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Abstract 

In this paper, our system in the KBP Entity 
Linking task of TAC 2011 is described. 

Our system mainly contains three 

components. 1) Entity Candidate Detector, 
in this component, out system identifies all 

the possible entities for an entity mention 

through a variety of knowledge sources, 
such as the Wikipedia Anchor Dictionary, 

the Web, etc. Specially, for acronym 

mentions, we detect their entities by 
expanding acronym in the source 

documents. 2) Entity Linker, in which the 

similarity between an entity mention and 
an entity candidate in KB is computed. The 

entity candidate with higher scores than a 

threshold will be extracted as the real entity 
of the mention. 3) In the final component, 

our system clusters all the NIL entity 

mentions which refer to the same entity 
using Hierarchical Agglomerative 

Clustering algorithm.  

1 Introduction 

The NLPR_TAC team participated in the Regular 

Entity Linking task in the KBP track of TAC 2011. 
The task of entity linking is defined as follows: 

given a query that consists of a name string and a 

source document ID, the system is required to 
provide the ID of the knowledge base (KB) entry 

to which the query refers, or a “NILxxxx” ID if 

there is no such KB entry. At the same time, the 

participator‟s system is required to cluster together 

queries refers to the same non-KB (NIL) entities 
and provide a unique ID for each cluster, in the 

form of NILxxxx. The TAC data uses news and 

web data as context “source document” and the KB 
is derived from English Wikipedia Pages. For 

example, given the following sentences containing 

the query “Michael Jordan”: 
 

Michael Jordan is a leading researcher in 

machine learning and artificial intelligence. 

Michael Jordan is a former American 
professional basketball player. 

 

An Entity Linking system should link the first 
„Michael Jordan‟ to „Michael I. Jordan‟ which is a 

professor in Beckley and link the second „Michael 

Jordan‟ to „Michael Jeffery Jordan‟ which is a 
basketball player. 

Our Entity Linking system for KBP 2011 task 

involves three stages: 1) detecting entity candidates 
(e.g. both “Michael I. Jordan” and “Michael 

Jeffrey Jordan” are entity candidates of the entity 

mention “Michael Jordan”); 2) name 
disambiguation (e.g. given the entity mention 

“Michael Jordan” and its context, the system 

should be able to determine which Michael Jordan  
in KB it refers to or NIL); 3) clustering, which 

means the queries in the same cluster refer to the 

same NIL. 
The challenges of entity linking are the name 

variation problem and the name ambiguity problem. 

Name variation means that an entity can be 
mentioned in different ways such as full name, 



acronyms. For example, the entity Michael Jeffrey 

Jordan can be mentioned using more than 10 
names, such as Michael Jordan, MJ and Jordan. 

The name ambiguity problem means that the same 

entity mention may refer to different entities in 
different contexts. 

In order to overcome the problems caused by the 

above two reasons, we propose three 
advancements in our entity linking system. Firstly, 

in the entity candidates detecting stage, we split 

queries into two categories: regular query and 
acronym query. We found that expanding an 

acronym (all capitalized short-form word) from its 

context can effectively reduce the ambiguities of 
the acronym mention. It‟s based on the assumption 

that two variants in the same document refer to the 

same entity. For instance, the query “ABC”  refers 
to more than 30 entities in KB, but with its full 

name ”American Broadcasting Company”, which 

is unambiguous, we can directly link to the correct 
entity without the needs of disambiguation. 

Secondly, from our observation, we found that 

some entity mentions are misspelling, As a result, 
we can‟t obtain their entity candidate through 

Wikipedia, so we try to leverage the whole web 

information for detecting the entity candidates 
through web search for these entity mentions. 

Thirdly, in the disambiguation stage, we use three 

different methods to compute the similarity 
between the entity mention and the entity 

candidates. The first is based on the entity prior 

knowledge, which means the possibility of an 
entity candidate given a query according the 

distribution of entity candidates. The second is 

based on the VSM model using tf-idf similarity 
between context document of the query and 

knowledge base (KB) text. And the last one is a 
combined similarity based on the entity prior 

probability and the tf-idf similarity. Experiment 

results show that the best performance of our 
system is the first one.  

The remainder of this paper is organized as 

follows. Section 2 gives a related work description. 
Section 3 introduces the entity candidates detecting 

stage of our system. We present our detailed entity 

linking method in section 4. Section 5 presents our 
clustering method. The experiment results are 

presented in section 6. 

2 Related Work 

In this section, we briefly review the related work 
in entity linking. The crucial component of entity 

linking is the disambiguation stage. The essential 

idea is to link the query to entity in KB using 
discriminative feature extracted from the query‟s 

document and the entity‟s document. Previous 

work by Cucerzan [1] proposed a disambiguation 
approach to link an ambiguous query in a 

document to one entity in KB based on VSM 

model. The approach choose the entity with 
maximum agreement between the contextual 

information extracted from Wikipedia and the 

context of entity mention document, as well as the 
agreement among the category tags associated with 

the entity candidates. Bunescu and Pasca [2] regard 

this task as a classification problem and train a 
SVM classifier to disambiguate the entity 

candidates. They incorporated entity candidates‟ 

category information to help improve the accuracy 
of the classifier. Dredze et al. [3] employed a SVM 

ranking method to disambiguate entity candidates. 

They used a comprehensive feature set to 
accomplish the entity linking task. Because the 

supervised learning method usually requires lots of 

training data, Zhang et al. [4] proposed a novel 
method to automatically generate a large scale 

corpus annotation for ambiguous mentions 

leveraging on their unambiguous synonyms in the 
document collection. Radford et al. [5] used a 

Graph-Based ranking method in entity linking task, 

in their approach, context entities are taken into 
account in order to reach a global optimized 

solution together with the query entity. Nemeskey 

et al. [6] considered using information retrieval 
method to disambiguate queries, in their approach, 

the entire background source document is 

considered as a single query, the task is to retrieve 
the most relevant Wikipedia article. Han and Sun 

[7] proposed an entity mention model, which can 

leverage heterogeneous entity knowledge for the 
entity linking task.    

3 Entity Candidate Detector 

Entity candidate detector finds possible KB entity 

candidates for the given query. We split query into 

two classes: regular query and acronym query. For 
different query type, our system uses different 

detection strategies. We find entity candidates of 

regular query through two ways: 1) using 



Wikipedia dictionary; 2) leveraging web 

information. And for acronym query, we expand it 
from its context to disambiguate it. In the 

following, we respectively describe them in detail. 

3.1 Entity Candidates Detection Using 

Wikipedia Dictionary 

Wikipedia contains many name variants of entities 

like confusable names, spelling variations, nick 

name etc. we use the anchor dictionary of 
Wikipedia to detect the entity candidate. For 

example, in Figure 1, the three anchor texts of 

ABC are respectively its full name “American 
Broadcasting Company”, acronyms “ABC” and 

“American Broadcasting Companies, Inc”. Using 
the anchor information in Wikipedia, we can build 

a table between query and entity candidate. Also, 

we can obtain the count information that the entity 
using the query as anchor in Wikipedia. This 

information is also called the entity prior 

knowledge. It represents the likely of an entity 
candidate given a query. This information is used 

in our first run. Part of the table is shown in table 1.  
 

 
Figure1. Three anchors of entity ABC 

 

query Entity candidate The number that the 

query link to the 

entity candidate 

ABC American Broadcasting 

Company 

Australian Broadcasting 

Corporation 

ABC (band) 

ABC Television 

… 

10023 

 

1452 

 

196 

99 

… 

AI Artificial intelligence 

Game Artificial 

intelligence 

Ai (singer) 

Strong AI 

… 

657 

 

57 

8 

3 

… 

… … … 

 

Table1. Part of the query entity table 

 

Using the table, we can easily retrieve the entity 

candidates of a given query through string 
matching in the table. 

3.2 Entity Candidates Detection Using the 

Web 

Through the table, there are still some queries 
which cannot find entity candidates in the table. 

We believe there are two reasons. The first one: the 

real target entity of a query is not in KB, in this 
situation, the output should be NIL for this query. 

The second one, some queries are misspelled 

infrequently used, so that our system cannot 
identity the mention in the query as a variation. 

Specially, for the second reason, we try to leverage 

the whole web information for detecting the entity 
candidates through web search for query whose 

entity candidates set is empty. Given a query 

whose entity candidates set is empty, we submit to 
the yahoo search engine with the form “query 

Wikipedia”, and then retrieve the first web page if 

the page is a Wikipedia page. And then if the first 
page is a Wikipedia page, we extract its title as the 

query‟s candidate entity. Otherwise, we return NIL 

for this query. This contributes to a performance 
improvement on the KBP 2009 test data. For 

example, the search results of the query Angel 

Merkel is shown in Figure 2, we can detect the 
entity Angela Merkel for this query.   
 

 
Figure2. Web Search Results of Angel Merkel + 

Wikipedia 



3.3 Acronym Expansion 

In this section, we describe our algorithm for 
finding an acronym‟s expansion in a source 

document for an acronym query. 

From our observation, acronym is usually high 
ambiguous, but its full name, is usually 

unambiguous. Hence, expanding an acronym from 

its context can effectively reduce the ambiguities 
of an acronym query, under the assumption that 

two variants in the same document refer to the 

same entity. Han and Zhao [8] only allow 
expansions adjacent to the acronym in parenthesis 

Zhang et al. [9] propose a supervised learning 
algorithm to expand more complicated acronyms 

encountered.  But this method requires a lot of 

training data, and because of the statistic classifier, 
its efficiency is not very high. We propose a simple 

method based on some heuristic rules and the table 

between the entity mention and entity candidates in 
our system. 

Our acronym expansion method is based on the 

assumption that for any acronym, there must be its 
other name variant in other place in the document.  

Given a document D and an acronym A, which are 

usually capitalized words, we want to find its full 
name in this document. We employ two heuristic 

rules in our system.  

First, we check if the document contains pattern 
“(A)”, if the document contains the pattern “(A)”, 

we extract the n contiguous sequence of tokens that 

start with the acronym‟s first letter and do not 
contain punctuations or more than 2 stop words 

before the pattern “(A)” as the target entity, the n 

represents the number of the letter in A. For 
example in Figure 3, we extract the target entity for 

the query ABC is All Basotho Convention.  

 

 
Figure3. An example for acronym expansion using 

heuristic rule one 
Second, for the acronym query that does not 

contain the pattern “(A)” in its source documents, 

we process it as follows. We search the query 
entity table obtained in section 3.1, and identify all 

the entity candidates of the acronym query and 

obtain their prior probability. We process these 
entity candidates according to their prior 

probability. The biggest prior probability entity 

candidate is processed firstly. For each entity 
candidate, we obtain all its anchors from the query 

entity table, we judge whether the source document 

contain the anchor, If the source document contain 
the anchor and the anchor is not acronym, the 

system select the entity candidate as the target 

entity, otherwise, the system process other anchors 
of the entity candidate. For example in Figure 4, 

give the acronym query UT and its source 

document, our system first identify the entity 
candidates Utah, University of Texas at Austin, 

University of Tennessee et al. of the acronym 

query UT. And we process them according to their 
prior probability. For the entity candidate 

University of Texas at Austin, we obtain all its 

anchors University of Texas at Austin, University 
of Texas, and we found that the source document 

contain the anchor university of Texas, so we 

return the entity University of Texas at Austin as 
the query‟s target entity. 

 

 
Figure4. An example for acronym expansion using 

heuristic rule two 

4 Entity Linker 

Given the entity candidates of the query, we need 
to link the query with the entity it refers to. The 

role of the entity linker is to measure the similarity 

between the query and each entity candidate. 
Based on the computed similarity, we select the 

most similar entity candidate as the query‟s target 

entity. We use three different methods to compute 
the similarity between the query and the entity 

candidate. These three methods represent out three 

runs for the task. 

4.1 The Similarity Based on Prior Knowledge 

The first method computes the similarity based on 

the entity candidate‟s prior knowledge. The 
intuition behind this method is that the more 

number of links that the query is used as a link to 

entity candidate in Wikipedia, the more similar 
between the query and the entity candidate. The 



prior probability of an entity candidate is computed 

as follows:  

 =  

The N represents the number of links that the 
query is used as a link to the entity candidate in 

Wikipedia; the M represents the total number of 

links that the query is used as a link in Wikipedia. 
We simply select the entity candidate with the 

largest prior probability as the target entity.  

4.2 The Similarity Based on VSM Model 

The second method computes the similarity based 

on VSM model. The intuition behind the basic 

vector space model (VSM) is that the more similar 
(based on the word co-occurrence information) 

between the entity candidate text and the query‟s 

source document text, the more likely the query 
refers to the entity candidate. Using the VSM 

model, both the entity candidate and the query are 

represented as a vector of word features, and each 
word is weighted using the standard TF-IDF 

measure. Thus, given the vector representation of 

the entity candidate and the query, we use the 
cosine similarity between vectors as the similarity 

between the entity candidate and the query.  

 =  

Once the similarity is computed, we select the 
entity candidate with the largest similarity. In order 

to distinguish NIL from non-NIL, we use a 

threshold T to determine if the query refers to NIL. 
If the largest similarity is lower than T, the system 

returns NIL as the query‟s target entity. 

4.3 The Hybrid Similarity Based on Prior 

Knowledge and VSM Model 

The third method computes the similarity based on 

a hybrid model which combine prior knowledge 

and VSM model together. As mentioned above, the 
prior knowledge method capture the entity 

candidate‟s prior probability in Wikipedia, and the 

VSM model method reflect the word co-
occurrence information. So we can derive a hybrid 

similarity which combines both the above 

similarities for achieving better entity linking 
performance. The hybrid similarity is computed as 

follows: 

=  

5 NIL Queries Cluster  

Given the NIL queries determined by the above 
two stages, we need to cluster together queries 

referring to the same entities and provide a unique 

ID for each cluster. First, we cluster NIL queries 
based on their query representations. The same 

query representations are believed to belong to the 

same cluster. And the queries whose 
representations contain the other are believed to 

belong to the same cluster. And then, we use 

hierarchical agglomerative clustering (HAC) 
algorithm to cluster NIL queries in each cluster 

determined by the first stage. This algorithm works 

as follows: Initially, each query is an individual 
cluster; then we iteratively merge the two clusters 

with the largest similarity value to form a new 

cluster until this similarity value is smaller than a 
threshold. We employ the average-link method to 

compute the similarity between two clusters. The 

similarity between queries is determined by the 
VSM model. 

6 Results  

KBP 2011 entity linking task contains 2250 

queries. They use the B-Cubed+ and B-Cubed+ 

recall to evaluate the results. We submitted 3 runs. 
The description of our 3 runs is shown in Table 2. 

The HAC clustering threshold of these 3 run3 is 

0.1. The results of our 3 runs are show in Table 3 
 
Run Description 

NLPR_TAC1 Rank the entity candidates based on their prior 

probabilities 

NLPR_TAC2 Rank the entity candidates based on their 

VSM similarities, threshold is 0.1 

NLPR_TAC3 Rank the entity candidates based on their 

hybrid similarities 

 
Table2 Description of our 3 runs 

 

Run Micro-

average 

B^3 

Precision 

B^3 

Recall 

B^3 F1 

NLPR_TAC1 0.680 0.659 0.619 0.638 

NLPR_TAC2 0.564 0.543 0.525 0.534 

NLPR_TAC3 0.623 0.595 0.609 0.602 

Table3 Results of our 3 runs 



From results in Table3, we found that our first run 

obtain the best result. Compared with the other two 
runs, the first run did not rely on any information 

from the query‟s source document, this indicates 

that the prior probability is a very important feature 
in entity linking task. The results also show that 

our clustering method needs to be improved. The 

similarity based on the VSM model seems not be 
an effective similarity measure in clustering stage.  
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