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Abstract

In this paper we describe the participation of
the CUNY-BLENDER team in the Temporal
Slot Filling (TSF) pilot task organized as part
of the TAC-KBP2010 evaluation. Our team
submitted results for both the “diagnostic” and
“full” TSF subtasks, obtaining the top score in
the diagnostic subtask.

We implemented a “structured” and a “flat”
approach to the classification of temporal ex-
pressions. The structured approach captures
long syntactic contexts surrounding the query
entity, slot fill and temporal expression using
a dependency path kernel tailored to this task.
The flat approach exploits information such
as the lexical context and shallow dependen-
cy features.

In order to provide enough training data for
these classifiers we used a distant supervision
approach to automatically generate a large
amount of training instances from the We-
b. This data was further refined by apply-
ing logistic regression models for instance re-
labeling and feature selection methods.

1 Introduction

This paper presents the CUNY-BLENDER partici-
pation in the KBP2011 Temporal Slot Filling (TSF)
pilot task (Ji et al., 2011).

Our approach to the TSF task was to reformulate
it as two problems: the classification of temporal ex-
pressions and the aggregation of the resulting tem-
poral information. Classification is applied to iden-
tify the role of temporal expressions that appear in

the context of a particular entity and attribute val-
ue. For instance, in “Harry married Sally in 1995”
a classifier should determine that “1995” indicates
the beginning of the attribute spouse. Given the out-
put of this classification the TSF system proceeds
to aggregate the available temporal information and
provide a final answer. We developed and tested t-
wo approaches to the temporal classification prob-
lem: a structured approach and a flat approach. The
structured approach captures long syntactic contexts
surrounding the query entity, slot fill and temporal
expression using a dependency path kernel tailored
to this task. The flat approach exploits surface lex-
ical context and shallow dependency features. For
the aggregation of the temporal information we rely
on a simple but effective iterative algorithm.

Given the expensive nature of human-assessed
training data for this task we used distant supervi-
sion to acquire large amounts of annotated data from
the Web without human intervention. We explored
the reduction of the feature space to speed up train-
ing and eliminate noisy or unnecessary features. Ad-
ditionally we tested the impact of relabeling training
instances based a small set of hand labeled data.

The rest of this paper is structured as follows.
Section 2 briefly summarizes the task definition and
scoring metric. The different components of our TS-
F system are described in Section 3. In Section 4 we
present the distant supervision approach used to ob-
tain training data for the classification of temporal
expressions. In Section 5 we include the results ob-
tained on the KBP2011 TSF test data. Related work
is described in Section 7. Finally we provide con-
clusions and future work plans in Section 8.



2 Task Definition

The TSF task is best characterized as an extension
of the existing KBP regular Slot Filling task. Slot
Filling aims at, given an entity and a large documen-
t collection, extracting values for attributes such as
employee, spouse, member, etc. The TSF task focus-
es on the subset of these attributes whose value may
change over time. Systems take as input an entity,
slot type and slot value as well as the source doc-
ument where the slot value was found. In the “di-
agnostic” subtask correct slot values were provided,
while in the “full” subtask participants were required
to run their own Slot Filling system. The output ex-
pected from the systems is a start/end date for each
entity/attribute pair.

The KBP2011 temporal representation model
consists of a 4-tuple whose elements are dates (day,
month and year), < t1, t2, t3, t4 >. A tuple repre-
sents the set of possible beginnings and endings of
an event. t1 and t3 represent the lower and upper
bounds, respectively, for the beginning of the event,
while t2 and t4 represent the lower and upper bounds
for end of the event. This allows the representation
of different temporal granularities. For instance one
might only know that an event began on a certain
year, and in that case t1 will be set to the first day of
that year and t2 to the last day.

Given an entity name Jose Padilha, its slot fill
Film Maker for the slot type per:title, a diagnostic
temporal slot filling system may discover a temporal
tuple< −∞, 2007−12−26, 2007−12−26,+∞ >
to represent the temporal boundaries.

The official scoring metricQ(S) for the task com-
pares a system’s output S =< t1, t2, t3, t4 > against
a gold standard tuple Sg =< g1, g2, g3, g4 >, based
on the absolute distances between ti and gi:

Q(S) =
1

4

∑
i

1

1 + |ti − gi|

When there is no constraint on t1 or t3 a value of
-∞ is assigned; similarly a value of +∞ is assigned
to an unconstrained t3 or t4.

Let {G1, G2, ..., GN} be the set of gold standard
tuples, {S1, S2, ..., SM} the set of system output tu-
ples. For each unique slot fill i, there is the 4-tuple
Gi :=< g1, g2, g3, g4 >, and Sj :=< t1, t2, t3, t4 >.
Then Precision, Recall and F-measure scores are

calculated as follows:

Precision =

∑
Si∈C(S)Q(Si)

M

Recall =

∑
Si∈C(S)Q(Si)

N

F1 =
2 · Precision ·Recall
Precision+Recall

Where C(S) is the set of all instances in system
output which have correct slot filling answers, and
Q(S) is the quality value of S. In the diagnostic
task, precision, recall, and F 1 values are the same
since we are provided with correct slot filling values
as part of the system input.

3 System Overview

In Figure 1 we summarize our system pipeline. Each
relevant source document is fully processed using
the NLP Core Stanford toolkit (Finkel et al., 2005) to
tokenize, segment sentences, detect named entities,
build a coreference chain and analyze the syntactic
dependencies within sentences.

Note that in the diagnostic TSF subtask slot val-
ues and their corresponding source documents are
provided by the organizers and are known to be cor-
rect. The full TSF subtask, on the other hand, re-
quires participants to run their own Slot Filling (SF)
system to obtain the slot values associated with each
entity in the KBP source document collection. In the
full task we search the source collection using each
query name and its slot value to find documents re-
lated to the query in addition to those that support
the SF output. This set of related documents is aug-
mented using A Lucene index to search for the top
10 most relevant documents in the KBP source col-
lection containing each entity/slot fill pair found by
our SF system (Chen et al., 2010).

The first application of this annotation is to find
sentences that mention both the entity and the slot
value. String matching only provides very limited
coverage and so we use named entity recognition
and coreference results to expand this set of relevant
sentences. We apply those coreference chains that
contain the provided slot value or entity name to se-
lect sentences that mention both.

Our next step is to represent each temporal ex-
pression in the context of the entity and slot value as
a classification instance. For example, the following
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Figure 1: General Temporal Slot Filling System Archi-
tecture

sentence contains two temporal expressions, which
will result in two different classification instances.

[Mooreentity] married [Grant
Tinkerspouse attribute], an NBC exec-
utive, in [1962date], and in [1970date]
they formed the television production
company MTM Enterprises, which cre-
ated and produced the company ’s first
television series, The Mary Tyler Moore
Show .

Sentence are normalized before extracting each
token and token ngrams (lengths 2 to 5) as bag-of-
words (BoW) instance features. We apply the fol-
lowing rules for sentence normalization:

• Named entities are replaced by a generic string
according to their NE type (ORGANIZATION,
PERSON, etc)

• A gazetteer of occupation titles (president,
CEO, chief engineer, ...) is used to replace
matching strings by a generic string “TITLE”.

• Mentions of the entity are replaced by “TAR-
GET ENTITY”. We consider both direct string

matches as well as coreferential mentions. The
same applies to the slot value (“TARGET AT-
TRIBUTE”).

• Temporal expressions are substituted by the
generic “DATE” string, except for the expres-
sion that is considered for classification in the
particular instance, which is distinguished by
the string “TARGET DATE”.

Continuing with our previous example, the nor-
malized sentence focused on the temporal expres-
sion ’1962’ would look as follows:

TARGET ENTITY married TAR-
GET ATTRIBUTE , an ORGANIZA-
TION TITLE , in TARGET DATE ,
and in DATE they formed the television
production company ORGANIZATION ,
which created and produced the company
’s ORDINAL television series , the MISC
.

We can see how this set of features captures short
distance patterns (e.g. the trigram “TARGET ENTI-
TY married TARGET ATTRIBUTE”).

Our second set of features is intended to cope with
longer distance relations within the sentence. These
features include all of the syntactic dependencies
found in the sentence while keeping the same type
of normalization that we applied for bag-of-words
(BoW) features.

3.1 Temporal expression classification

Classification is applied to label temporal expres-
sions that appear in the context of a particular entity
and the slot value as ’start’, ’end’, ’holds’, ’range’ or
’none’. In order to simplify the generation of train-
ing data and the classification model itself, we ig-
nored certain cases. For instance, we ignored cases
where the temporal expression indicates a time be-
fore or after the event (these cases were just consid-
ered ’unrelated’) such as “In 1996, five years before
joining Microsoft, John submitted his first patent”.

Suppose our query entity is Smith, the slot type is
per:title, and the slot-fill Chairman. Below we pro-
vide a description of each class along with its corre-
sponding 4-tuple representation:



START < ta, tb, ta,∞ >
The temporal expression describes the begin-
ning of the slot fill.
E.g. Smith, who was named chairman two years a-
go1

< 1999-01-01, 1999-01-01, 1999-01-01,∞ >

END < −∞, tb, ta, tb >
The temporal expression describes the end of
the slot.
E.g. Smith, who resigned last October
< −∞, 2000-10-01, 2000-10-01, 2000-10-31 >

HOLDS < −∞, tb, ta,∞ >
The temporal expression describes a time at
which the slot fill is valid.
E.g. Chairman Smith
< −∞, 2001-01-01, 2001-01-01,∞ >

RANGE < ta, ta, tb, tb >
The temporal expression describes a range in
which the slot fill is valid.
E.g. Smith served as chairman for 7 years before
leaving in 1991
< 1984-01-01, 1984-12-31, 1991-01-01, 1991-12-31 >

NONE < −∞,∞,−∞,∞ >
The temporal expression is unrelated to the slot
fill.
E.g. Last Sunday Smith had a party with his friends
< −∞,∞,−∞,∞ >

The next two subsections describe the two classi-
fication approaches we have tested.

3.2 Flat Approach
The flat approach uses two types of features: win-
dow features and dependency features. A window
feature value for the query entity, slot value, and a
target temporal expression is extracted from each ex-
ample. This value is a set containing all tokens that
occur in the normalized sentence within 4 tokens in
either direction of any instance of the normalized to-
ken in question.

Two dependency feature values for the query en-
tity, slot value, and a target temporal expression are
extracted from each example, resulting in two set-
s of tokens for each normalized token T . One set

1All examples here assume the document creation time is
January 1st. 2001.

contains all tokens that any instance of T govern-
s, the other set contains all tokens governed by any
instance of T .

Before a feature value set for a normalized token
T is created, punctuation marks, duplicate consecu-
tive normalized tokens, and instances of T itself are
removed.

Example (1) is from the evaluation set, for the
query, attribute = per:title, entity = Makoni, slot fill
= minister of industry and energy development .(1’)
is its normalized version.

(1) In 1981, Makoni was moved to the position of
minister of industry and energy development, where
he remained until 1983.

(1’) In DATE, TE was moved to the position of
TA , where he remained until TD.

Table 1 shows the feature values extracted from
(1’).

Feature Value
TE Win be, move, to, in, DATE, position, the
TA Win of, to, remain, TD, position, the,

where, until, he
TD Win remain, where, until, he
TE Governs -
TA Governs -
TD Governs -
TE Governed by move
TA Governed by position
TD Governed by remain

Table 1: Feature Values for (1)

For two feature values U, V, let KT be the nor-
malized size of their intersection

KT (U, V ) =
|U ∩ C|√
|U |2 + |V |2

(1)

Let F denote the flat features. Then for any G ⊆ F ,
let KS be the kernel function for a pair of examples,
and x.i the feature value for the ith feature value
type for example x:

KS(x, y) =
∑
i∈G

KT (x.i, y.i) (2)

With these features we trained a classiffier using
Support Vector Machines (SVM) (Cortes and Vap-
nik, 1995; Vapnik, 1998).



3.3 Structured Temporal Classification

3.3.1 Dependency Path Representation
In the structured approach, we exploit collapsed

dependency parsed graphs generated from the Stan-
ford dependency parser (Marneffe et al., 2006) to
capture relevant grammatical relations and discov-
er syntactic patterns. Figure 2 shows a part of the
dependency graph obtained from the sentence, “In
1975[time expression], after being fired from Columbi-
a amid allegations that he[query entity] used company
funds to pay for his[query entity] son’s bar mitzvah,
Davis[query entity] founded Arista[slot fill]” . In this
example, Davis is the query entity, the slot type is
per:employee of, Arista is the slot fill, and 1975 is
the time expression.

Davis fired Arista 1975

founded

Columbia allegation ...
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Figure 2: Dependency parsed graph of the sample sen-
tence

We extend the idea of shortest path on a depen-
dency graph (see Section ??) to include three items:
query entity, slot fill and time expression. Each in-
stance is represented by three paths: (i) the path be-
tween query entity and temporal expression (P1), (i-
i) the path between slot fill and temporal expression
(P2); and (iii) the path between query entity and slot
fill (P3).

Each shortest path Pi is represented as a vector
< t1, t2, ..., tn >, where ti can be either a vertex or
a typed edge in the dependency graph. Each edge
is represented by one attribute, which is formed by
combining the corresponding dependency type and
direction. More formally, attribute a ∈ D × {←
,→}, where D is the set of dependency types, and
the arrow is directed from the governor to the de-
pendent word. Vertices, on the other hand, may con-
tain different levels of features, which can be found
in Table 2. For example, in the sentence of Fig-
ure 2, there exists prep in dependency from found-

ed to 1975. prep in represents prepositional relation
between these two words, meaning that the action
founded happened at 1975.

Feature Description
Word The original word token from the

sentence. E.g., “Davis found-
ed[founded] Arista”

Stem Stemmed form of the word token.
E.g., “Davis founded[found] Arista”

Entity type Person, Location, Organi-
zation. E.g., “fired from
Columbia[Organization]”

Semantic class
of trigger words

Each class contains trigger words of
event subtype in Automatic Content
Extraction 2005 corpus1, and some
manually collected slot type sensi-
tive key words, E.g. if slot type is
per:spouse, then the word marry be-
longs to one semantic class while di-
vorce belongs to another semantic
class.

Part-of-speech Part-of-speech tag of original word

Table 2: Features of vertices

When we search the shortest path between two n-
odes, we consider all mentions of the query entity
and the slot fill in a sentence. For this reason there
could be more than one candidate for each Pi. We
define the following simple but effective strategy to
choose one path among all candidate paths. If some
candidate paths contain predefined trigger words, we
choose the shortest path with trigger words. Other-
wise, we choose the shortest path among all candi-
dates.

Figure 3 shows three shortest paths that result
from the sentence of Figure 2. These paths not on-
ly contain lexical features such as words, but also
syntactic relations. In the resulting representations,
informative patterns are distilled while some irrele-
vant information, as well as misleading words such
as fire, are discarded.

The next step in our system is to use a kernel func-
tion to generalize these paths and represent them in
a high dimensional feature space implicitly.

3.3.2 Kernel Function
Following previous work Lodhi et al. (2002) and

Bunescu and Mooney (2005), we present a string
kernel function based on dependency paths. The

1http://projects.ldc.upenn.edu/ace/



Davis founded/found/VBD/Start-Position 1975

Arista founded/found/VBD/Start-Position 1975

Davis founded/found/VBD/Start-Position Arista

nsubj prep in

dobj prep in

nsubj dobj

Figure 3: Three shortest paths from Figure 2

main idea is to use the kernel trick to deal with
common-substring similarity between dependency
paths, and to extract syntax-rich patterns from de-
pendency paths.

Let x, y be two instances. We use l(P ) to de-
note the length of a dependency path P , P [k] to de-
note the set of all substrings of P which have length
k, and a substring a ∈ P [k] is a substring of P
with length k. For example, if P is “ABC”, then
P [2] ={“AB”, “BC”}. The kernel function of x and
y is defined as follows:

Ks(x, y) =

3∑
i=1

Kp(x.Pi, y.Pi) (3)

Kp(Px, Py) =

Min(l(Px),l(Py))∑
k=1

∑
a∈Px[k],b∈Py [k]

k∏
i=1

c(ai, bi)

(4)

WhereKp is a kernel function on two dependency
paths Px and Py which sums the number of common
substrings of feature paths in Px and Py with length
from 1 to the maximum length. In c(ai, bi) we cal-
culate the inner product of the attribute vectors of ai
and bi, where ai and bi are elements of two path-
s respectively. The final kernel function Ks does
the summation of the partial results of the three de-
pendency paths (query entity-slot fill, query entity-
temporal expression, slot fill-temporal expression).

Consider the following example containing two
dependency paths Px and Py between an entity (E)
and a temporal expression (T) in two different sen-
tences.

E
nsubj−−→founded/found/VBD/Start-Position

prep in←−−−T

E
nsubj−−→joined/join/VBD/Start-Position

prep in←−−−T

For instance, if we consider substrings of length 5
we find the following two matches:

E
nsubj−−→VBD

prep in←−−−T

E
nsubj−−→Start-Position

prep in←−−−T

By counting the common substrings for the re-
maining lengths (1 to 4) we can obtain the final re-
sult: Kp(Px, Py) = 26.

A problem of Equation (4) is that Kp has a bias
toward longer dependency paths. To avoid this bias,
we normalize Kp as in Lodhi et al. (2002). This
normalization scales the feature vector φ(P ) in the
kernel space to φ′(P ) = φ(P )

|φ(P )| :

K ′
p(Px, Py) =

Kp(Px, Py)√
Kp(Px, Px) ·Kp(Py, Py)

(5)

A deviation from related work in Lodhi et al.
(2002) and Bunescu and Mooney (2005) is that we
count common substrings from m to maximum,
rather than a fixed length. Furthermore, we only
consider contiguous substrings in Kp because each
substring feature in the kernel space is treated as a
pattern. Non-contiguous substrings with the same
length can be safely discarded as different patterns.

Although it’s not easy to enumerate all substrings
explicitly, like many other kernel functions, Kp can
be efficiently computed by using dynamic program-
ming in polynomial time complexity. Here, we ap-
plied a variant of the Levenshtein Distance algorith-
m to calculateKp. Given the representation and ker-
nel function, SVM (Cortes and Vapnik, 1995; Vap-
nik, 1998) was applied to train a classifier.

3.4 Temporal Aggregation
In order to produce the final 4-tuple for each enti-
ty/slot value pair, we sort the set of the correspond-
ing classified temporal expressions according to the
classifier’s prediction confidence. We initialize a 4-
tuple to < −∞,+∞,−∞,+∞ > and then iterate
through that set, aggregating at each point the tem-
poral information as indicated by the predicted label
(see Section ??). Given two four-tuple T and T ′, we
use the following equation for aggregation.

T ∧ T ′ =

< max(t1, t
′
1),min(t2, t

′
2),max(t3, t

′
3),min(t4, t

′
4) >

At each step we modify the tuple only if the result
is consistent (i.e. t1 ≤ t2, t3 ≤ t4, and t1 ≤ t4).

The combination algorithm, described below in
Figure 4, uses 4-tuple representation of temporal in-
formation to combine output from the flat classifier,



which uses shallow syntactic features, with that of
the structured classifier, which uses deep syntactic
features.

Data: Query entity E, slot type, and slot fill S
Result: Four-tuple T =< t1, t2, t3, t4 >
begin1

T ←< −∞,∞,−∞,∞ >2

T ← Structured Classifier Output3

T ′ ← Flat Classifier Output4

for i← 1...4 do5

if ti = −∞ or ∞ then6

ti ← t′i7

end8

end9

end10

Figure 4: Combination Algorithm

In this algorithm, given an input, we consider the
output from the structured classifier T as the default
output. If the output equals < −∞,∞,−∞,∞ >,
then we combine it with output from flat classifier
T ′ as final output.

4 Training data

A main part of our TSF system is the classification
of temporal expressions. In order to train this classi-
fier we need contexts where a query entity, slot val-
ue and a temporal expression are being mentioned.
Additionally we need a label representing the rela-
tion of the temporal expression with the entity and
the slot value (see Section 3.1).

The development data provided by the KBP2011
organizers consisted of a set of entity/slot fill pairs
with their associated temporal information (ex-
pressed as a normalized date) along with the asso-
ciated source document. A total of 1776 individu-
al tuple components were provided in this dataset.
Early in our system development we found that this
was an insufficient amount of data to train a TSF
system that would process the eight different infor-
mation slots proposed for the evaluation (employee,
top employee, member of, title, spouse, country of
residence, state of residence, city of residence). Ear-
ly attempts to manually annotate a training dataset
showed two decisive drawbacks: it is expensive an
task that requires a long time and human resources to
produce significant amounts of training data; anno-
tators need strong language skills and knowledge of

the events or otherwise provide low quality annota-
tions. These drawbacks of human annotation pushed
us in the direction of finding an automated process
to produce the large amounts of annotated data re-
quired to train accurate classification models for the
task.

4.1 Distant supervision for TSF

Distant supervision (Mintz et al., 2009) is a learning
paradigm that exploits known relations (usually ob-
tained from an existing database) to extract labeled
information in context from a large document col-
lection. The general intuition is that whenever two
entities that are known to participate in a relation ap-
pear in the same context, this context is likely to ex-
press the relation in some way. By extracting a large
amount of contexts, different ways of expressing the
same relation will be captured and machine learning
methods can be applied on this data.

The case of TSF is slightly different in that the
relation between a pair of entities is already given,
either by a database or by a IE component. We are
interested in finding out the different ways of ex-
pressing the time associated with a relation. Con-
sequently, we have three instead of two elements in
the contexts we want to collect and annotate: the t-
wo entities involved in the relation, plus a temporal
expression.

We use Freebase2 to gather not only instances of
relations, but also the start/end dates of those partic-
ular relations. Then we proceed to collect the top
100 web search results for a query containing the t-
wo named entities involved in the relation. Then we
apply the same type of preprocessing described in
Section 3 to collect sentences that mention the en-
tities along with one or more temporal expressions.
We follow the usual distant supervision assumption:
given a context that mentions the entity pair it is like-
ly that it will express the relation in the database.
But our intuition goes beyond the usual distant su-
pervision assumption. We also expect to label tem-
poral expressions occurring in the context of the en-
tity/value pair by comparing it to the start/end tem-
poral information that is stored in our database. For
instance, Freebase states that John worked for Nis-
san between 2001 and 2009. Confronted with the

2http://www.freebase.com



sentence, “Nissan chief engineer John Smith gave a
lecture at UCLA on the 12 of December 1999.”, our
distant supervision method compares the temporal
expression, “12 of December 1999”, to the known
temporal information in the database. Since this
date falls between the known start and end dates,
it assigns the label “HOLDS” to the temporal ex-
pression. Our intuitions are: if a temporal expres-
sion falls in between known start and end dates it is
likely that it is expressing a date where the relation
was current; if a temporal expression matches the
known start/end dates it is likely that it expresses the
start/end of the relation.

Not surprisingly, making this extra assumption
leads to the introduction of erroneous annotations.
Some common causes of error are:

• Coreference results that match the wrong
named entities in a document.

• Temporal expressions that are normalized in-
correctly.

• Temporal information with different granulari-
ties has to be compared. For instance: Freebase
states that John married Mary in 1997, but not
the exact day and month. Should we consider a
temporal expression such as the 3rd September
1997 as a START ?

• Information offered by Freebase is incorrec-
t or contradictory with information found on
the Web documents.

Web search allows us to find more matching sen-
tences but may not represent the same distribution of
labels (start, end, holds, etc.) on newswire. Another
drawback is that this method does not detect cases
when the context does not refer to the event, even
though there may be temporal expression matching
the start or end of the event. This is particularly
problematic when Freebase provides only a year to
indicate the start or end of an event.

We obtained a total of 51404 training instances
with no human intervention. This number depend-
s on the number of web documents found for each
event and the capability of detecting coreferential
mentions in the documents.

4.2 Feature Reduction

The basic assumption of distant supervision can in-
troduce noise, especially when the training data is
collected from the Web. Previous approaches to dis-
tant supervision have used enhancements to reduce
the noise in the training data and benefit overall sys-
tem performance.

We reduced the feature space to speed up training
and eliminate noisy or unnecessary features. To ex-
plicitly reduce the number of candidate features, we
use univariate multi-class logistic regression to elim-
inate all features with a p ¿ 0.1. Second, to perfor-
m classification of the temporal fragments, we use
L1, or ‘lasso’ regression, with the final feature set
which provides additional feature selection method-
s. A theoretical justification for regularization is that
it attempts to limit the expression of extraneous in-
formation on the solution. The lasso minimizes the
residual sum of squares with the constraint that the
absolute value of the regression coefficients must be
less than a constant, π, that functions as a tuning pa-
rameter and is used for shrinkage. When π is large
enough, there is no effect on the solution, but when
it shrinks it has the effect of reducing some model
coefficients close or equal to zero. We used cross-
validation to determine the best values for π in our
experiments.

4.3 Training Instances Re-labeling

To provide a more concise feature representation and
mitigate computational issues presented by sparse
matrices, we use the reduced feature set, which av-
eraged 0.89% feature reduction for the evaluation.
This reduced feature space was filtered using uni-
variate logistic regression, to build a classifier for
self-training. Using regularized regression for self-
training provides the benefit of embedded feature s-
election. The technique has been effectively incor-
porated in the distant supervision framework (Sur-
deanu et al., 2010; Mintz et al., 2009), and we ex-
tend its use to semi-supervised learning methods for
improving the labeling quality of the training set.

To relabel the training data for the evaluation, an
initial classifier was build using a small set of hu-
man labeled ’seed’ data. For the evaluation, we used
0.022% of the distant supervision data and initial
seeds. After the data has been divided into folders,



we label a portion of the remaining unlabeled tem-
poral instances. A criteria is used to select instances
to retrain the classifier for a new unlabeled portion;
and those examples that were not considered reliable
were held out. To assess the reliability of a label for
instance, we looked for agreement between labels
assigned by the same classification model, but with
different thresholds of π . As the new data portion is
annotated, those retained for retraining are instances
for which there is classifier agreement. When all the
data has been annotated, or another stopping criteria
has been reached, the procedure terminates.

5 Results

The CUNY-BLENDER team submitted three runs to
each of the two TSF subtasks (’diagnostic’ and ’full’
):

• CUNY-BLENDER-1 uses SVM and a linear k-
ernel to classify the temporal expressions. The
classifier was trained with the distant supervi-
sion results without further modifications.

• CUNY-BLENDER-2 includes the unsuper-
vised feature selection and self-training of dis-
tance supervision described in Sections 4.2
and 4.3.

• CUNY-BLENDER-3 uses the two SVM-based
systems (one that uses shortest dependency
paths based kernel, another that uses surface
features such as window features and pattern
features) described in Sections 3.3 and 3.2. Fi-
nally we combine the outputs of these two sys-
tems and the CUNY-BLENDER-1 system.

Table 3 and Table 4 present our results for the di-
agnostic task and the full task. CUNY-BLENDER-3
system achieved the highest score in the full task,
especially for “spouse” slot.

6 Discussions

6.1 What Works

6.1.1 Enhance Distant Supervision through
Rich Annotations

We have introduced rich annotations including
name tagging, entity coreference resolution, time

expression identification and normalization, depen-
dency parsing into the distant supervision process.
In this way, the projection is done on top of annotat-
ed/normalized context sentences so that more posi-
tive samples can be located more accurately. In ad-
dition, another limitation of using Web data for dis-
tant supervision is its large size of training instances
and feature space. We used a logistic regression
model and a self-training based instance re-labeling
method to reduce the feature space and dramatically
speed up model learning (about 100 times) and im-
prove temporal classification accuracy at the same
time.

6.1.2 Multi-level Reference Time Extraction
In most news and web blog documents, we can

use the document creation time as the reference
date to normalize time expressions. However, some
events may appear in a list of parallel items in which
each item has its own reference date. In the follow-
ing example, we should use “Aug. 6, 2007” as the
reference date for the slot fill “Tom LaSorda” as a
‘top employee” of “Daimler Chrysler AG”:

“Aug. 3, 2007: Daimler Chrysler AG
finalizes the sale of Chrysler to Cerberus.
Aug. 6, 2007: Bob Nardelli appointed
Chrysler chairman and CEO. Tom LaSor-
da becomes vice chairman and presiden-
t. Sources: Chrysler, Bloomberg, Detroit
News Top Chrysler execs Bob Nardelli is
the 19th man to lead Chrysler since the
company’s founding in 1925. Tom LaSor-
da, president and CEO, Sept. 2005-Aug.
2007 Dieter Zetsche, president and CEO,
Nov. 2000- Sept. 2005 James P. Hold-
en, president and CEO, Oct. 1999-Nov.
2000 Thomas T. Stallkamp, president, Jan.
1998-Dec. 1999 Robert A. Lutz, presiden-
t”

We segmented such documents according to tem-
poral blocks so that each block has its own local ref-
erence date.

6.2 How Much to Compress?
For many NLP tasks including this new TSF task,
one main challenge lies in capturing long contexts.
Semantic analysis such as dependency parsing can



System Overall Employee City State Country Member Title Top members Spouse
CUNY-BLENDER-1 0.633 0.623 0.850 0.652 0.720 0.637 0.600 0.653 0.614
CUNY-BLENDER-2 0.624 0.617 0.850 0.621 0.727 0.627 0.589 0.637 0.620
CUNY-BLENDER-3 0.640 0.620 0.850 0.683 0.726 0.651 0.610 0.665 0.609

Table 3: Results on the diagnostic TSF task (harmonic mean of Precision and Recall)

System Overall Employee City State Country Member Title Top members Spouse
CUNY-BLENDER-1 0.226 0.250 0.050 0.202 0.380 0.181 0.246 0.122 0.413
CUNY-BLENDER-2 0.228 0.249 0.072 0.120 0.339 0.187 0.248 0.119 0.484
CUNY-BLENDER-3 0.215 0.239 0.079 0.124 0.364 0.164 0.231 0.105 0.458

Table 4: Results on the full TSF task (harmonic mean of Precision and Recall)

make unstructured data more structured by com-
pressing long contexts and thus reduce ambiguities.
However, current core NLP annotation tools such as
dependency parsing and coreference resolution are
not yet ideal for real applications. The deeper the
representation is, the more risk we have to introduce
annotation errors. Furthermore, for certain types
of slots such as “title”, since the contexts are rela-
tively short between the query and its slot fill (e.g.
“Today[Time] President[Title] Obama [Query]...”),
structured representation is not appropriate. There-
fore we pursued a more conservative approach com-
bining benefits from both flat approach (local con-
text, short dependency path, etc.) and structured ap-
proach (e.g. dependency path kernel). We reported
that the structured approach outperforms the flat ap-
proach for all slot types except “per:title” which usu-
ally involves shorter contexts. Furthermore, com-
bining them through cross-document temporal ag-
gregation can achieve higher performance than each
approach alone.

For example, there is a long context between the
query “Mugabe”, the time expression “1980” and
its slot fill “ZANU-PF” in the following sentence
“ZANU, which was renamed ZANU-PF after tak-
ing over ZAPU, has been the country’s ruling par-
ty and led by Mugabe since 1980.” The structured
approach successfully identified “1980” as the start-
ing date based on the short dependency paths among
“ZANU-PF”, “Mugabe” and “Mugabe”. It’s partic-
ularly effective to capture long contexts when the
query has multiple slot fills in one sentence. For ex-
ample, in the sentence “Trong became secretary of
the Hanoi Party Committee in January 2000, chair-
man of the Central Theoretical Council in 2001,

member of the CPVCC in April 2001, and mem-
ber of the Political Bureau in April 2006”, a struc-
tured approach can compress the long contexts a-
mong the query “Nguyen Phu Trong”, slot fill “Po-
litical Bureau” and time expression “April 2006” in-
to “[Query] member of [Slot Fill] in [Time]”.

On the other hand, dependency parsing can pro-
duce errors. For example, it failed to capture the de-
pendency relation between “September 2005” and
“the Brookings Institute” in the following sentence
“In September 2005, Dichter left office and be-
came a research fellow at the Brookings Institute
in Washington , D.C.”. In contrast the flat approach
can easily identify “September 2005” as the starting
date for the query “Avi Dichter” to be a member of
“the Brookings Institute” based on lexical features
such as “became”.

We also found that the gains by the structured ap-
proach are highly correlated with the compression
rate, which is defined by (1 - the lengths of depen-
dency paths among [query, slot fill, time expression]
divided by the number of context words). For exam-
ple, using structured approach they achieved much
higher gains on residence and spouse slots (about
0.78 compression rate) than title (about 0.68 com-
pression rate).

6.3 Remaining Challenges

6.3.1 Implicit and Wide Contexts

We found that some temporal information can be
found from explicit contexts. For example, “[Query]
moved to [Slot Fill] in [Time]” indicates a Residence
relation has the value START, and, “[Query], TITLE
of [Slot Fill]” indicates the Title and Employment
relations have the value HOLD during the reference



time. However, In many cases the temporal infor-
mation is implicitly represented. In particular, tem-
poral employment/membership information can be
represented by many forms. Some examples are as
follows.

• Profit: “Daimler Chrysler reports 2004 profits
of $3.3 billion; Chrysler earns $1.9 billion”
indicates “Schrempp Chrysler” is an employee
of “Daimler Chrysler” WITHIN the reference
time;

• Contest: “Sutil, a trained pianist, tested for
Midland in 2006 and raced for Spyker in 2007
where he scored one point in the Japanese
Grand Prix” indicates “Sutil” was a member of
“Midland” WITHIN 2006;

• Speech: ““Daimler Chrysler is not yet where
we want it to be, but we are headed precisely
in the right direction, ” Schrempp says” indi-
cates “Schrempp” is an employee of “Daimler
Chrysler AG” WITHIN the reference date.

6.3.2 Coreference Resolution
As in other IE tasks, coreference resolution

presents a bottleneck in this TSF task. These errors
can be categorized into the following three types:

(1) Name Coreference Errors:
These errors normally appear between entity

mentions that could refer to different entity type-
s. For example, a slot fill “R” means “Republican
Party”, but coreference systems without using world
knowledge mistakenly linked it to other names in-
cluding the letter “R”; it’s also difficult to identify
the coreference link between a slot fill “Brooklyn
Dodgers” with “Brooklyn” in the following sentence
“He forever will be remembered for helping Brook-
lyn finally win a World Series title in 1955.” without
knowing “Brooklyn” is a team name in this context.

(2) Nominal Coreference Errors:
Nominal coreference resolution remains very

challenging, especially when multiple antecedents
appear as candidates in different sentences from the
nominal mention. For example, coreference resolu-
tion systems failed to identify the link between the
slot fill “Giuliani Partners” and “the firm” in the fol-
lowing sentences:

“Almost overnight, he became fabu-
lously rich, with a $3-million book deal,
a $100,000 speech making fee, and a lu-
crative multifaceted consulting business,
Giuliani Partners. As a celebrity rain-
maker and lawyer, his income last year ex-
ceeded $17 million. His consulting part-
ners included seven of those who were
with him on 9/11, and in 2002 Alan Pla-
ca, his boyhood pal, went to work at the
firm.”.

Even in the same sentence, coreference resolution
systems need to exploit certain world knowledge to
resolve some nominal mentions. For example, in the
following sentence, the coreferential link between
the slot fill “Toyota” and “the Japanese company”
was missed so the TSF systems failed to identify
“2006” as a WITHIN time for the membership be-
tween the query “Frank Perera” and “Toyota”:

“After successful karting career in Eu-
rope, Perera became part of the Toyota
F1 Young Drivers Development Program
and was a Formula One test driver for the
Japanese company in 2006.”

(3) Pronoun Coreference Errors:
Most of the coreference errors propagated into

TSF are about pronoun resolution, especially for fe-
male pronouns. For example, in the following sen-
tences, the coreferential link between “Kelly Cass”
and “She” was missed so the TSF systems were not
able to identify “January 2000” as a WITHIN time
for the membership between “Kelly Cass” and “The
Weather Channel”:

“Meteorologist Kelly Cass is an On-
Camera Meteorologist at The Weather
Channel, She first appeared on air at The
Weather Channel in January 2000.”

Some newswire documents include centroid enti-
ties to which most pronouns should be linked. For
example, in a document about “3rd Ld-Writethrou:
Nguyen Phu Trong re-elected Vietnamese top legis-
lator”, the query “Nguyen Phu Trong” is the centroid
entity and so many paragraphs only use pronouns to
refer to this entity:



“<P> He pursued a master degree
in political economics at the Nguyen Ai
Quoc High- ranking Party Institute from
September 1973 to April 1976. He
worked as an editor at the magazine’s Par-
ty Construction Department between May
1976 and August 1981, studied in the for-
mer Soviet Union from September 1981
to July 1983 and gained associate profes-
sor title there, became vice head and then
head of the Party Construction Depart-
ment between August 1983 and February
1989. </P>”.

In the above paragraph, it’s not difficult to identify
the slot fills and time spans if the coreference reso-
lution component successfully links these pronoun
mentions to the query.

6.3.3 Temporal Reasoning
As in regular slot filling, inferences are required

to extract temporal information for the remaining d-
ifficult cases. We can roughly categorize them into
the following types:

Cross-entity Aggregation: The TSF task in
KBP2011 was designed as a top-down question an-
swering task, by sending one entity query and one
slot fill each time. However, various entities (both
queries and non-queries) and their attributes are of-
ten inter-dependent and thus their temporal bound-
aries can be used to infer from each other and ensure
consistency.

When there are multiple entities associated with
the same slot fill, temporal analysis should extend
beyond individual words to common semantic pat-
terns. For example, in the following sentence, we
need to apply the pattern, “[Slot Fill1] and [Slot Fil-
l2] respectively led by [Query1] and [Query2]” to
identify slot fills for the two corresponding query en-
tities:

“With the Lancaster House Agree-
ment signed on Dec. 21, 1979, the Patriot-
ic Front , consisting of ZAPU -LRB- Zim-
babwe African Peoples Union -RRB- and
ZANU, then respectively led by Joshua
Nkomo and Mugabe, and the Zimbabwe
Rhodesia government agreed on a new

constitution for a new Republic of Zim-
babwe with elections in February 1980.”

Cross-slot Reasoning:
Some slot types are inter-dependent, such as title

and employment slots, so a TSF system can conduc-
t cross-slot reasoning in order to enhance temporal
information extraction.

Sometimes an entity has different titles within the
same organization, which, for example, would re-
quire us to choose between multiple candidate val-
ues for the slot type top members/employees. For
instance, in the following sentence, even if “Nguyen
Phu Trong” is given as the “top employee/member”
of “Communist Magazine” in the diagnostic task,
a TSF system should identify that only the title
“editor-in-chief” indicates a top-level position, and
classify “August 1991” as WITHIN for this relation:

“Trong became member of the maga-
zine’s editing board between March 1989
and April 1990, deputy editor-in-chief
from May 1990 to August 1991, and
editor-in-chief in August 1991.”

In many other cases, the temporal information for
one slot type only exists in other types of slots. For
example, the BEGINNING/ENDING time of Res-
idence is often implied by the entity’s birth/death
events. Some examples are as follows.

Our system failed to infer the ENDING date for
the residence relation between “Paul Newman” and
“Westport, Conn.”:

“Paul Newman, one of the last of the
great 20th-century movie stars, died Fri-
day at his home in Westport, Conn..”

We can infer the BEGINNING date for the em-
ployment relation between “Mugabe” and “southern
African country” from the “founding” event of the
country:

“The incumbent President Robert
Mugabe, who has been the head of s-
tate since the southern African country
gained independence in 1980, is seeking
another term in office.”



Such reasoning can be extended from sentence-
level to discourse-level, for example, from the fol-
lowing sentence we can infer “Richard Widmark”
died on “March 24, 2008” and so the ENDING date
of his residence relation with “Connecticut” is also
“March 24, 2008”:

“Milestones: prominent deaths of
2008
...
American Hollywood actor Richard
Widmark, aged 93 at his home in
Connecticut. (March 24).”

6.3.4 Distant Supervision Challenges
Distant supervision methods have achieved some

reasonable success for this new TSF task, but some
significant challenges remain.

In the following we listed some assumptions
made by current distant supervision methods:

(1) One sense per query:
One basic assumption of distant supervision is

that an unstructured context containing elements
matching a structured KB entry expresses the same
relation as the KB entry. This assumption is often
invalid especially when an element of the entry is
ambiguous. For example, one KB entry indicates
“RAUL CASTRO” is a “General” during the docu-
ment creation time; but distant supervision approach
mistakenly identified the following context sentence
as a positive training sample but “general” is not a
title here:

“Monday, Raul Castro set the date for
local (city and town) general elections as
October 21 with a second round October
28.”

Similar ambiguities can occur when the query and
slot fill share some names. For example, for a query
“Giovanni Ferrero” and a slot fill “Ferrero SpA”, we
will get the following context sentence:

“Since 1997, his sons, Giovanni Fer-
rero and Pietro Ferrero have led Ferrero
SpA.”

Simple name string matching cannot distinguish
the query and slot fill clearly in this sentence.

(2) One query per context:
A context sentence that mentions the tuple of

<query, slot fill, time expression> is likely to ex-
press the relations among these three elements. But
because of the high variability of time expression-
s, they are often linked to other entities, relations or
events in the context. Therefore, we should consider
other facts in the context sentence as competitors for
any given query and slot fill in order to connect with
the candidate time expressions. Then we can com-
pare their confidence values to filter out some wrong
temporal answers. In the following example that is
identified as a context sentence for <Chris Kronner,
Slow Club, December>:

Slow Club’s Chris Kronner faced sim-
ilar challenges taking on his second ex-
ecutive chef position at Serpentine, which
opened in December.

(3) One sentence per query: Almost all systems
that used distant supervision did so on the sentence-
level, and assume that three elements in the tuple
should exist in the same sentence after entity coref-
erence resolution. This is invalid when a documen-
t is typically talking about a centroid entity (e.g.
the employment history of a person or an organi-
zation). In such a document, a distant supervision
approach should locate the centroid query or slot fil-
l and search for context sentences that include the
other elements of a KB entry. For example, in the
second example in section 8.2.3, a system needs to
recognize “Chrysler LLC” as the employer slot fill
for all of the person query entities.

6.3.5 “Long Tail” Problem
We extracted indicative contexts from distant su-

pervision and summarized the number of instances
that match each pattern in Figure 5, 6 and 7.

The final challenge lies in the long-tailed distri-
bution of temporal context patterns. A few patterns
match many instances, while a high percentage of
patterns match only a few instances. Dependency
parsing can filter out some irrelevant contexts but
deeper understanding will be required to adequate-
ly generalize from diverse lexical contexts. For ex-
ample, the starting date of an employment relation
can be expressed by many long-tail patterns such as,
“would join”, “would be appointed”, “will start at”,



“went to work”, “was transferred to”, “was recruited
by”, “took over as”, “succeeded PERSON”, “began
to teach piano”, etc.
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Figure 6: WITHIN Pattern Distribution

7 Related work

While the extraction of temporal arguments for re-
lations and events has recently received the atten-
tion of the TempEval community (Verhagen et al.,
2007; Pustejovsky and Verhagen, 2010), it is fo-
cused on extracting temporal relations from individ-
ual documents. In this ”information explosion er-
a”, the amount of available data continues to grow
exponentially. Adequate management of temporal
information cannot be achieved by local extraction
alone; instead, facts must be aggregated across mul-
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Figure 7: ENDING Pattern Distribution

tiple documents and reasoning must be conducted
over these facts in order to generate compact and ac-
curate knowledge bases.

Various approaches have been developed for this
task, which can be roughly categorized into flat or
structured approaches:

Flat approaches: Chambers et al. (2007) built a
supervised learning model based on syntactic and
semantic features at the lexical level, making use of
tense and aspect, to classify a pair of event triggers
in a sentence . Yoshikawa et al. (2009) used sim-
ilar features, using a Markov Logic based joint in-
ference framework for temporal relations. Ling and
Weld (2010) also exploited cross-event joint infer-
ence, but they used shallow dependency features to
build local formulas without considering the deeper
syntactic structure.

Structured approaches: Bethard and Martin
(2007) designed syntactic and semantic features
based on syntactic treelets and verbal government
for temporal relation classification. (Puşcaşu, 2007)
used sentence level syntactic trees to propagate
temporal relations between syntactic constituents.
(Cheng et al., 2007) introduced a type of feature
called tree position that classifies nodes on a syn-
tactic dependency tree based on their position in the
tree relative to that of a target node.

The need for structural representations is ac-
knowledged in many Natural Language Processing
fields. For example, statistical machine translation
has recently moved from flat-structured models such



as word-based (Brown et al., 1993) and phrase-
based models (Yamada and Knight, 2001; Zens and
Ney, 2004) to more tree-structured models (Shen et
al., 2010; kiu Lo and Wu, 2011). The shortest path
between two vertices in a dependency parsed graph
has been used to capture the syntactic and seman-
tic relation between two words (Snow et al., 2005;
Bunescu and Mooney, 2005; Wu and Weld, 2010).

8 Conclusions

In this paper we have presented our approaches
for KBP2011 temporal slot filling task, and shared
the lessons we have learned from this pilot study.
Experimental results show that the individual flat
and structured approaches both outperform bag-of-
words based classifier and that the hybrid approach
and re-labeling approach lead to statistically signif-
icant improvements. The query selection and doc-
ument selection in the diagnostic task are not rep-
resentative of normal temporal information distribu-
tion in newswire data, which has made it difficult to
achieve much higher performance than some simple
baselines (e.g. label any time expression in the sen-
tence with the query and slot fill as HOLD). How-
ever we believe our approach is promising when the
task setting becomes more reasonable. In the future
we are particularly interested in conducting cross-
query and cross-slot temporal reasoning to enhance
the performance.
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