
The NLPR_TAC Entity Linking System at TAC 2011

Tao Zhang, Kang Liu, and Jun Zhao

Institute of Automation, Chinese Academy of Sciences

HaiDian District, Beijing, China.

{tzhang, kliu, jzhao}@nlpr.ia.ac.cn

Abstract

In this paper, our system in the KBP Entity
Linking task of TAC 2011 is described.

Our system mainly contains three

components. 1) Entity Candidate Detector,
in this component, out system identifies all

the possible entities for an entity mention

through a variety of knowledge sources,
such as the Wikipedia Anchor Dictionary,

the Web, etc. Specially, for acronym

mentions, we detect their entities by
expanding acronym in the source

documents. 2) Entity Linker, in which the

similarity between an entity mention and
an entity candidate in KB is computed. The

entity candidate with higher scores than a

threshold will be extracted as the real entity
of the mention. 3) In the final component,

our system clusters all the NIL entity

mentions which refer to the same entity
using Hierarchical Agglomerative

Clustering algorithm.

1 Introduction

The NLPR_TAC team participated in the Regular

Entity Linking task in the KBP track of TAC 2011.
The task of entity linking is defined as follows:

given a query that consists of a name string and a

source document ID, the system is required to
provide the ID of the knowledge base (KB) entry

to which the query refers, or a “NILxxxx” ID if

there is no such KB entry. At the same time, the

participator‟s system is required to cluster together

queries refers to the same non-KB (NIL) entities
and provide a unique ID for each cluster, in the

form of NILxxxx. The TAC data uses news and

web data as context “source document” and the KB
is derived from English Wikipedia Pages. For

example, given the following sentences containing

the query “Michael Jordan”:

Michael Jordan is a leading researcher in

machine learning and artificial intelligence.

Michael Jordan is a former American
professional basketball player.

An Entity Linking system should link the first
„Michael Jordan‟ to „Michael I. Jordan‟ which is a

professor in Beckley and link the second „Michael

Jordan‟ to „Michael Jeffery Jordan‟ which is a
basketball player.

Our Entity Linking system for KBP 2011 task

involves three stages: 1) detecting entity candidates
(e.g. both “Michael I. Jordan” and “Michael

Jeffrey Jordan” are entity candidates of the entity

mention “Michael Jordan”); 2) name
disambiguation (e.g. given the entity mention

“Michael Jordan” and its context, the system

should be able to determine which Michael Jordan
in KB it refers to or NIL); 3) clustering, which

means the queries in the same cluster refer to the

same NIL.
The challenges of entity linking are the name

variation problem and the name ambiguity problem.

Name variation means that an entity can be
mentioned in different ways such as full name,

acronyms. For example, the entity Michael Jeffrey

Jordan can be mentioned using more than 10
names, such as Michael Jordan, MJ and Jordan.

The name ambiguity problem means that the same

entity mention may refer to different entities in
different contexts.

In order to overcome the problems caused by the

above two reasons, we propose three
advancements in our entity linking system. Firstly,

in the entity candidates detecting stage, we split

queries into two categories: regular query and
acronym query. We found that expanding an

acronym (all capitalized short-form word) from its

context can effectively reduce the ambiguities of
the acronym mention. It‟s based on the assumption

that two variants in the same document refer to the

same entity. For instance, the query “ABC” refers
to more than 30 entities in KB, but with its full

name ”American Broadcasting Company”, which

is unambiguous, we can directly link to the correct
entity without the needs of disambiguation.

Secondly, from our observation, we found that

some entity mentions are misspelling, As a result,
we can‟t obtain their entity candidate through

Wikipedia, so we try to leverage the whole web

information for detecting the entity candidates
through web search for these entity mentions.

Thirdly, in the disambiguation stage, we use three

different methods to compute the similarity
between the entity mention and the entity

candidates. The first is based on the entity prior

knowledge, which means the possibility of an
entity candidate given a query according the

distribution of entity candidates. The second is

based on the VSM model using tf-idf similarity
between context document of the query and

knowledge base (KB) text. And the last one is a
combined similarity based on the entity prior

probability and the tf-idf similarity. Experiment

results show that the best performance of our
system is the first one.

The remainder of this paper is organized as

follows. Section 2 gives a related work description.
Section 3 introduces the entity candidates detecting

stage of our system. We present our detailed entity

linking method in section 4. Section 5 presents our
clustering method. The experiment results are

presented in section 6.

2 Related Work

In this section, we briefly review the related work
in entity linking. The crucial component of entity

linking is the disambiguation stage. The essential

idea is to link the query to entity in KB using
discriminative feature extracted from the query‟s

document and the entity‟s document. Previous

work by Cucerzan [1] proposed a disambiguation
approach to link an ambiguous query in a

document to one entity in KB based on VSM

model. The approach choose the entity with
maximum agreement between the contextual

information extracted from Wikipedia and the

context of entity mention document, as well as the
agreement among the category tags associated with

the entity candidates. Bunescu and Pasca [2] regard

this task as a classification problem and train a
SVM classifier to disambiguate the entity

candidates. They incorporated entity candidates‟

category information to help improve the accuracy
of the classifier. Dredze et al. [3] employed a SVM

ranking method to disambiguate entity candidates.

They used a comprehensive feature set to
accomplish the entity linking task. Because the

supervised learning method usually requires lots of

training data, Zhang et al. [4] proposed a novel
method to automatically generate a large scale

corpus annotation for ambiguous mentions

leveraging on their unambiguous synonyms in the
document collection. Radford et al. [5] used a

Graph-Based ranking method in entity linking task,

in their approach, context entities are taken into
account in order to reach a global optimized

solution together with the query entity. Nemeskey

et al. [6] considered using information retrieval
method to disambiguate queries, in their approach,

the entire background source document is

considered as a single query, the task is to retrieve
the most relevant Wikipedia article. Han and Sun

[7] proposed an entity mention model, which can

leverage heterogeneous entity knowledge for the
entity linking task.

3 Entity Candidate Detector

Entity candidate detector finds possible KB entity

candidates for the given query. We split query into

two classes: regular query and acronym query. For
different query type, our system uses different

detection strategies. We find entity candidates of

regular query through two ways: 1) using

Wikipedia dictionary; 2) leveraging web

information. And for acronym query, we expand it
from its context to disambiguate it. In the

following, we respectively describe them in detail.

3.1 Entity Candidates Detection Using

Wikipedia Dictionary

Wikipedia contains many name variants of entities

like confusable names, spelling variations, nick

name etc. we use the anchor dictionary of
Wikipedia to detect the entity candidate. For

example, in Figure 1, the three anchor texts of

ABC are respectively its full name “American
Broadcasting Company”, acronyms “ABC” and

“American Broadcasting Companies, Inc”. Using
the anchor information in Wikipedia, we can build

a table between query and entity candidate. Also,

we can obtain the count information that the entity
using the query as anchor in Wikipedia. This

information is also called the entity prior

knowledge. It represents the likely of an entity
candidate given a query. This information is used

in our first run. Part of the table is shown in table 1.

Figure1. Three anchors of entity ABC

query Entity candidate The number that the

query link to the

entity candidate

ABC American Broadcasting

Company

Australian Broadcasting

Corporation

ABC (band)

ABC Television

…

10023

1452

196

99

…

AI Artificial intelligence

Game Artificial

intelligence

Ai (singer)

Strong AI

…

657

57

8

3

…

… … …

Table1. Part of the query entity table

Using the table, we can easily retrieve the entity

candidates of a given query through string
matching in the table.

3.2 Entity Candidates Detection Using the

Web

Through the table, there are still some queries
which cannot find entity candidates in the table.

We believe there are two reasons. The first one: the

real target entity of a query is not in KB, in this
situation, the output should be NIL for this query.

The second one, some queries are misspelled

infrequently used, so that our system cannot
identity the mention in the query as a variation.

Specially, for the second reason, we try to leverage

the whole web information for detecting the entity
candidates through web search for query whose

entity candidates set is empty. Given a query

whose entity candidates set is empty, we submit to
the yahoo search engine with the form “query

Wikipedia”, and then retrieve the first web page if

the page is a Wikipedia page. And then if the first
page is a Wikipedia page, we extract its title as the

query‟s candidate entity. Otherwise, we return NIL

for this query. This contributes to a performance
improvement on the KBP 2009 test data. For

example, the search results of the query Angel

Merkel is shown in Figure 2, we can detect the
entity Angela Merkel for this query.

Figure2. Web Search Results of Angel Merkel +

Wikipedia

3.3 Acronym Expansion

In this section, we describe our algorithm for
finding an acronym‟s expansion in a source

document for an acronym query.

From our observation, acronym is usually high
ambiguous, but its full name, is usually

unambiguous. Hence, expanding an acronym from

its context can effectively reduce the ambiguities
of an acronym query, under the assumption that

two variants in the same document refer to the

same entity. Han and Zhao [8] only allow
expansions adjacent to the acronym in parenthesis

Zhang et al. [9] propose a supervised learning
algorithm to expand more complicated acronyms

encountered. But this method requires a lot of

training data, and because of the statistic classifier,
its efficiency is not very high. We propose a simple

method based on some heuristic rules and the table

between the entity mention and entity candidates in
our system.

Our acronym expansion method is based on the

assumption that for any acronym, there must be its
other name variant in other place in the document.

Given a document D and an acronym A, which are

usually capitalized words, we want to find its full
name in this document. We employ two heuristic

rules in our system.

First, we check if the document contains pattern
“(A)”, if the document contains the pattern “(A)”,

we extract the n contiguous sequence of tokens that

start with the acronym‟s first letter and do not
contain punctuations or more than 2 stop words

before the pattern “(A)” as the target entity, the n

represents the number of the letter in A. For
example in Figure 3, we extract the target entity for

the query ABC is All Basotho Convention.

Figure3. An example for acronym expansion using

heuristic rule one
Second, for the acronym query that does not

contain the pattern “(A)” in its source documents,

we process it as follows. We search the query
entity table obtained in section 3.1, and identify all

the entity candidates of the acronym query and

obtain their prior probability. We process these
entity candidates according to their prior

probability. The biggest prior probability entity

candidate is processed firstly. For each entity
candidate, we obtain all its anchors from the query

entity table, we judge whether the source document

contain the anchor, If the source document contain
the anchor and the anchor is not acronym, the

system select the entity candidate as the target

entity, otherwise, the system process other anchors
of the entity candidate. For example in Figure 4,

give the acronym query UT and its source

document, our system first identify the entity
candidates Utah, University of Texas at Austin,

University of Tennessee et al. of the acronym

query UT. And we process them according to their
prior probability. For the entity candidate

University of Texas at Austin, we obtain all its

anchors University of Texas at Austin, University
of Texas, and we found that the source document

contain the anchor university of Texas, so we

return the entity University of Texas at Austin as
the query‟s target entity.

Figure4. An example for acronym expansion using

heuristic rule two

4 Entity Linker

Given the entity candidates of the query, we need
to link the query with the entity it refers to. The

role of the entity linker is to measure the similarity

between the query and each entity candidate.
Based on the computed similarity, we select the

most similar entity candidate as the query‟s target

entity. We use three different methods to compute
the similarity between the query and the entity

candidate. These three methods represent out three

runs for the task.

4.1 The Similarity Based on Prior Knowledge

The first method computes the similarity based on

the entity candidate‟s prior knowledge. The
intuition behind this method is that the more

number of links that the query is used as a link to

entity candidate in Wikipedia, the more similar
between the query and the entity candidate. The

prior probability of an entity candidate is computed

as follows:

 =

The N represents the number of links that the
query is used as a link to the entity candidate in

Wikipedia; the M represents the total number of

links that the query is used as a link in Wikipedia.
We simply select the entity candidate with the

largest prior probability as the target entity.

4.2 The Similarity Based on VSM Model

The second method computes the similarity based

on VSM model. The intuition behind the basic

vector space model (VSM) is that the more similar
(based on the word co-occurrence information)

between the entity candidate text and the query‟s

source document text, the more likely the query
refers to the entity candidate. Using the VSM

model, both the entity candidate and the query are

represented as a vector of word features, and each
word is weighted using the standard TF-IDF

measure. Thus, given the vector representation of

the entity candidate and the query, we use the
cosine similarity between vectors as the similarity

between the entity candidate and the query.

 =

Once the similarity is computed, we select the
entity candidate with the largest similarity. In order

to distinguish NIL from non-NIL, we use a

threshold T to determine if the query refers to NIL.
If the largest similarity is lower than T, the system

returns NIL as the query‟s target entity.

4.3 The Hybrid Similarity Based on Prior

Knowledge and VSM Model

The third method computes the similarity based on

a hybrid model which combine prior knowledge

and VSM model together. As mentioned above, the
prior knowledge method capture the entity

candidate‟s prior probability in Wikipedia, and the

VSM model method reflect the word co-
occurrence information. So we can derive a hybrid

similarity which combines both the above

similarities for achieving better entity linking
performance. The hybrid similarity is computed as

follows:

=

5 NIL Queries Cluster

Given the NIL queries determined by the above
two stages, we need to cluster together queries

referring to the same entities and provide a unique

ID for each cluster. First, we cluster NIL queries
based on their query representations. The same

query representations are believed to belong to the

same cluster. And the queries whose
representations contain the other are believed to

belong to the same cluster. And then, we use

hierarchical agglomerative clustering (HAC)
algorithm to cluster NIL queries in each cluster

determined by the first stage. This algorithm works

as follows: Initially, each query is an individual
cluster; then we iteratively merge the two clusters

with the largest similarity value to form a new

cluster until this similarity value is smaller than a
threshold. We employ the average-link method to

compute the similarity between two clusters. The

similarity between queries is determined by the
VSM model.

6 Results

KBP 2011 entity linking task contains 2250

queries. They use the B-Cubed+ and B-Cubed+

recall to evaluate the results. We submitted 3 runs.
The description of our 3 runs is shown in Table 2.

The HAC clustering threshold of these 3 run3 is

0.1. The results of our 3 runs are show in Table 3

Run Description

NLPR_TAC1 Rank the entity candidates based on their prior

probabilities

NLPR_TAC2 Rank the entity candidates based on their

VSM similarities, threshold is 0.1

NLPR_TAC3 Rank the entity candidates based on their

hybrid similarities

Table2 Description of our 3 runs

Run Micro-

average

B^3

Precision

B^3

Recall

B^3 F1

NLPR_TAC1 0.680 0.659 0.619 0.638

NLPR_TAC2 0.564 0.543 0.525 0.534

NLPR_TAC3 0.623 0.595 0.609 0.602

Table3 Results of our 3 runs

From results in Table3, we found that our first run

obtain the best result. Compared with the other two
runs, the first run did not rely on any information

from the query‟s source document, this indicates

that the prior probability is a very important feature
in entity linking task. The results also show that

our clustering method needs to be improved. The

similarity based on the VSM model seems not be
an effective similarity measure in clustering stage.

Acknowledgments

The work is supported by the National Natural

Science Foundation of China under Grants no.

61070106 and 60875041.

References

[1]Cucerzan. 2007. Large-scale named entity

disambiguation based on Wikipedia data. In:

Proceeding s of EMNLP-CoNLL..

[2]Bunescu and Pasca. 2006. Using encyclopedic
knowledge for named entity disambiguation. In:

Proceedings of EACL.

[3]Dredze et al. 2010. Entity Disambiguation for

Knowledge Base Population. In: Proceeding of

International Conference on Computational

Linguistics.

[4]Zhang et al. 2010. Entity Linking Leveraging

Automatically Generated Annotation. In: Proceeding
of International Conference on Computational

Linguistics.

[5]Radford et al. 2010. CMCRC at TAC 10: Document-

level Entity Linking with Graph-based Re-ranking. In:

Proceeding TAC 2010 Workshop.

[6]Nemeskey et al. 2010. BUDAPESTACAD at TAC

2010. In: Proceeding TAC 2010 Workshop.

[7] Han and Sun. 2010. A Generative Entity-Mention
Model for Linking Entities with Knowledge Base. In:

Proceeding of ACL.

[8]Han and Zhao. 2009. NLPR_KBP in TAC 2009 KBP

Track: A Two-Stage Method to Entity Linking. In:

Proceeding of Text Analysis Conference.

[9]Zhang. et al. 2011. Entity Linking with Effective

Acronym Expansion, Instance Selection and Topic

Modeling. In: International Joint Conference on
Artificial Intelligence.

.

