
ECNU: Brief System Description of Submission to Knowledge Base
Population at TAC 2011

Tiantian Zhu Wenchao Zhang
Computer Science and Technology Department

East China Normal University
tiantianzhu7@gmail.com

Yue Lu

Abstract

This paper briefly reports our submissions to
the three tasks in TAC KBP 2011, i.e., Slot
Filling (SF for short), Entity Linking (EL for
short) and Cross-lingual Entity Linking (CEL
for short).

1 Introduction

We participated three tasks in Knowledge Base Pop-
ulation (KBP) Track in Text Analysis Conference
(TAC) 2011, i.e., Slot Filling (SF for short), En-
tity Linking (EL for short) and Cross-lingual Entity
Linking (CEL).

There are two subtasks in Slot Filling task this
year, i.e., Regular Slot Filling and Temporal Slot
Filling. We only focus on the Regular Slot Filling
Task in this track. We cast the SF task as a Ques-
tion Answering task. That is, for each slot given an
target entity, our SF system first transforms it into
a query and then retrieved passages containing the
query like a common QA system. Finally, we adopt
various techniques to select appropriate slot value
for different slots. Generally, our SF pipeline con-
sists of three main modules, i.e., Query Processing,
Passage Retrieval and Slot-Value Selection. This
idea comes from the previous work, for example,
Lorna and John, 2010, LCC’s SF approach (John et
al., 2010) and (Daniel et al., 2010). The type of enti-
ties provided by organizer can be a person (PER) or
an organization (ORG). The KBP 2011 defined 16
slots (i.e., attributes) for organizations and 26 slots
for persons. A slot is either single valued (e.g., date
of birth for PER type) or list valued (e.g., children

for PER type). For single valued slot, system is ex-
pected to return only one slot value. While for list
valued slot, system is expected to return one or more
different slot values. For each given target entity,
the participated system is required to return the slot
name, slot values about it as it is and a docid which
the slot value comes from. That is, system is ex-
pected to return NIL if no novel information for a
slot value has been extracted for this slot.

The Entity Linking task aims at linking given en-
tities to the entry in knowledge base (KB) or NIL.
If the given entity and target entry are in same lan-
guage, it is a regular EL task. From this year, the or-
ganizers also provide a cross-lingual EL task, where
the given entity and target entry are in different lan-
guages.

The paper is organized as follows. Section 2
presents the components of our system and the re-
sults of our submission. Section 3 describes the sys-
tem framework and the results of our submission.
Section 4 gives a brief description of our work on
cross-lingual entity linking.

2 Slot Filling

We adopt a Question Answering system architecture
to implement our SF system, which is composed of
three sections: passage retrieval, answer extraction
and answer selection. In this system, an answer cor-
responds to one query about the slot value for one
slot of a given entity. Unlike a traditional QA sys-
tem, our SF system does not include a question pro-
cessing section because the input of our system is
just the slot name of one entity rather than a real
question. The Passage Retrieval section returns the



top N passages refer to the entity. The Answer Ex-
traction section adopts various techniques, e.g., reg-
ular expression, to extract the corresponding sub-
string that seems to be the right slot value for the
given entity. Finally the Answer Selection section
removes the redundant answers and selects one best
answer as the value of the slot.

2.1 Passage Retrieval

Many existing QA systems adopt an information
retrieval (IR) component, which treats a question
in QA as a query in IR system and returns a list
of relevant documents or segments of documents.
Our Passage Retrieval section follows this way. We
use Lucene(http://lucene.apache.org/) to build our
SF system. We first create document index, and then
identify those documents that are most likely to con-
tain an answer. We collect the top 100 documents.
If there are less than 100 documents retrieved by the
system, we would take the all retrieved documents.

Being the first step of our SF system, we expect
the system to output as more answer-bearing docu-
ment candidate as it can. That is, a high recall score
is preferred than a high precision at present. How-
ever, we found that when we only take the query
itself as a system input, the Passage Retrieval mod-
ule gets a very low recall score. This is not that we
expected because no further steps can be performed
any more. Therefore, we manually generate some
aliases in order to get a higher recall. For example,
if the query is an ORG type and is not an abbrevia-
tion, we generate its abbreviation as a new input. If
the query is a PER type and is a full name, we just
use the first name and last name as alias.

2.2 Answer Extraction

The Answer Extraction module takes the passages
retrieved from previous model, which are most
likely to contain an answer to the slot name, as the
input, and selects phrases that are likely to be the
expected answer. For each different slot type, we
adopt different extraction methods. Roughly, these
slot names can be grouped into several categories ac-
cording to their type and their characteristics. Table
1 lists the different types of the slot names and their
corresponding extraction method.

Specifically, we extract slot value candidates
by using processing pipelines with multiple tech-

Slot Names Method
per:date of birth Regular Expression
per:age patterns
org:website
org:founded
...
per:country of birth Gazetteer-based
per:stateorprovince of birth matching
per:city of birth
per:title
per:religion
...
per:schools attended NER tools
per:member of and manual rules
per:spouse
per:alternate names
org:subsidiaries
...

Table 1: Different slot names and their corresponding po-
tential extraction method

niques including traditional NER, regular expres-
sion patterns, Gazetteer-based matching, manually-
constructed rules. For example, slot names like date,
number, website or age are first extracted by using
regular expression patterns. Then the system checks
if the current sentence has some slot value trigger
keywords, such as “born”, “birthday”, “birthdate”,
“birth”, etc. If the slot value is a name from limited
name list, for example, country or religion, we gen-
erate a name list to match the slot value. We also
adopt Stanford NER to extract named entities, e.g,
persons, organizations and locations, from the sen-
tences and then we also check if the corresponding
slot value trigger keywords is available in the same
passage. Additionally, for different slot name, we
also adopt different refinement strategies to make
filtering and disambiguation for the purpose of im-
proving precision measure. For example, for slot
name org:subsidiaries, its extraction rules are as fol-
low:

<organization>, a subsidiary of
<target-entity>

<organization>, a subsidiary of
the <target-entity>
<target-entity>’s <organization>



If a sentence in the passage satisfies one of the pat-
terns, then we can extract the corresponding orga-
nization as the answer for the slot name. However,
some sentences may use aliases instead of the target
entity itself. So we also make some deformations
about target entity, like abbreviation. Then the pat-
terns also change:

<organization>, a subsidiary of
<entity alias>

<organization>, a subsidiary of
the <entity alias>
<entity alias>’s <organization>

Regarding the enumerable slot names, i.e., country
of birth, city of birth, religion, etc, a gazetteer (i.e.,
dictionary) is constructed leveraging on public web
resources. We can easily collect a list of country,
states, provinces and cities from Internet. Then we
use a simple dictionary matching algorithm to ex-
tract these candidate values.

There are still some slot names that are hard to
extract using the three methods above. One way we
used is the method of exclusion. For example, re-
garding the slot name per: origin, we found it dif-
ficult to create a common regular expression pat-
tern as well as the slot value trigger keywords. So
we make such rules: if the sentence contains coun-
try names, but there is no trigger word about birth,
country of death or country of residence, then we
extract the country as per: origin.

2.3 Answer Selection

The previous Answer Extraction module have ex-
tracted some candidate answers for each slot name.
However, there are many wrong answers and redun-
dant answers for each slot name. The Answer Selec-
tion module aims at selecting out the best answers
for each slot name. For single valued slot type, we
rank the candidate answers according to frequency,
that means we compute the number of the same can-
didate answers, the one with the highest appearance
is the slot value. For list valued slot type, we remove
the duplicate answers, and make sure each slot value
of the corresponding slot name is different from oth-
ers. If no answer is returned for the slot name, then
a NIL is returned as the slot value.

2.4 Results on KBP 2011

Based on the above section, we implement three sys-
tems to KBP SF task. Table 2 lists the system brief
configuration and its final result on test data set.

Table 2: SF system configuration and results on KBP SF
task.

Run Configuration R(%) P(%) F1(%)
1 without aliases 6.35 2.99 4.06

on 09 news data
2 with aliases 17.57 5.27 8.11

on 09 news data
3 with aliases 18.20 5.24 8.14

on 09 news data
and 10 data

3 Entity Linking

The Entity Linking task aims at linking entities to
the KB entry or NIL by giving the entity mention
string and its source document. We adopt three
steps, i.e, Sense Generation,Sense Ranking and NIL
Processing to build the whole EL system.

3.1 Sense Generation

The Sense Generation module is to identify as many
senses of the entity mention strings as it can. We first
use the Stanford NER to extract named entities for
PER, ORG and GPE type from the source document.
If the extracted entities contain the given target en-
tity mention string, we then record the entity and its
corresponding category in Stanford NER. Thus it is
a expand of the target entity and we take it as candi-
date sense. We also search the entity mention string
in wikipedia to get as many candidate senses as we
can and record the suggested spelling names as well
as the names on the Disambiguation Pages. All these
are treated as candidate senses.

3.2 Sense Ranking

The Sense Ranking module is to rank the candi-
date senses and finally identify the most likely sense.
Since the Knowledge Base is quite huge, it costs a
very long time to search the sense directly. In order
to reduce the time cost, we first generate an index of
each entry name in Knowledge Base. We found that



there are many punctuation marks in entry names,
which disturb the following matching procedure. So
we remove the comma and its following text, the
bracket and the text between its pair, as well as some
other punctuation marks. For the candidate senses,
we perform the same removing process as well.

After that, we search the candidate senses
throughout index of KB and rank the matching KB
entry names. Two ranking methods are used. One
method is to simply extract all attributes of one KB
entity and match them with the source document.
We assign different scores for different KB entry
matching as follows: (1) if the attribute appears
completely in the source document, assign 3 points;
(2) if the class type matches, assign 2 points; (3) if
the sub-attribute matches, add 1 point. Finally we
sum up all the points and divide the sum with the
number of attributes plus 2(i.e, KB name and class
name). The KB entry which gets the highest score is
the best one we expect.

Another method is to compute the similarity be-
tween the source document and the matching wik-
itxt using tf.idf . Terms from source document is
denoted by t1, t2, ...tn, and the matching wikitxt is
denoted by D1, D2, ...Dm. TF (ti,Dj) represents
the frequency the term ti appears in document Dj,
and IDF (ti) represents the frequency the term ti
appears in all the documents. For example, for doc-
ument j, its score is:

s(j) =
∑

TF (ti, Dj)∗ log[(n+2)/IDF (ti)+1)]
(1)

Then the wikitxt that gets the highest score is the
best KB entry we expect.

3.3 NIL Processing

If no result from the index of KB is returned, then
the entity is treated as NIL. We use a filter rule to
cluster the NIL entities, that is, if the current NIL is
identical with one previous NIL in the document, we
cluster them in the same class.

3.4 Results on KBP 2011

We submitted three runs for KBP EL task. The first
run adopts the first ranking method without web and
wikitxt source knowledge. The second run adopts
the second ranking method and does not use web
knowledge. The third run adopts the second rank-

ing method and use web knowledge. Table 3 lists
the three systems and their results on KBP EL task
2011.

4 Cross-lingual Entity Linking

For the Cross-lingual Entity Linking (CEL) task, we
use Google Translate for translation for the reason
that Google Translate performs well on PER, ORG
and GPE with a acceptable accuracy. With respect to
Chinese entity, we extract its corresponding source
document and translate it into English. We also
translate the Chinese entity itself into English entity.
After that, we perform the same runs as we do on
English entity linking task above.

We also consider using Chinese Segmentation
tool to deal with Chinese text directly, but it is a pity
that we cannot find a good Chinese Segmentation
tool.

We submitted three CEL systems for KBP 2011.
The three systems are based on the three EL systems
we built in previous section. Table 4 lists the three
systems and their results on KBP CEL task 2011.

5 Conclusion

To be honest, our systems for the 3 tasks are very
rude. The methods we use are simple, for the reason
that it’s the first time we participate in such a huge
and international competition, actually we are lack
of experience and time, and we still need to learn
more knowledge. The result is not good, and there is
much space to improve our system, like using some
ranking algorithms to improve our ranking result in
Slot Filling.

Acknowledgments

The authors would like to thank the organizers for
their invaluable support making TAC KBP a first-
rank and interesting international event.

References

John Lehmann, Sean Monahan, Luke Nezda, Arnold
Jung, and Ying Shi. 2010. LCC Approaches to Knowl-
edge Base Population at TAC 2010. In TAC(Text Au-
tomatic Content) 2010 Workshop.

Daniel Chada, Christian Aranha, Carolina Monte. 2010.
An Analysis of the Cortex Method at TAC 2010 KBP



Table 3: EL system configuration and results on KBP EL task.

Run Configuration R(%) P(%) F1(%)
1 ranking method 1, w/t web, w/t wikitxt 48.3 48.3 48.3
2 ranking method 2, w/t web 48.3 46.0 47.1
3 ranking method 2, with web 48.6 48.6 48.6

Table 4: CEL system configuration and results on KBP CEL task.

Run Configuration R(%) P(%) F1(%)
1 ranking method 1, w/t web, w/t wikitxt 44.5 45.9 45.2
2 ranking method 2, w/t web 39.8 40.8 40.3
3 ranking method 2, with web 43.7 38.1 40.7

Slot-Filling. In TAC(Text Automatic Content) 2010
Workshop.

Lorna Byrne and John Dunnion. 2010. UCD IIRG at
TAC 2010 KBP Slot Filling Task. In TAC(Text Auto-
matic Content) 2010 Workshop.

Man Lan, Yu Zhe Zhang, Yue Lv, Jian Su, Chew Lim
Tan. 2009. Which Who are They? People Attribute
Extraction and Disambiguation in Web Search Results.
WWW2009, April 20-24, 2009, Madird, Spain.


