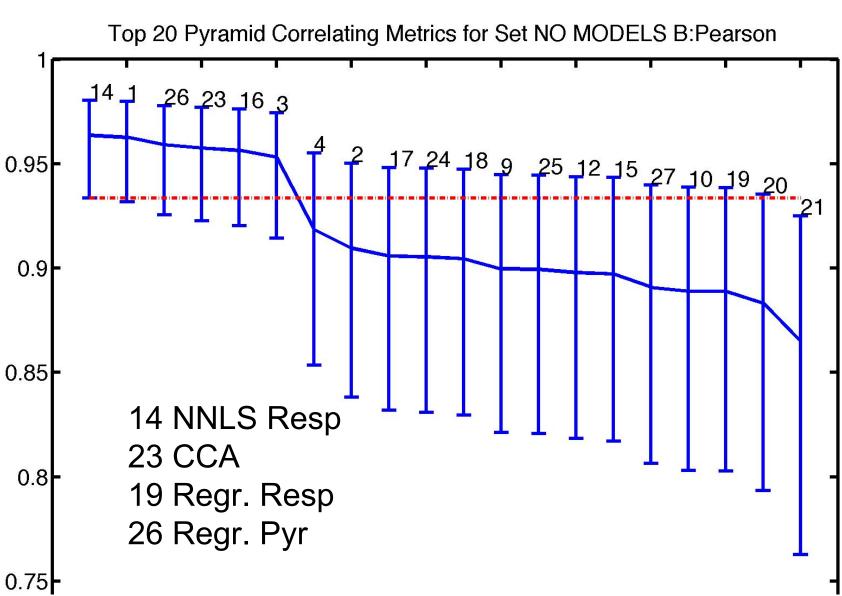


Responsiveness: Initial (A)

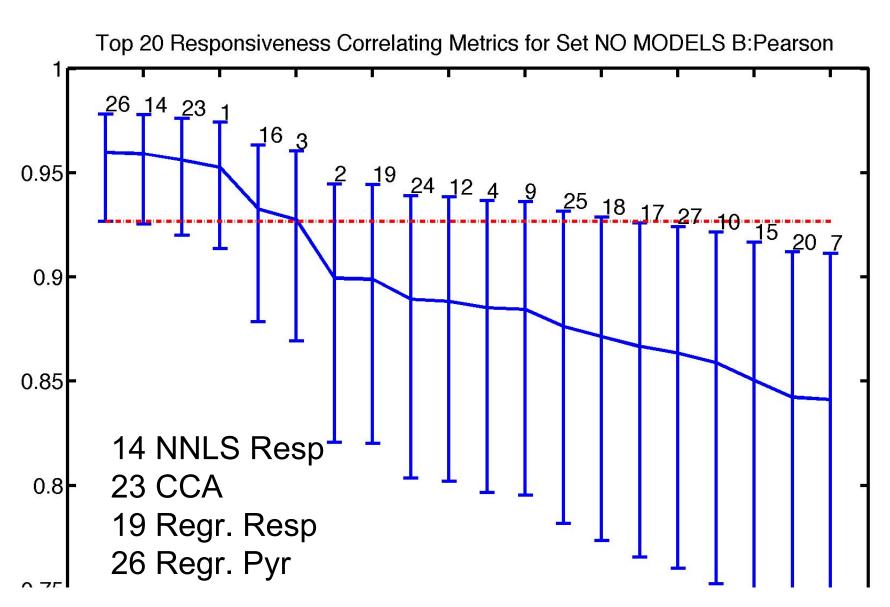
Top 20 Responsiveness Correlating Metrics for Set NO MODELS A:Pearson



Pyramid: Update (Set B)



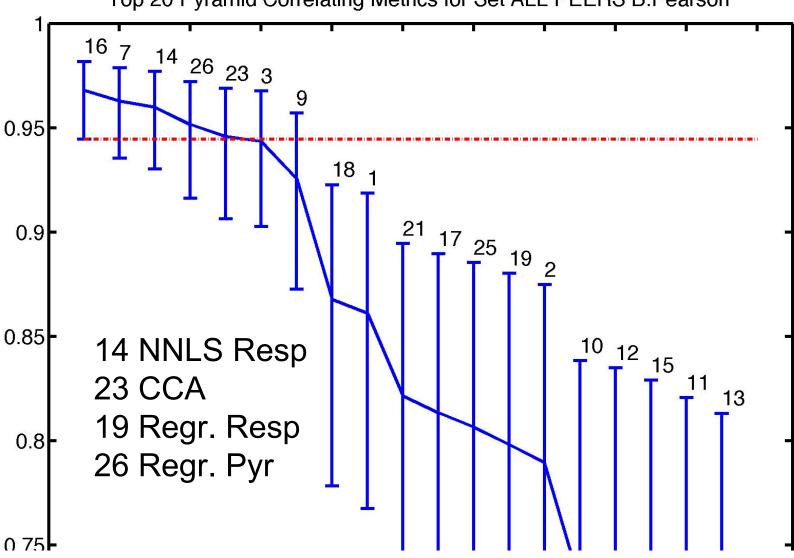
Responsiveness: Update (B)



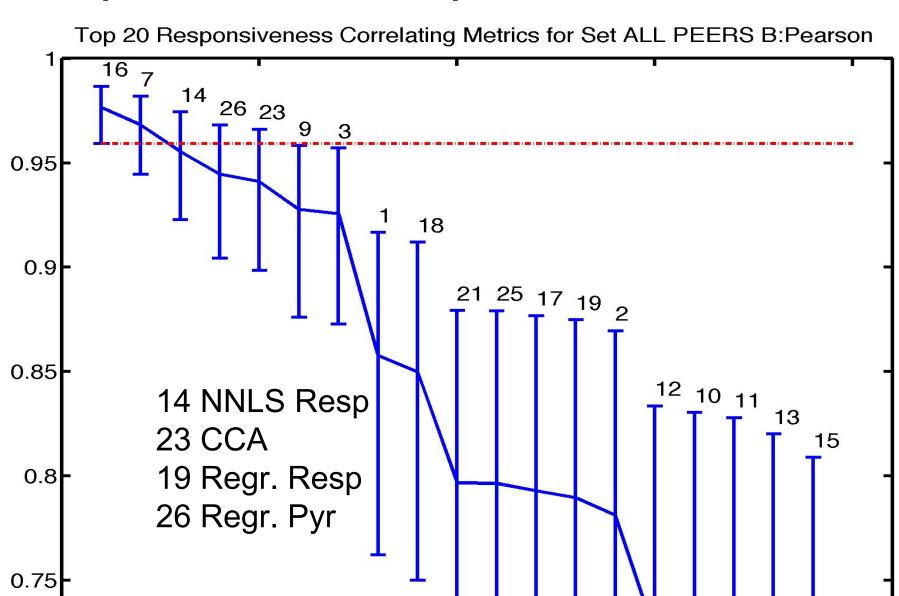
All Peers Task

- Training included human-generated summaries for TAC 2008-2009 similar to no models.
- Scoring for TAC 2010: jackknifing to compute content features.
 - Humans scored against 3 other humans.
 - Machine-generated content features are an average of scoring with 4 subsets of humans.
- Linguistic features as before.

Pyramid: Update, ALL PEERS



Responsiveness: Update, ALL PEERS



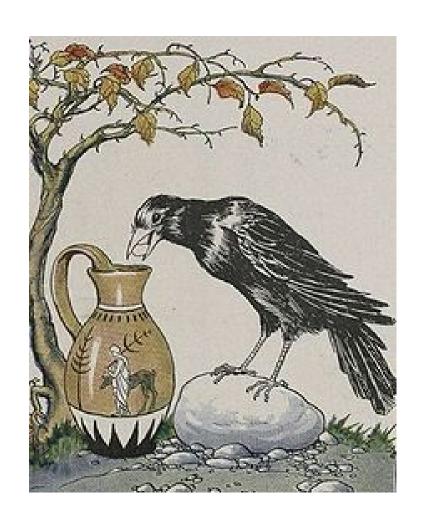
Conclusions for NO MODELS.

- Combining content features (ROUGE and Nouveau-ROUGE) and simple linguistic produced top metrics to predict responsiveness.
- A family of [wrong] CCA models are useful to build higher responsive summarization systems.
- ROUGE-2 is still strong on pyramid!

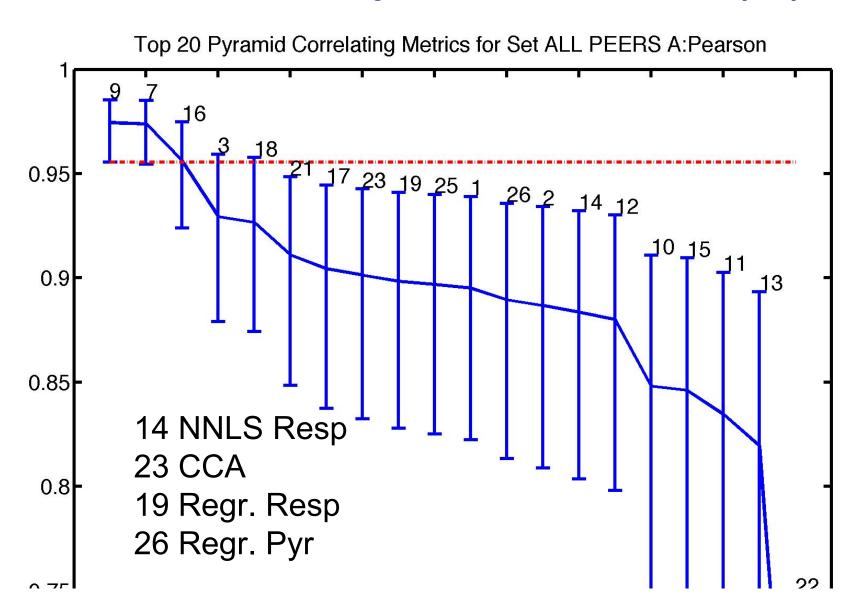
Conclusion for ALL PEERS and Thoughts for Future

- Nouveau-ROUGE-2 (a 2 feature model) significantly outperformed the ROUGE baselines on the update task in both responsiveness and pyramid.
- Future Work: Sharpen the linguistic features.
- Future TAC AESOP Tasks?:
 - Predicting responsiveness and linguistic SCORES.
 - Move from regression to classification.
 - Semi-automatic pyramid evaluation:Maybe an RTE Task?

Aesop's Crow and Pitcher: Persistence is Rewarded



All Peers Pyramid, Base (A)



All Peers Responsiveness. Base (A)

