
Knowledge and Tree-Edits in Learnable Entailment Proofs

Asher Stern1, Amnon Lotan3, Shachar Mirkin1, Eyal Shnarch1, Lili Kotlerman1, Jonathan
Berant2, and Ido Dagan1

1Computer Science Department, Bar-Ilan University, Ramat Gan 52900, Israel
2School of Computer Science, Tel-Aviv University, Ramat Aviv 69978, Israel

3Department of Linguistics, Tel-Aviv University, Ramat Aviv 69978, Israel

October 25, 2011

Abstract

This paper describes BIUTEE - Bar Ilan Uni-
versity Textual Entailment Engine. BIUTEE is
a natural language inference system in which
the hypothesis is proven by the text, based on
linguistic- and world- knowledge resources, as
well as syntactically motivated tree transfor-
mations. The main progress in BIUTEE in
the last year is a new confidence model that
estimates the validity of the proof found by
BIUTEE.

1 Introduction

This paper describes the main concepts of BIUTEE -
“Bar Ilan University Textual Entailment Engine” - in
the Seventh Recognizing Textual Entailment (RTE-
7) challenge. The RTE task is formalized as fol-
lows: Given a pair of natural language text frag-
ments, named text and hypothesis, the system needs
to recognize whether the hypothesis can be inferred
from the text. Our approach for addressing the RTE
task, as first described in (Bar-Haim et al., 2007a), is
to explicitly find out how the hypothesis can be in-
ferred from the text, based on linguistic- and world-
knowledge. More concretely, our system finds a se-
quence of inference steps (a.k.a. a proof), such that
each step would ideally be inferred from the previ-
ous one based on some knowledge of inference op-
eration. Since the sequence begins with the text and
ends with the hypothesis, we conclude that the hy-
pothesis can be inferred from the text, based on the
knowledge used in the sequence.

This approach, despite many efforts to acquire
large and accurate knowledge resources, still suffers
from two inherent difficulties. First, in most practi-
cal cases the knowledge bases available to the sys-
tem are insufficient to construct a complete sequence
of inference steps. Usually, only a partial sequence
can be constructed. Second, most of the knowledge
bases, especially those that were automatically ac-
quired, contain also inaccurate knowledge, which
may lead to wrong inferences.

In order to cope with practical RTE datasets,
the developers of our earlier version of BIUTEE

augmented the system with an Approximate Match
mechanism (Bar-Haim et al., 2008). This mecha-
nism extracts features from the consequents of par-
tial proofs that were found by the system and from
the hypothesis. The features were designed to cap-
ture entailment phenomena, like polarity, predicate-
argument match, lexical coverage and tree structure
similarity. The approximate match mechanism then
uses a machine learning classifier to classify the text-
hypothesis pair as entailing or non-entailing. How-
ever, that mechanism broke the main concept of a
proof system. More concretely, the system became a
hybrid system, with one mechanism that aims to find
consequents derived from the text, and another sep-
arate post-processing mechanism that aims to find
similarities and dissimilarities between the hypothe-
sis, and the consequents derived from the text. One
of the proof scheme advantages is its ability to pro-
vide a clear explanation of how the hypothesis can
be inferred from the text. This explanation is the se-
quence of inference-steps. The hybrid system lacks

that advantage, since there was no longer a direct
connection between the proof process and the final
decision on entailment.

We now address this issue with our new confi-
dence model, first introduced in (Stern and Dagan,
2011). In this model, the system is allowed to per-
form some operations even if they are not justified
by the available knowledge resources. The validity
of those operations, as well as that of knowledge-
based operations, is estimated by the confidence
model. It is expected that the proofs found for posi-
tive text-hypothesis pairs (i.e. pairs in which the text
entails the hypothesis) will be assigned a high confi-
dence, while the proofs found for negative pairs will
be assigned a low confidence. Thus, the system can
find a proof for any text-hypothesis pair, and evalu-
ate its validity.

In the rest of this paper we survey the earlier ver-
sion of BIUTEE, as well as other related works (Sec-
tion 2). Then we describe our inference framework
and the confidence model (Section 3), followed by
the results obtained on the RTE-7 dataset (Section
4). In Section 5 we describe the advantages of
BIUTEE as an open source system. Section 6 con-
cludes this paper with suggestions for future work.

2 Background and Related Works

The Bar-Ilan University approach to the task of Rec-
ognizing Textual Entailment is to prove the hypoth-
esis by the text. This approach was developed in a
continuous research line during the last years. The
main idea, described in (Bar-Haim et al., 2007a), is
an inference framework, in analogy to logic-based
inference systems, which operates over syntactic-
parse-trees. Like logic-based systems, the inference
framework is composed of propositions and infer-
ence rules. The propositions include t (the given
text), h (the hypothesis to be proven), and intermedi-
ate premises inferred during the proof. To construct
a proof, the inference framework uses inference (en-
tailment) rules that define how new propositions are
derived from previously established ones.

At each step of the proof an entailment rule gen-
erates a derived tree (d) from a source tree s. A rule
“L → R” is primarily composed of two templates,
termed left-hand-side (L), and right-hand-side (R).
Templates are dependency subtrees which may con-

Figure 1: DIRT-style rule X listen to Y → X hear Y, along
with its application to the sentence “I listen to the music.”

tain variables. An example of such a rule is shown
in Figure 1. A detailed definition of entailment rules
and their application is given in Section 3.1.1.

Given a text-hypothesis (t, h) pair, the system de-
tects whether t entails h as follows: The system
starts with a set, T , of the text’s parse trees. Then
it generates all new consequents (which are them-
selves parse trees) that can be derived from the ex-
isting ones, using the available entailment-rules, and
adds them to T . The system continues to itera-
tively generate new consequents based on the exist-
ing ones, and adds them to T , until no more conse-
quents can be generated. Then, the system decides
that the text entails the hypothesis, if and only if the
hypothesis parse tree is included in T .

Empirically, that scheme suffers from two signif-
icant limitations: First, the requirement of h ∈ T
leads to very low recall, since complete derivation of
h from t is not feasible for most RTE (t, h) pairs (Bar-
Haim, 2010). Second, many knowledge resources
from which entailment rules were acquired are far
from being accurate. Nevertheless, the system did
not take that inaccuracy into account.

A more realistic approach would treat the applied
operations as correct with some probability. Such an
approach was suggested by several works. For ex-
ample, Harmeling (2009) introduced a calculus that
can transform the given text, t, into the hypothesis h.
His underlying assumption was that in practice such
calculi will always remain imperfect due to the diffi-
culty of correctly formalizing commonsense reason-
ing. Thus, the calculus is considered as probabilisti-
cally sound calculus, in which each atomic transfor-
mation preserves truth with some probability. Given

this calculus, one can assign a probability to a com-
plete derivation in the calculus simply by multiply-
ing all probabilities of preserving the truth along the
derivation.

The core idea in the above mentioned work is not
only constructing a proof, but also estimating the
likelihood that a constructed proof is indeed valid
(i.e. preserves truth). The same idea was proposed
independently by other works: In the work of Raina
et al. (2005), a logical proof is constructed, by a
framework of abductive reasoning, and its validity
is estimated using a machine learning algorithm. In
another line of works, in which Tree-Edit Distance
is used to recognize textual entailment (see, for ex-
ample, (Mehdad, 2009) and (Heilman and Smith,
2010)) the proof is a sequence of Tree-Edit oper-
ations, and its validity is estimated by the cost as-
signed to that sequence.

However, in these works proofs were not con-
structed over entailment rules, which seem to pro-
vide a better formalism for textual inference. By
using entailment rules, natural language inference
phenomena can be formulated as atomic operations,
in contrast to the operations suggested by the above
systems, in which many inference phenomena re-
quire a sequence of operations. For example, trans-
forming a text from passive form to active form is
formalized by a single entailment rule, compared to
a sequence of insertions and deletions required in the
tree-edits models. Thus, our goal was to preserve an
inference process over entailment rules, while ad-
dressing the limitations described above. In the new
version of BIUTEE the core operations are entail-
ment rule applications. Since our available set of en-
tailment rules is inevitably incomplete, we defined a
set of syntactically motivated on-the-fly tree edit op-
erations that are used when knowledge is insufficient
for a given (t, h) pair. The system finds a proof of
the hypothesis from the text, and uses a confidence
model to evaluate its validity, as follows: The sys-
tem calculates for every operation of either type a
cost, based on linguistic and world-knowledge fea-
tures. Then it calculates a total cost for the complete
proof, based on the costs of the proof’s operations.
This cost is then used to estimate the proof validity.

3 The Cost-based Proof Model

In our framework we use entailment rules proposed
by Bar-Haim et al. (2007a), and extend them with
syntactically-motivated on-the-fly operations to en-
able generation of complete proofs (Sec. 3.1). The
extended framework is then integrated with a learn-
ing method similar to the one proposed for logic rep-
resentations by (Raina et al., 2005) as follows. We
propose a cost model, which assigns a cost for each
entailment proof (Sec. 3.2), and introduce a search
algorithm that finds the “best proof” with respect to
the cost model (Sec. 3.3). Finally we describe a
method to iteratively learn the parameters of the cost
model (Sec. 3.4).

3.1 Inference formalism
The model presented here assumes a single-sentence
hypothesis, similar to the RTE challenges, though it
can be easily adjusted to multi-sentence hypotheses
as well.

Given a (t,h) pair, the system first constructs the
dependency parse trees1 of t and h. Each node in
those trees contains information about one lexical
item (i.e. a word), which includes its lemma and
its part-of-speech, and optionally other information,
such as Named Entity type2. Each edge is labeled
with a dependency relation (e.g. subject, object).

Let T be a set of dependency parse trees that were
constructed for t’s sentences, and let h be the depen-
dency parse tree constructed for h. The system iter-
atively extends T with additional trees, by applying
tree generation operations, until there exists a tree
t ∈ T , such that h is embedded in t.

We will use the following notations: Let T be a
set of trees, o be a tree generation operation, and t be
a tree. T `o t denotes that t can be generated from
T using the operation o. We will use the ` notation
also for the resulting extended set of trees, that is:

T `o T ∪ {t}

Let O = (o1, o2 . . . om) be a sequence of opera-
tions. The notation T |=O T ′ means that T ′ can be
generated from T by applying iteratively the opera-
tions in O. Finally, a sequence of operations is called

1We used the EasyFirst parser (Goldberg and Elhadad,
2010)

2We used Stanford NE recognizer (Finkel et al., 2005)

a proof, P , if T |=P T ′ such that h is embedded in
one of the trees in T ′.

Although a more accurate definition of a proof
would require that h would be identical to one of
the trees in T ′, rather than being embedded in one
of them, our relaxed definition is a common heuris-
tic simplifying the proof construction process.

3.1.1 Entailment rules

Our primary operations, as described in (Bar-
Haim et al., 2007a) are applications of entailment
rules. An entailment rule is composed of two sub-
trees, named left hand side (lhs) and right hand side
(rhs), intended to capture an entailment relation be-
tween its two sides (see Table 1). For example, a
simple lexical rule is “music→ art”, where both sub-
trees consist of single nodes.

Let r = (lhs, rhs) be a rule and t be a parse-tree,
such that lhs is embedded in t. An application of r
on t is a generation of a new tree, t′, which is iden-
tical to t, but with the instance of lhs in t being re-
placed by rhs. If the underlying meaning of t entails
the meaning of t′, then we would consider the ap-
plication of r as valid. It should be noted that in
(Bar-Haim et al., 2007a) all rule-applications, based
on the set of rules given to the system, were consid-
ered valid for any arbitrary (t,h) pair, an assumption
which we relax in our cost-based model.

A rule’s lhs and rhs may contain variables, i.e.
nodes in which the lemma is not specified. When
such a rule is applied, the system first instantiates
the variables with actual lemmas, according to the
original tree, and then replaces the lhs by the instan-
tiated rhs (As exemplified in Figure 1).

A broad range of linguistic- and world- knowl-
edge can be captured by entailment rules. In gen-
eral, there are three main types of entailment rules:
Lexical, Lexical-Syntactic and Generic Syntactic.3

Lexical Rules: These are the simplest rules, in
which both lhs and rhs are single words (or multi-
word expressions), for example, “music→ art”. The
meaning of this rule is that given a tree with a node
with the lemma “music”, this node can be replaced

3Most of the resources used by our system are available
in http://www.cs.biu.ac.il/˜nlp/downloads/.
Some of them are part of BIUTEE package in http://www.
cs.biu.ac.il/˜nlp/downloads/biutee

by a similar node with the lemma “art”, while the re-
sulting tree would be entailed from the original one.

We used the following lexical resources:
Wikipedia rules (Shnarch et al., 2009), Lin similar-
ity4 (Lin, 1998), Directional-Similarity5 (Kotlerman
et al., 2010), WordNet6 (Fellbaum, 1998; Miller,
1995), a geographic resource based on TRECs
TIPSTER gazetteer (see (Mirkin et al., 2009)) and
VerbOcean7 (Chklovski and Pantel, 2004)

Lexical Syntactic Rules: These rules not only
take into account the lexical items that can be re-
placed, but also the syntactic structure in which they
are organized in the parse tree. Usually, those rules
deal with entailment of predicates (either as verbs or
as nominalizations), and contain variables that spec-
ify their arguments, which are instantiated during
rule application. An example of a lexical-syntactic
rule is “buy Y for Z→ pay Z for Y”. Applying this
rule on the sentence “Microsoft bought YaData for
$25 million.” would result in “Microsoft paid $25
million for YaData.”.

We used the following lexical-syntactic resources:
DIRT8 (Lin and Pantel, 2001) and FrameNet based
rules (Ben-Aharon et al., 2010)

Generic Syntactic Rules: The generic-syntactic
rule base is comprised of a few dozen manually writ-
ten inference rules that are syntactically oriented, i.e.
they do not involve open class lexical items. They
are based on a manual analysis of the RTE dataset, as
well as on previous work included in older versions
of our system (Bar-Haim et al., 2007a; Bar-Haim,
2010), and on other related works such as (Amoia
and Gardent, 2008) and (Hearst, 1992).

Generic syntactic rules capture entailment pat-
terns associated with common syntactic constructs,
as summarized in Table 2,

Table 1 summarizes the types of entailment rules.

4retrieving for each left-hand-side only the top 30 right-
hand-sides

5A rule-base of lexical entailment rules automatically ex-
tracted by means of directional distributional similarity.

6We used the following WordNet relations: hypernymy,
holonymy, verb-entailment and synonymy - all with depth 2

7Only the relation “stronger” was used.
8retrieving for each left-hand-side only the top 20 right-

hand-sides

Rule Type Description Examples

Lexical Rules Substitution of a single node, capturing lexical
entailment. Both lhs and rhs are single nodes.

novel→ book
walk→ go

Lexical Syntactic
Rules

Tree transformations that change the tree’s
lexical items as well as the tree’s structure.

“X file lawsuit against Y”→ “X accuse Y”
“X listen to Y”→ “X hear Y”

Generic Syntac-
tic Rules

Tree structure transformations. Capture lin-
guistic phenomena (e.g. passive-active). X V(active) Y→ Y is V(passive) by X

Table 1: Types of entailment rules. Note that for simplicity the examples are presented as strings, though the actual
definition and implementation are based on sub-trees, as in Figure 1

Syntactic Construct Example
Apposition Ted, the boss, is coming → Ted is the boss
Conjunction Ted has been in meetings and appointments → Ted has been in appointments
Genitive Ted’s wife is also coming → The wife of Ted is also coming
Implications Ted likes apples and other fruit → Apples are fruit
Relative Clauses I’m looking for someone invited by Paula → someone was invited by Paula
Passive-Active Ted was invited by Paula → Paula invited Ted

Table 2: Generic Syntactic Rules

3.1.2 Co-reference substitutions
Co-reference Substitution is a tree manipulation

that is performed according to co-reference infor-
mation, given by an external co-reference resolver9.
Given two mentions m1 and m2 of the same entity,
not necessarily in the same parse-tree, we define the
operation of replacing the sub-tree rooted by m1 by
the sub-tree rooted by m2 as co-reference substitu-
tion.

3.1.3 On the fly operations
As described in Section 2, the original scheme of

Bar-Haim et al. (2007a) recognized a (t,h) pair as
entailing if and only if h could be generated by a
sequence of co-reference substitutions and applica-
tions of rules from the given set of knowledge re-
sources. Inevitably that scheme suffers from a very
limited recall10.

Utilizing our learning scheme as described below,
we are able to overcome that difficulty, by adding
an additional set of on the fly tree-transformations.
Though those operations are not justified by a pre-
given knowledge base, an estimation of their cor-

9We used ArkRef co-reference resolver (www.ark.cs.
cmu.edu/ARKref/). See (Haghighi and Klein, 2009)

10As mentioned earlier, to increase recall in practical RTE
datasets, a hybrid framework was introduced in (Bar-Haim et
al., 2007b; Bar-Haim et al., 2008), which uses an approximate
match mechanism for final classifications.

rectness likelihood can be learned, based on syntac-
tic features. For example, moving a complete sub-
tree is defined as an atomic operation, in contrast
to the regular tree-edit-distance operations, in which
such transformation requires a sequence of “insert”
and “delete” operations.

Operation-Name Operation-Description

Insert Node Insert a new node in an arbitrary
position in a parse tree.

Move sub tree

Disconnect a sub tree rooted by n
from its parent p(n) and connect it
as a child of another node in the
tree, p′(n).

Change Relation
Change the relation (the edge la-
bel) between a node n and its par-
ent p(n).

Flip Part-Of-
Speech Change a node’s part-of-speech.

Cut Multi-Word
Remove some of the words from
a multi-word expression, as identi-
fied by the parser

Single-Word to
Multi-Word

Replace a word by a multi word ex-
pression containing it, e.g. “Bond”
→ “James Bond”.

Table 3: on-the-fly operations in our system.

An initial set of on-the-fly operations which is im-
plemented in our system is specified in Table 3. The
validity of applying such operations is estimated by

the cost-model, described next, using the features
listed in Table 4. Those operations represent simple
transformations required to handle differences be-
tween two dependency-parse-trees, and are applied
when parts of the hypothesis tree are missing in a
given tree in T .

This set of operations can be extended in the fu-
ture by using additional linguistic resources, e.g.
by identifying the semantic role of the inserted and
moved nodes, or by adding on-the-fly substitutions,
scored by distributional similarity.

3.2 Cost model
Given a proof P , we want to estimate its correctness
likelihood. Under the assumption that some or all
of the operations in P might be incorrect - for ex-
ample due to inaccuracies of the knowledge bases,
wrong co-reference resolution or incorrect on-the-
fly operations - we define a cost model to quan-
tify the proof’s likelihood to be correct. Follow-
ing the cost model applied by Raina et al. (2005)
to logic proofs, we use an additive linear model in
which each operation is characterized by a set of
features and the operation’s total cost is a weighted
linear combination of those features. Formally, let
o ∈ P , let F (o) = (F

(o)
1 , F

(o)
2 , . . . F

(o)
D)T be a fea-

ture vector characterizing o, and let w be a corre-
sponding weight vector. The total cost of o (denoted
by Cw(o)) is defined as:

Cw(o) ,
D∑
i=1

wi · F (o)
i = wT · F (o) (1)

The cost of a sequence of operations (and in partic-
ular of a proof) is naturally defined as the sum of
costs of all operations. Thus, given a proof P =
(o1, o2, . . . om), its total cost, denoted by Cw(P), is:

Cw(P) ,
m∑
j=1

Cw(oj) (2)

Let F (P) =
∑m

j=1 F
(oj). Combining (1) and (2),

we get:

Cw(P) ,
D∑
i=1

wi · F (P)
i = wT · F (P) (3)

The last equation provides a way to represent a
complete proof by a single feature-vector, which is

simply the sum of all operations’ vectors. We will
use this feature representation in the learning and
classification phases.

For each (t,h) pair there might be many proofs.
However, for positive pairs, we assume there exists a
“correct” proof, i.e. a proof that is composed of only
valid operations (though many other incorrect proofs
may exist as well), while for negative pairs non of
the proofs is correct. An optimal weight vector, w∗,
would assign low costs to correct proofs while incor-
rect proofs will be assigned high costs. Therefore,
distinguishing between positive pairs and negative
pairs should be done by examining their lowest-cost
proofs.

In sections 3.3 and 3.4 we describe how to search
for lowest-cost proofs (“best proofs”) and how to
learn the optimal weight vector.

3.2.1 Modeling operations by features

As a convention, all features are assigned zero-
or-negative values, interpreted as penalty. For each
value vi assigned to a feature Fi, vi = 0 means that
no penalty is implied by that feature, while |vi| � 0
implies a high penalty by that feature. Following
that convention, all weights should be assigned zero-
or-positive values, since adding an operation cannot
improve the confidence of a proof. This implies that
an operation’s total cost Cw(o), and a proof’s to-
tal cost Cw(P) are zero-or-negative. The higher the
absolute cost value, the lower the likelihood of the
proof’s correctness.

Features were defined for each knowledge re-
source, for co-reference substitution and for on-
the-fly operations, as summarized in Table 4. For
knowledge resources, features were defined as fol-
lows. Many knowledge resources provide numeri-
cal scores, indicating rules’ reliability, which we use
for the corresponding feature value. For knowledge
resources that do not provide a numerical informa-
tion about rule reliability, the corresponding feature-
value is set to (−1).

Some on-the-fly operations incorporate numeri-
cal information that reflects how likely it is that the
meaning of the text is changed by applying them.
As an example, for the insert-node operation we use
the “Maximum Likelihood Estimation” (MLE) of
the occurrence probability of the inserted word in

Feature Value

1 Wikipedia
log(m), where m is the estimated accuracy of the method
used to learn the given Wikipedia rule, as described in
(Shnarch et al., 2009). 0 ≤ m ≤ 1.

2 Lin Similarity
log(sim), where sim is the similarity score given for that
rule according to (Lin, 1998). 0 ≤ sim ≤ 1.

3 Directional-Similarity
log(sim), where sim is the similarity score given for that
rule according to (Kotlerman et al., 2010). 0 ≤ sim ≤ 1.

4 DIRT
log(sim), where sim is the similarity score given for that
rule according to (Lin and Pantel, 2001). Note that 0 ≤
sim ≤ 1.

5 WordNet

−16 VerbOcean
7 Geographical Database
8 FrameNet Rules
9 Generic Syntactic Rules

10 Insert Verb

log(f), where f is the MLE of the occurrence probability
for the inserted lemma in the Reuters news corpus.

11 Insert non-verb content word
12 Insert non-content word
13 Insert Named Entity
14 Insert Verb - that exist in other parts of the text
15 Insert non-verb content - that exist in other parts of the text
16 Insert non-content word - that exist in other parts of the text
17 Insert Named Entity - that exist in other parts of the text

18 Change relation of a node to its parent, from “subject” to
“object” or vice versa

−1

19 Move Sub Tree rooted by n from p(n) to p′(n), s.t. the path
from n to p′(n) contains a verb

−l, where l is the length of the path between n and p′(n)
in the original tree.20 All other “move Sub Tree” operations

21 Single-word to Multi-word

log(minf∈F (f)) where F is the set of MLE of the occur-
rence probabilities corresponding to the added words. The
probabilities were calculated using the Reuters News cor-
pus.

22 Cut Multi-word −1
23 Flip part-of-speech −1
24 Co-reference −1

Table 4: Features and their values for each (knowledge-based, on-the-fly and coreference) operation. Note that all
values are negative.

a large news corpus11. The underlying assumption
here is that it is more likely that inserting frequent
words would still preserve entailment than inserting
rare words.

3.3 Searching for the best proof
Equipped with a large set of knowledge resources
and on-the-fly operations, our system can typically
generate, in every single step, dozens of generated
trees (∼ 30 trees) for any given tree, yielding an ex-
ponential number of possible derivations. One so-
lution to that exponential explosion, given by Bar-

11We used Reuters Corpus, Volume 1+2 (RCV1-2). Avail-
able at http://trec.nist.gov/data/reuters/reuters.html

Haim et al. (2009), is to store all derivations in a
polynomial-space compact representation, utilizing
the fact that many trees share the same parts. That
solution, named Compact Forest was used in earlier
versions of BIUTEE system. However, the problem
we face in our system is not only a storage problem,
but also a search problem: We have to find which
derivation (out of the exponential number of possi-
ble derivations) is the best one (that is, has the lowest
cost). In addition, we have to store a feature vector
for each derivation, which is not supported by that
compact representation.

On the other hand, we can utilize our cost model
characteristics, which were not available in the ear-

lier version of BIUTEE used by Bar-Haim et al.
(2009), in order to define a polynomial time and
space search scheme. These characteristics are:

1. Each intermediate tree has a cost (calculated by
the sequence of operations by which that tree
was generated).

2. The gap (the difference) between an interme-
diate tree and the hypothesis tree is a relevant
factor, since intermediate trees play no role in
the final entailment decision.

We developed a search scheme using those two
factors: The cost paid until now to generate a tree
t is denoted by g(t), and a measurement for the
gap between t and the hypothesis tree is denoted
by h(t). Using g(t) and h(t) we can define a func-
tion f(t) that estimates the “attractiveness” of t (a
simple example is the famous A∗ function: f(t) =
g(t) + h(t)).

The general idea of the search scheme is as fol-
lows: In each iteration, pick up a subset of T , based
on their f(t) value, generate all of their possible
single-step consequents, and add them to T . Then,
again, based on the values of f(t), prune T , such
that |T | ≤ K (where K is a predefined parameter).
Those iterations are performed in a loop until h is
embedded in one of T ’s trees. We empirically tested
several variations of the search scheme. A detailed
description of those variations is beyond the scope
of this paper, and we plan to describe it in a separate
publication.

3.4 Iterative weight estimation

We would like to classify a proof P , represented by
a feature vector F , as “correct” if its cost is low. For-
mally, let (w, b) be a weight vector and a threshold.
P is classified as correct if and only if

w · F + b ≥ 0 (4)

and as incorrect otherwise. The goal of parameter
estimation is thus finding the optimal (w∗, b∗).

If our training set was a set of binary-labeled vec-
tors (Fi, li), i ∈ {1 . . . n}, we could apply directly a
supervised linear learning algorithm to find (w∗, b∗).
However, our training set is a set of labeled text-
hypothesis pairs, for which the proofs that determine

the corresponding feature vectors should be con-
structed by the system. Yet, as explained at the end
of Section 3.2, only the lowest-cost proofs should be
considered to distinguish between positive and neg-
ative pairs, while finding those proofs through the
search algorithm of Section 3.3 requires knowing the
optimal weight vector.

Algorithm 1 Parameters Estimation
Require: Training set: (T1,H1,l1) . . . (Tn,Hn,ln)

1: (w0, b0)← a reasonable guess of weights vector and
threshold

2: i← 0
3: repeat
4: Find P1 . . . Pn by the method described in 3.3, us-

ing (wi, bi)
5: Construct the corresponding feature vectors

F (P1) . . . F (Pn).
6: use (F (P1), l1) . . . (F (Pn), ln) as a training set

to a linear classifier, resulting new parameters
(wi+1, bi+1).

7: i← i + 1
8: until convergence

We therefore use an iterative learning scheme to
overcome this circularity problem, as follows (see
Algorithm 1). We start with an initial weight vector
and threshold, (w0, b0), set manually by a reason-
able guess. Using the algorithm in Section 3.3 we
find a lowest-cost proof for each pair, resulting in n
labelled feature vectors, (F1, l1) . . . (Fn, ln), where
li is the binary entailment annotation. Next, we use
a standard linear learning algorithm to learn new
parameters, (w1, b1). We iteratively improve the
weights vectors and the proofs until convergence.
Since there is no theoretical bound on the conver-
gence rate, we limit the number of iterations by a
predefined constant. In practice, however, only few
iterations are required for convergence.

3.4.1 Negative feature weights and redundant
operations

As explained in Section 3.2.1, all feature weights
should be non-negative, reflecting the assumption
that each proof-step can only reduce the confi-
dence in the proof’s correctness. However, features
that occur more frequently in the positive examples
might be assigned negative weights by the learning
algorithm, as it tries to separate the positive pairs
from the negative ones (recall that feature values are

negative, hence multiplying them by a negative fea-
ture weight in the linear classifier would increase the
classification score).

This conceptual anomaly causes problematic be-
haviour when searching for the best proof for a
pair. With negative weights for certain inference op-
erations, the search algorithm would always favor
adding these operations to the proof, even if they are
not necessary, as this would reduce the cost of the
proof instead of raising it.

To prevent this situation, before running the
search algorithm we first set all negative feature
weights to zero, as was similarly done in (Raina et
al., 2005). Next, we consistently increase all feature
weights by a small constant, thus enforcing a non-
zero cost for all operations in the search process.

Finally, we note that the modified weight vector is
used only for the search algorithm, but not for actual
classification. For classification (Formula (4)) we
use the original weights as learned during training,
to ensure consistency between the learning and clas-
sification scores (in synch with the optimal threshold
learned).

4 Results

4.1 Main task

In the seventh RTE challenge, the main task is Rec-
ognizing Textual Entailment within a Corpus, de-
fined as follows:

Given a corpus, a hypothesis H, and a
set of “candidate” sentences retrieved by
Lucene from that corpus for H, RTE sys-
tems are required to identify all the sen-
tences that entail H among the candidate
sentences.

The main task’s dataset is composed of 10 topics
and each of them is composed of:

1. A number of hypotheses (between 25 and 45)
referring to the topic. H’s are standalone sen-
tences taken from the TAC Update Summariza-
tion corpus12.

2. A corpus of 10 documents.

12TAC 2008 and 2009 Update Summarization Task

3. For each H, a list of up to 100 candidate en-
tailing sentences from the corpus. The candi-
date sentences are the 100 top-ranked sentences
retrieved by Lucene, using H verbatim as the
search query.

System results were compared to a human-
annotated gold standard and the metrics used to
evaluate system performances were Micro-Averaged
Precision, Recall, and F1. To maximize the F1-
measure we used SVM-Perf 13 implementation of
Support-Vector-Machine, which provides an option
to maximize F1 (Joachims, 2005).

Using several preliminary experiments on RTE-
6 datasets and RTE-7 development set, we decided
to use only a subset of our knowledge resources. In
particular, the following resources were used: Word-
Net, Directional-Similarity, Wikipedia, FrameNet
and Geographical rule base.

To increase precision, we adopted the idea of
Mirkin et al. (2009) to filter the candidate sentences
by the Lucene IR system, in the following way: The
hypothesis is given to Lucene as a query, which re-
turns an ordered list of sentences as a result, or-
dered by relevance. Then, only the top N candidate
sentences were judged by our system, while all the
rest were classified as “non-entailing”. Following
several preliminary experiments based on the RTE-
6 datasets and the RTE-7 development dataset, we
have chosen N = 27 by

We submitted 3 runs (i.e. 3 answer files) that dif-
fer from each other only in the set of knowledge re-
sources that were used. Table 5 summarizes our 3
runs’ configurations and results.

4.2 Novelty detection subtask

In addition to the main RTE task, we participated in
the novelty-detection subtask. The Novelty Detec-
tion subtask is based on the Main task and is aimed
at specifically addressing the interests of the Sum-
marization community, with regard to the Update
Summarization task. The task consists of judging
whether the information contained in each H is novel
with respect to the information contained in the set
of the candidate entailing sentences. If for a given
H one or more entailing sentences are found then it

13http://svmlight.joachims.org/svm_perf.
html

Id Knowledge resources Precision % Recall % F1 %
BIU1 WordNet, Directional Similarity 38.97 47.40 42.77
BIU2 WordNet, Directional Similarity, Wikipedia 41.81 44.11 42.93

BIU3 WordNet, Directional Similarity, Wikipedia,
FrameNet, Geographical database 39.26 45.95 42.34

Table 5: Main task submissions

Novelty-Detection Score Justification Score

Id Knowledge resources Precision
% Recall % F1 % Precision

% Recall % F1 %

BIU1 WordNet, Directional Similarity 90.74 75.38 82.35 31.47 43.26 36.43

BIU2 WordNet, Directional Similarity,
Wikipedia 91.61 72.82 81.14 32.41 41.85 36.53

BIU3
WordNet, Directional Similarity,
Wikipedia, FrameNet, Geographi-
cal database

90.12 74.87 81.79 36.34 40.31 38.22

Table 6: Novelty-Detection subtask submissions

Tested Resource % F1 with resource % F1 without resource % ∆

WordNet 42.93 42.98 -0.05
Directional Similarity 42.93 41.99 0.94
Wikipedia 42.93 41.37 1.56
Coreference Substitutions 42.93 42.24 0.69

Table 7: Ablation tests. Each row corresponds to one ablation test in which one resource was removed. The ∆ column
expresses the contribution of that resource as the difference between the F1 achieved with that resource to the F1
achieved without that resource.

means that the content of the H is not novel. On
the contrary, if no entailing sentences are detected,
it means that the information contained in H is re-
garded as novel.

While the dataset structure14 is identical to the
main task, the scoring is different, and focuses on
novelty detection. In particular, systems are judged
by two scoring mechanisms:

1. The primary score is Precision, Recall and F1
computed on the binary novel/non-novel deci-
sion. The novelty detection decision is derived
automatically from the number of justifications
provided by the system (i.e. the entailing sen-
tences retrieved for each H) - where 0 implies
“novel”, 1 or more “non-novel”.

2. The secondary score measures the quality of
the justifications provided for non-novel H’s,

14but not the data itself. In particular, only a subset of the
main task’s hypotheses were included

that is the set of all the sentences extracted as
entailing the H’s. The metrics used to this pur-
pose are Micro-averaged Precision, Recall and
F1.

We made no specific optimizations for the
novelty-detection subtask, but rather ran our system
the same way and with the same configurations used
in the main task. Table 6 summarizes our novelty-
detection subtask submissions.

4.3 Ablation tests

Ablation tests aim to collect data to better under-
stand the impact of knowledge resources and tools
used by the RTE system and evaluate the contribu-
tion of each resource to system performance. An
ablation test consists of removing one module from
the complete system, and re-running the system on
the test set with the other modules. Comparing the
results to those obtained by the complete system, it
is possible to assess the actual contribution of the

individual module.
Our ablation tests were based on the second sub-

mission (BIU2), which obtained the highest value of
F1 measure. Table 7 summarizes the ablation tests.

5 Open Source

The progress of RTE research in recent years made
the leading RTE systems more and more compli-
cated. Several preprocessing utilities (tokeniza-
tion, part-of-speech tagging, parsing, named-entity-
recognition, coreference resolution and more) as
well as a large number of knowledge resources are
used. If newcomers to the RTE community have to
develop their own RTE systems from scratch, they
will have to spend substantial effort in development
before being able to evaluate their new ideas, let
alone comparing them to other algorithms.

Addressing this issue, we released our sys-
tem as open-source (www.cs.biu.ac.il/
˜nlp/downloads/biutee). The advantage
of BIUTEE is in its extensibility and flexibility.
Integration of new knowledge resources into
BIUTEE can be done naturally by formalizing
them as entailment rules. Furthermore, recognizing
textual-entailment by generation of entailment
proof is a flexible framework for exploiting addi-
tional natural-language phenomena, by defining
appropriate operations and features.

6 Conclusions and Future Work

The new version of BIUTEE, presented in this paper,
is an implementation of the new model described
in (Stern and Dagan, 2011). The main contribution
is a principled method to use knowledge resources,
which have different levels of accuracy, along with
coreference information and heuristic ad-hoc oper-
ations, in one integral framework. Moreover, the
framework employs learning algorithms to decide
how to assess the various resources and ad-hoc op-
erations and how to estimate the correctness of their
applications.

As for future work, we would like to have a bet-
ter solution for the problem of learning negative
weights (see Section 3.4.1). The current solution,
which changes the weights as a post-processing step
to the learning algorithm suffers from the limitation
that the modified weight vector is no longer valid

for predictions of new instances ((t,h) pairs). Thus
it only prevents redundant operations in the search
process, but ignores the inherent inaccuracy of the
model itself which did not take into account the fact
that no operation can increase the confidence of any
proof. Our planned solution is to develop a learning
method in which only positive values can be learned
for the feature weights.

Another future goal is to improve the search al-
gorithm. A good search algorithm should fulfill two
properties. First - accuracy: the proofs found by
the algorithm should have as low cost as possible.
Second - run-time: the required run-time to find the
(approximated) best proof should be as short as pos-
sible.

Another future improvement is using additional
sentence analysis: Currently, we make syntactic
analysis as well as named-entity-recognition and
coreference resolution for the input data. However,
many other analyses could be performed, for exam-
ple: semantic-role labeling, temporal expression de-
tection, numerical expression detection, etc. Such
information can be utilized as features for on-the-
fly operations, in a similar way to our current use of
part-of-speech and named-entity-recognition.

Acknowledgements

This work was partially supported by the Israel Sci-
ence Foundation grant 1112/08 and by the PASCAL-
2 Network of Excellence of the European Commu-
nity FP7-ICT-2007-1-216886. This work was de-
veloped under the ITCH collaboration project with
FBK-irst/University of Haifa.

References
Marilisa Amoia and Claire Gardent. 2008. A test suite

for inference involving adjectives. In Proceedings of
LREC.

Roy Bar-Haim, Ido Dagan, Iddo Greental, and Eyal
Shnarch. 2007a. Semantic inference at the lexical-
syntactic level. In Proceedings of AAAI.

Roy Bar-Haim, Ido Dagan, Iddo Greental, Idan Szpektor,
and Moshe Friedman. 2007b. Semantic inference at
the lexical-syntactic level for textual entailment recog-
nition. In Proceedings of ACL-PASCAL Workshop on
Textual Entailment and Paraphrasing.

Roy Bar-Haim, Jonathan Berant, Ido Dagan, Iddo Green-
tal, Shachar Mirkin, Eyal Shnarch, and Idan Szpektor.

2008. Efficient semantic deduction and approximate
matching over compact parse forests. In Proceedings
of TAC.

Roy Bar-Haim, Jonathan Berant, and Ido Dagan. 2009.
A compact forest for scalable inference over entail-
ment and paraphrase rules. In Proceedings of EMNLP.

Roy Bar-Haim. 2010. Semantic Inference at the Lexical-
Syntactic Level. Ph.D. thesis, Bar-Ilan Univeristy.

Roni Ben-Aharon, Idan Szpektor, and Ido Dagan. 2010.
Generating entailment rules from framenet. In Pro-
ceedings of ACL.

Timothy Chklovski and Patrick Pantel. 2004. Verbo-
cean: Mining the web for fine-grained semantic verb
relations. In Proceedings of EMNLP.

Christiane Fellbaum, editor. 1998. WordNet An Elec-
tronic Lexical Database. The MIT Press, Cambridge,
MA ; London, May.

Jenny Rose Finkel, Trond Grenager, and Christopher D.
Manning. 2005. Incorporating non-local information
into information extraction systems by Gibbs Sam-
pling. In Proceedings of ACL.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Proceedings of NAACL.

Aria Haghighi and Dan Klein. 2009. Simple coreference
resolution with rich syntactic and semantic features. In
Proceedings of EMNLP.

Stefan Harmeling. 2009. Inferring textual entailment
with a probabilistically sound calculus. Natural Lan-
guage Engineering.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING.

Michael Heilman and Noah A. Smith. 2010. Tree
edit models for recognizing textual entailments, para-
phrases, and answers to questions. In Proceedings of
NAACL.

T. Joachims. 2005. A support vector method for multi-
variate performance measures. In ICML.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-geffet. 2010. Directional distributional
similarity for lexical inference. Natural Language En-
gineering.

Dekang Lin and Patrick Pantel. 2001. DIRT - discov-
ery of inference rules from text. In Proceedings of
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining.

Dekang Lin. 1998. Automatic retrieval and clustering of
similar words. In Proceedings of COLING-ACL.

Yashar Mehdad. 2009. Automatic cost estimation for
tree edit distance using particle swarm optimization.
In Proceedings of the ACL-IJCNLP 2009 Conference
Short Papers.

George A. Miller. 1995. Wordnet: A lexical database for
english. Commun. ACM.

Shachar Mirkin, Roy Bar-Haim, Jonathan Berant, Ido
Dagan, Eyal Shnarch, Asher Stern, and Idan Szpektor.
2009. Addressing discourse and document structure in
the rte search task. In Proceedings of TAC.

Rajat Raina, Andrew Y. Ng, and Christopher D. Man-
ning. 2005. Robust textual inference via learning and
abductive reasoning. In Proceedings of AAAI.

Eyal Shnarch, Libby Barak, and Ido Dagan. 2009. Ex-
tracting lexical reference rules from Wikipedia. In
ACL-IJCNLP.

Asher Stern and Ido Dagan. 2011. A confidence model
for syntactically-motivated entailment proofs. In Pro-
ceedings of RANLP.

