
Supervised Learning for Linking Named Entities to
Knowledge Base Entries

Ivo Anastácio
INESC-ID Lisboa

Bruno Martins
INESC-ID Lisboa

{ivo.anastacio, bruno.g.martins, pavel.calado}@ist.utl.pt

Pável Calado
INESC-ID Lisboa

Abstract

This paper addresses the challenging information ex-
traction problem of linking named entities in text
to entries in a knowledge base. Our approach uses
supervised learning to (a) rank candidate knowl-
edge base entries for each named entity, (b) clas-
sify the top-ranked entry as the correct disambigua-
tion or not, and (c) group together the named en-
tities without a corresponding entry in the knowl-
edge base. We analyze the fundamental design chal-
lenges involved in the development of a learning-
based entity-linking system, and we provide exten-
sive experimental results for a wide range of meth-
ods and feature sets. Our experiments over the
datasets from the Text Analysis Conference (TAC)
Entity Linking Task demonstrate the effectiveness of
supervised learning methods, showing that out-of-
the-box algorithms and relatively simple to compute
features can obtain very competitive results.

1 Introduction
Given the large amounts of textual data currently avail-
able on the Web, research on information extraction
methods to automatically extract structured information
from these sources is getting increasingly popular. Infor-
mation Extraction (IE) can be further divided into sev-
eral sub-problems, most notably named entity recogni-
tion (Whitelaw et al., 2008), relationship extraction (Et-
zioni et al., 2008), and named entity disambiguation (Ji
and Grishman, 2011). This work addresses the later
sub-problem, also known as grounding, cross-document
co-reference resolution, or named entity linking. It can
be briefly summarized as the task of mapping an entity
previously recognized by a Named Entity Recognition
(NER) system, i.e. the reference, to an identifier spe-
cific to the concept that the named entity is referring to in
the text, i.e. the referent. The named entity disambigua-
tion problem is currently receiving substantial attention

in information extraction community, given its recent in-
clusion as a specific task in the NIST-sponsored Auto-
mated Content Extraction (ACE) evaluations (i.e., the
ACE-2008 cross-document co-reference resolution task)
or the Text Analysis Conference (i.e. the Knowledge
Base Population task, referred to as TAC-KBP). For in-
stance, consider the following sentences, each belonging
to a different textual document, and consider the word
Bush as being recognized as a named entity:

1. Bush won the 2004 presidential election.

2. President Bush was born in 1946.

3. Bush’s new album is expected to become a hit.

By analyzing the context surrounding each reference
to Bush, a named entity disambiguation system should
assign the same identifier to the first two references, as
they both refer to former U.S. President George W. Bush,
while the named entity in the third document is referring
to a popular rock band, thus corresponding to a differ-
ent identifier. Although this example considered enti-
ties sharing the same name, entities that are misspelled
or that can be referenced by multiple equivalent names
(e.g., New York City, NYC and Big Apple) should also be
assigned to the same identifier.

Possible applications for named entity disambiguation
include (a) enriching documents with links to authorita-
tive Web pages on the referenced entity, (b) grouping Web
search results for queries corresponding to ambiguous en-
tities, based on the possible referents, and (c) supporting
advanced information retrieval applications such as ques-
tion answering and entity search.

This work presents a thorough study on the subject of
named entity disambiguation, providing a discussion of
its key issues, as well as an empirical analysis of the ef-
fectiveness of different machine learning models and dif-
ferent sets of features. Machine learning methods for ad-
dressing ranking tasks are usually known as Learning to



Rank (Liu, 2009) approaches, and they have been suc-
cessfully applied in document retrieval systems. How-
ever, their application in named entity disambiguation has
received less attention. We specifically try to answer the
following research questions:

• Which features lead to a more effective learning-
based entity linking approach?

• When modeling the task as a learning to rank prob-
lem, what are the specificities of named entity dis-
ambiguation when compared to traditional docu-
ment retrieval?

• Is it useful to train specific models according to the
estimated query type (e.g., use different models for
people, organizations, or location entities)?

The rest of this paper is organized as follows: Section
2 describes some of the key issues involved in the task,
also presenting the usual architecture of entity linking
systems. Section 3 presents related work, covering both
the areas of named entity disambiguation and learning to
rank. Section 4 presents the details of our machine learn-
ing approach, with an emphasis on the features we used to
model the relationship between named entities and can-
didate disambiguations. Section 5 presents the experi-
mental results of a study comparing different configura-
tions for the proposed machine learning approach. Fi-
nally, Section 6 presents the main conclusions and points
directions for future work.

2 Named Entity Disambiguation
Previous works on named entity disambiguation have
distinguished between two types of approaches, namely
corpus-based (i.e., with no a priori knowledge on the
entities, using clustering to disambiguate the references)
and knowledge-based (i.e., using a knowledge base with
information about each entity, usually Wikipedia, and as-
signing references to the most similar knowledge base en-
try). However, competitions designed to evaluate named
disambiguation systems (e.g., TAC-KBP (Ji and Grish-
man, 2011)) are now requiring that references should not
only be assigned to a predefined knowledge base entry,
but also for references to entities that are not in the knowl-
edge base to be grouped together if they refer to the same
concept, thus mixing these two types of approaches.

Although the knowledge-based approach can be seen
as a ranking problem, where the named entity reference is
the equivalent to a query and the assigned referent should
be the highest ranked candidate, the named entity disam-
biguation task has several specificities, namely:

• Binary relevance and single (or no) answer. Con-
trary to document retrieval where documents can

be more or less relevant to a query, here only one
knowledge base entry can be the correct referent to
a given reference, or none if the entity is not repre-
sented in the knowledge base.

• Imbalancement problems. In document retrieval
applications we usually have, for each query, sev-
eral examples of relevant documents and some ex-
amples of irrelevant documents, which are used to
train a ranking model. However, in the named entity
disambiguation task, we have at most one relevant
knowledge base entry and many irrelevant entries.

• Optimization of evaluation metric. While recent
learning to rank models for document retrieval di-
rectly optimize an evaluation metric such as MAP,
MRR or NDCG, for named entity disambiguation
systems following a learning to rank approach, the
P@1 seems a more suitable evaluation metric. As
an illustration consider two models, namely one that
ranks the correct referent first for one query and last
for all others, and another which always ranks the
correct referent second. Although the second model
places the correct referents very close to the top, it
would still perform worse than the model that as-
signs a correct disambiguation only once.

The general architecture for named entity linking sys-
tems, with basis on an analysis of several approaches
found in related literature, is presented in Figure 1. This
architecture consists of five main modules:

1. Query expansion: Knowledge base referents might
be referenced in the texts by several alternative
names, some of which might be more ambiguous
than others. Therefore, given a reference, most sys-
tems apply expansion techniques that try to identify
other names used in the source document that refer-
ence the same entity.

2. Candidate generation: This module filters the
knowledge base entries that might correspond to the
query, based on string similarity. Since Wikipedia
is the most commonly used knowledge base, some
of its hyperlink structure is also widely used to ob-
tain alternative names (e.g., disambiguation pages,
redirect pages, anchors).

3. Candidate ranking: This module sorts the re-
trieved candidates according to the likelihood of be-
ing the correct referent. Most approaches use ei-
ther a Learning to Rank approach (Liu, 2009) or
an heuristic method such as the Vector Space IR
Model (Baeza-Yates and Ribeiro-Neto, 1999).

4. Candidate validation: This module decides
whether the top ranked referent is an error result-
ing from the fact that the correct referent is not



Figure 1: The modules that compose the general architecture of
a complete named entity disambiguation system.

present in the knowledge base. Commonly used ap-
proaches include setting a threshold on the ranking
score, training a specific classification model, or ap-
plying a voting scheme.

5. Nil entity resolution If the system decides that
a given query has no corresponding match in the
knowledge base (aka, a nil query), then, the nil res-
olution module should output an identifier specifi-
cally generated for all references to that particular
entity. Nil resolution is a less studied problem, with
little or no previous discussions about it.

3 Related Work
This section presents the most important related works
concerning the subjects of (a) named entity disambigua-
tion, and (b) supervised learning to rank.

3.1 Named Entity Disambiguation
The seminal work by Bagga and Baldwin (1998) ad-
dressed the named entity disambiguation task through the
clustering of all references corresponding to the same
entity, using the Vector Space Model (Baeza-Yates and
Ribeiro-Neto, 1999). Although the authors only tried to
resolve person names, their approach also seems suitable
for other entity types. The specific methodology of this
approach first looks for the co-reference chains of each
document, i.e. the lists of all mentions to a given en-
tity made in each single document. Then, for each co-
reference chain, the system produces an entity summary

consisting of all noun phrases where a chain element oc-
curs. Finally, the similarity between all cross-document
summaries is measured and summaries with a cosine sim-
ilarity score above a given threshold are considered to be
about the same entity.

However, an increasingly popular trend in the area of
named entity disambiguation relates to assigning each en-
tity mention to the corresponding Wikipedia entry, rather
than to a cluster with equivalent entities. This new rep-
resentation makes it possible to model the named entity
disambiguation task as a ranking problem, where each
mention is assigned to its most similar Wikipedia page.
The work by Bunescu and Bunescu and Pasca (2006)
is one of the earliest and most notorious proposals fol-
lowing this methodology. The authors developed a linear
similarity function which considered contextual and cate-
gorical features, with weights optimized using supervised
learning. The authors also addressed the problem of find-
ing the correct referent for entity mentions not included
in Wikipedia (i.e., the nil entities). The proposed solution
involved defining a similarity threshold below which no
assignment was performed by the system.

The work by Cucerzan (2007) presents a named entity
disambiguation approach which also relies on Wikipedia
as an external knowledge repository. Contrary to most
other approaches, Cucerzan considers, as context for each
entity reference, not the surrounding words, but instead
the remaining entity references made in the same docu-
ment. The proposed approach uses the traditional Vector
Space IR Model, comparing document vectors with the
referent vectors. The document vector contains the cat-
egories of all possible referents for all entity references
found in its text, as well as the number of occurrences
of each reference. The referents have binary feature vec-
tors with all the categories and entity references found in
its Wikipedia entry. Interestingly, the similarity measure
used by the author does not normalize the feature values,
thus privileging important entities, which tend to have
longer descriptions, more mentions, and more categories.
Also, the author argues that the errors originating from
the usage of the one sense per discourse principle (Gale
et al., 1992), which simplifies the disambiguation prob-
lem through the assumption that a given document does
not contain homonym entities, are non-negligible. His
approach to address this problem involved determining
a reference’s context in an iterative fashion — when-
ever more than one Wikipedia entity scored higher than
a predefined threshold, the considered context would be
shrunk to the level of a paragraph, and possibly to the
level of a sentence.

Previous works have also addressed disambiguation
tasks focusing on specific types of entities. For instance
Leidner surveyed a variety of approaches for place refer-
ence resolution (Leidner, 2007). He concluded that the



most effective methods usually rely on gazetteer match-
ing for performing the identification (e.g., matching text
expressions against the Geonames database), together
with natural language processing heuristics such as de-
fault senses (i.e., disambiguation should be made to the
most important referent, estimated with basis on popu-
lation counts) or geographic heuristics such as the spa-
tial minimality (i.e., disambiguation should minimize the
bounding polygon that contains all candidate referents).

Mihalcea and Csomai (2007) proposed the Wikify!
system for performing word sense disambiguation based
on Wikipedia articles. Their approach involves four main
steps, namely one for selecting the candidate referents,
two disambiguation modules that independently deter-
mine the most probable referent, and a fourth step that
checks if the disambiguation modules agree. If there is
no agreement for the most probable reference, then no
referent is assigned (i.e., we have a nil entry). On what
regards the disambiguation modules, we have that one of
them measures the contextual overlap between the refer-
ence and candidate referents, while the other leverages
on the manually assigned links inside Wikipedia articles
to train a supervised learning approach based on a Naı̈ve
Bayes model. The feature vectors include not only the
word terms, but also their parts of speech.

Sarmento et al. studied the development of a Web-
scale named entity disambiguation system, discussing
several scalability issues (Sarmento et al., 2009). The au-
thors argue that not only is there a large number of entity
references, as their distribution is highly skewed, since
for each named entity there is usually a small set with
of popular real-world concepts, to which the vast major-
ity of entity mentions refers to, and there are many enti-
ties with much less information and more noise. Given
the aforementioned characteristics, Sarmento et al. sug-
gested the usage of a clustering algorithm capable of han-
dling unbalanced data distributions, and with a stopping
criteria that does not depend on a predefined value for
the number of clusters. The authors ended up follow-
ing a graph-based clustering approach, where entity men-
tions (i.e., nodes) are linked together if their similarity is
above a given threshold. The clusters are then directly
obtained by looking at the connected components. Their
performance results showed that name co-occurrence in-
formation was not sufficient for merging distinct facets
of the same entity. This became obvious after manually
inspecting the results for dominant entities, which had
multiple clusters, each representing a facet of an entity.
They also experimented with increasingly larger samples
of data and noticed that, as the size of the dataset got big-
ger, the complexity of the disambiguation task increased,
since the number of entities and/or their respective scopes
was also larger.

Following the success of learning to rank approaches

in document retrieval, Zheng et al. evaluated learn-
ing to rank methods in the named entity disambiguation
task (Zheng et al., 2010). The considered ranking meth-
ods included representative algorithms of pointwise (i.e.,
SVM regression and Perceptron), pairwise (i.e., Rank-
ing Perceptron), and listwise (i.e., ListNet) learning to
rank approaches — see Section 3.2. The authors used
approximately twenty features to represent candidates,
divided into three groups, namely (a) surface features,
which measure the name similarity between the refer-
ence and the candidate referents, (b) context features, that
measure the context similarities, and (c) special features,
which represent an entity’s geographical and categorical
aspects. Experiments showed that the listwise approach
was the most successful. In order to address the cases
where references had no correct referent in the knowl-
edge base, the authors supply the top ranked referent to a
binary classifier which, using a set of features very sim-
ilar to the ones used for ranking, decides whether that
referent is correct or not.

He and de Rijke (2010) compared the effectiveness of
learning to rank methods (i.e., AdaRank and Ranking
SVM) against traditional classification approaches (i.e.,
SVM, J48, and Naı̈ve Bayes) in the task of suggesting
relevant Wikipedia articles to a given concept or entity
found in a text. Their results support the advantages of
learning to rank over traditional classification. AdaRank
obtained the best results in all evaluation measures, in-
cluding MAP, P@1, and P@5.

3.2 Supervised Learning to Rank

Previous works in information retrieval have addressed
the usage of supervised machine learning for develop-
ing search engine ranking formulas, combining multi-
ple estimators for document relevance in an optimal way.
Both Liu (2009) and Li (2011) presented good surveys
on the subject of learning to rank (L2R) for information
retrieval, categorizing the existing algorithms into three
groups, according to their input data representation and
their optimization objectives:

• Pointwise approach - The L2R task is seen as a re-
gression or a classification problem. Given feature
vectors of each single resource from the data for the
input space, the relevance degree of each individual
resource, towards an input query, is predicted with
scoring functions based on classification or regres-
sion models. Through these scores, we can sort re-
sources and produce the final ranked list. Several
pointwise methods have been proposed, including
Multiclass Classification for Ranking (McRank) (Li
et al., 2007) or Initialized Gradient Boosted Regres-
sion Trees (IGBRT) (Mohan et al., 2011).



• Pairwise approach - The L2R task is seen as a bi-
nary classification problem for pairs of resources,
since the relevance degree can be regarded as a bi-
nary value telling which ordering of the resources
is better for a given pair. Given feature vectors
of pairs of resources from the data for the input
space, the relevance degree of each of those re-
sources can be predicted with scoring functions
which try to minimize the average number of mis-
classified pairs. Several different pairwise methods
have been proposed in the related literature, such
as SVMrank (Joachims, 2002) or Ranking Percep-
tron (Collins and Duffy, 2002).

• Listwise approach - The L2R task is addressed in a
way that takes into account an entire set of resources
associated with a query. These methods train a rank-
ing function through the minimization of a listwise
loss function defined on the predicted list and some
ground truth list. Given feature vectors for a list of
resources from the input space data, the relevance
degree of each of those resources can be predicted
with scoring functions which try to directly opti-
mize the value of a particular information retrieval
evaluation metric computed over the predicted list,
averaged over all queries in the training data (Liu,
2009). Several different listwise methods have also
been proposed, including ListNet (Cao et al., 2007)
and AdaRank (Xu and Li, 2007).

In this paper, we experimented with several pairwise
and listwise state-of-the-art learning to rank algorithms
available through open-source tools.

In the past, and noticing that significant differences
may exist between queries, several authors have proposed
to use multiple ranking models, specific to the type of
query, in order to improve L2R effectiveness. For in-
stance Geng et al. (2008) proposed a query-dependent
L2R method which dynamically creates a ranking model
for a given query by using the k nearest training queries
and their corresponding query-document feature vectors,
afterwards using this model to rank the documents with
respect to the query. Their experimental results showed
that query-dependent ranking outperformed the baseline
method of using a single ranking function, effectively
leveraging the useful information of the similar queries
and avoiding the negative effects from the dissimilar
ones. Zhu et al. (2009) demonstrated that it is highly
beneficial to divide queries into multiple groups and ad-
dress ranking problems through multiple models based
on query difficulty. Experiments showed that by using
a classification model to predict query difficulty, latter
using Ranking SVM or RankNet to build specific L2R
models for each difficulty class, one can achieve signif-
icant improvements in the task of web search ranking.

Similar ideas are explored in this paper, by also experi-
menting with entity-specific ranking models to select the
best candidate disambiguation (i.e., one ranking model
for entities of the type person, one for organizations, and
another for geo-political entities).

4 Using Supervised Learning for Named
Entity Disambiguation

In order to study the main aspects influencing the perfor-
mance of entity linking systems, we developed a fully
functional prototype that includes all the five modules
from the general architecture shown in Figure 1. This
prototype was used to participate n the 2011 edition of
the TAC english entity linking task.

4.1 Overview on the Approach
We specifically considered two simple query expansion
mechanisms, namely one that finds acronyms for the
named entity references by looking for a textual pattern
that corresponds to having a set of capital words followed
by the acronym inside parentheses (i.e., finding expres-
sions like General Electric (GE)), or vice-versa, and an-
other that looks for longer entity mentions in the source
text (i.e., SMART Communications is an expansion for the
query SMART). As for the candidate generation module,
we considered an approach that returns the top-k most
likely entries in the knowledge base, according to a mod-
ified version of the traditional cosine similarity computed
between the query and all knowledge base entries. The
modification essentially replaces the unit level, making
the metric work with name n-grams instead of document
words, with n between 1 and 4. Roughly, this means that
the more n-grams the query string has in common with
a name in the knowledge base, the more probable the re-
spective entry is to being selected as candidate.

The candidate ranking module is based on supervised
learning to rank approaches, given the success of previ-
ous works like those of Zheng et al. (2010) and He and
de Rijke (2010). The highest ranked candidates are then
filtered through a supervised classifier that detects the nil
references.

Finally, the nil references are clustered together by ap-
plying the transitive closure to a graph with the nil queries
as nodes, and with the initial edges estimated through a
trained classifier that finds pairs of duplicate referents.

The rest of this section details the considered features
for representing the association between named entity
references and candidate entries, as well as the consid-
ered supervised learning models.

4.2 Considered Features
The considered learning methods for disambiguating en-
tity references rely on a rich set of features, which can be
organized according to the following groups.



4.2.1 Popularity Features

We considered a set of features that benefit more pop-
ular candidates, given the intuition that these candidates
tend to be referenced more often in the texts.

• Text Length Rank. The rank of the given candidate
in the list of all candidates, when they are ordered
according to their textual description lengths.

• Alternative Names Rank. The rank of the given
candidate in the list of all candidates, when can-
didates are ordered according to the corresponding
number of alternative names.

4.2.2 Text-based Similarity

These features measure the similarity between the con-
text where the entity reference occurs and the textual de-
scription for the candidate disambiguations.

• Cosine Document Similarity. The cosine similar-
ity, using TF-IDF weights, between the candidate’s
description and the query source text, i.e., the docu-
ment where the query occurs.

• Cosine Near Context Similarity. The cosine sim-
ilarity, using TF-IDF weights, between the candi-
date’s description and a window of 50 tokens sur-
rounding all occurrences of the query.

• Cosine Named Entity Similarity. The cosine sim-
ilarity, using TF-IDF weights, between the candi-
date’s description and the query.

• Cosine with Pseudo-Relevance Feedback. The co-
sine similarity, using TF-IDF weights, between the
candidate’s description and the 20 words with the
highest TF-IDF weights from the 5 entries in the en-
tire knowledge base with a description most similar
to the query’s near context (i.e., the window of 50
tokens surrounding all query occurrences).

• Cosine Document Rank. The rank of the given
candidate in the list of all candidates, when candi-
dates are ordered according the feature which we
called cosine document similarity.

• Query in Candidate’s Text. One if the query oc-
curs in the candidate’s description, zero otherwise.

• Candidate’s Name in Source Text. One if the can-
didate’s main name occurs in the query’s source text,
zero otherwise.

4.2.3 Topical Similarity
This set of features leverages on topic-based represen-

tations for the query’s source text and the candidate’s de-
scription, as obtained through a Latent Dirichlet Alloca-
tion (LDA) topic model ? built with basis on all descrip-
tions in the knowledge base. By representing the source
and candidate texts as probabilistic distributions over top-
ics, as opposed to bags-of-words, we hope to minimize
the impact of vocabulary mismatches. Our LDA topic
model was generated with the contents of the knowledge
base, pre-processed in order to remove stop-words and
case information, and word terms reduced to their cor-
responding stems through Porter’s algorithm. The ac-
tual model was built through a Gibbs sampling procedure
with 200 iterations, using the 22,000 most frequent word
stems. The values of the α and β hyper-parameters were
respectively set to 50/K and 0.1, where K = 200 is the
considered number of topics.

• Topic Vector Similarity. The cosine similarity,
computed between the vectors corresponding to the
candidate and the query’s topic probabilities.

• Topic Match. One if the topic that best character-
izes the candidate’s description is the same that best
characterizes the source text, zero otherwise.

• Topic Divergence. The symmetrized form of
Kullback-Leibler divergence metric, computed be-
tween the candidate and query’s topic distributions.

4.2.4 Name Similarity
These features capture similarities between the strings

of the entity references and the candidate’s names.

• Exact Name Match. One if the named entity is an
exact match with at least one of the possible names
for the specified candidate, zero otherwise.

• Name Substring. One if the entity name or one
of the candidate’s names is a substring of the other,
zero otherwise.

• Query Starts Candidate Name. One if at least one
of the candidate’s names starts with the query, zero
otherwise.

• Query Ends Candidate Name. One if at least
one of the candidate’s possible names ends with the
query, zero otherwise.

• Candidate’s Name Starts Query. One if the en-
tity name starts with at least one of the candidate’s
names, zero otherwise.

• Candidate’s Name Ends Query. One if the en-
tity name ends with at least one of the candidate’s
names, zero otherwise.



• Common Name Words. The maximum number of
common words between the query and one of the
candidate’s names.

• Levenshtein Similarity. The string similarity based
on the Levenshtein metric between the candidate’s
main name and the query. Noticing that queries
are often expanded with basis on the source docu-
ment, we also check if the expanded query results
in a higher feature similarity, using this value if it is
indeed the case.

• Jaro-Winkler Similarity. The string similarity
based on the Jaro-Winkler metric between the candi-
date’s main name and the query or query expansion,
whichever is higher.

• Jaccard Similarity. The string similarity based on
the Jaccard token-based metric between the candi-
date’s main name and the query .

• Soft Jaccard Similarity. The Jaccard token-based
string similarity between the candidate’s main name
and the query, using the Levenshtein edit-distance
with a threshold of 2 when matching individual to-
kens.

• Soft TF-IDF Similarity. The TF-IDF token-based
string similarity between the candidate’s main name
and the query, using the Jaro-Winkler distance with
a threshold of 0.9 when matching individual tokens.

• Named Entity Comparison This Named Entity
Similarity Metric1 applies sets of rules to two strings
to determine whether they are likely to refer to the
same underlying entity. It handles different types of
entity – people, locations, and organizations – us-
ing appropriate resources (e.g., acronyms for com-
panies).

4.2.5 Entity and Geo-based features
These features leverage on the results from a Named

Entity Recognition (NER) system, specifically Stanford
NER2, applied to both the query’s source text and the
candidate’s description. NER systems return not only the
named entities occurring in the text but also their esti-
mated type (i.e., person, organization, or location).

• Common Entities. The number of named entities
shared by both the query’s source text and the can-
didate’s textual description.

• Jaccard Similarity Between Entities. The Jac-
card similarity metric computed between the set of

1http://cogcomp.cs.illinois.edu/page/demo_
view/26

2http://www-nlp.stanford.edu/ner/

named entities in the query’s source text and the set
of named entities from the candidate’s description.

• Common Geo Entities. The number of named en-
tities of the location type that are shared by both the
query’s source text and the candidate’s description.

• Missed Geo Entities. The number of location en-
tities in the source text, but not in the candidate’s
description.

• Query Type. The named entity type, i.e. person,
organization, location, or unknown, estimated when
recognizing a named entity with the same string as
the query. If the query is recognized more than once,
the type results from a majority vote. Each type is
represented by a binary feature.

• Candidate Type. Similar to the query type, but
based on the candidate’s description.

• Type Match. One if the query and the candidate’s
types are the same, zero otherwise.

4.2.6 Page-Type Features
These features provide information regarding the type

of document where the query occurs.

• Page Type. The source type of each text associated
with a query (e.g., Web, newswire). Each type is
represented by a binary feature.

4.2.7 Validation-Only Features
Besides the aforementioned features, and noticing that

the validation module only takes as input the top ranked
candidate (i.e., the best possible disambiguation), we
consider some features that result from the full set of
ranking scores and check if the score for the top-ranked
candidate is significantly different from that of the re-
maining candidates.

• Ranking Score. The score of the best candidate, as
given by the ranking module.

• Mean Score. The mean score given to the query’s
set of candidates.

• Difference from Mean Score. The difference be-
tween the best candidate’s ranking score and the
mean score given to the query’s set of candidates.

• Standard Deviation. The standard deviation in the
scores given to the query’s set of candidate.

• Dixon’s Q Test for Outliers. This feature is ob-
tained through the formula (x1 − x2)/(x1 − xlast)
where x1 denotes the score of the top-ranked can-
didate, x2 denotes the score of the second-ranked



candidate, and xlast denotes the score of the candi-
date ranked in last. If the first candidate is different
from the others, then it is likely to correspond to an
outlier.

• Grubb’s Test for Outliers. This feature is obtained
through the formula (x1 − avg)/stdev, where x1
denotes the score of the top-ranked candidate.

4.3 Supervised Learning Models
We experimented with five different state-of-the-art
Learning to Rank (L2R) algorithms for building
the candidate ranking model, namely the Ranking
SVM (Joachims, 2002) and Ranking Perceptron (Collins
and Duffy, 2002) pairwise L2R methods and the List-
Net (Cao et al., 2007), Coordinate Ascent (Metzler and
Bruce Croft, 2007) and AdaRank (Xu and Li, 2007) list-
wise methods.

Ranking SVM transforms the ranking problem into
a set of binary classification tasks which are addressed
through the formalism of Support Vector Machines
(SVM). Ranking Perceptron is pairwise ranking model
based on a variation of the well-known perceptron lin-
ear classifier.We essentially classify pairs of instances ac-
cording to which one is more relevant to the query, and
the goal is to minimize the number of misclassified pairs.

ListNet is a listwise approach which defines a ranking
loss based on the probability distribution of the permu-
tations. Coordinate Ascent is a state-of-the-art listwise
method which uses the coordinate ascent unconstrained
optimization technique to optimize the ranking model pa-
rameters. AdaRank is a listwise boosting technique for
ranking, which directly maximizes any desired metric
computed over ranked lists of candidates. The ranking
model is essentially a linear combination of weak rankers,
which can theoretically be of any type, although they are
most commonly chosen as a binary function with a single
feature and a threshold.

All ranking algorithms are available through the Mi-
norThird3, RankLib4, and SVMrank5 software libraries.

As for the candidate validation module, we experi-
mented with an SVM classifier with a Radial Basis Func-
tion as kernel and also with a Random Forest classifier.

Each of these classifiers models the problem with dif-
ferent levels of complexity. For instance, Random For-
est classifiers try to define a function that logically par-
titions the classification space in terms of a tree of deci-
sions made over attributes of the original data, whereas
SVMs use a kernel function to flexibly map the original
data into a higher-dimensional space, where a separating
hyper-plane can be defined.

3http://sourceforge.net/apps/trac/minorthird/
4http://www.cs.umass.edu/˜vdang/ranklib.html
5http://www.cs.cornell.edu/people/tj/svm_

light/svm_rank.html

SVMs exhibit a remarkable resistance to noise, han-
dle correlated features well, and rely only on most in-
formative training examples, which leads to a larger in-
dependence from the relative sizes of the sets of posi-
tive and negative examples. They are currently the most
widely-used classification technique. Random Forests,
on the other hand, are a more recently proposed ensemble
method, consisting of many decision trees and combining
bagging with the random selection of features. This are
currently one of the best learning algorithms available,
although Random Forests do not handle large numbers of
irrelevant features as well as other methods.

All classification algorithms are available through the
SVMlight6 and Weka7 software libraries.

Following similar ideas to those of Peng et al. (2010)
for document-retrieval, we also experimented with the us-
age of multiple learning models, each one trained for a
specific type of query. The idea is to select, at run-time,
an appropriate model for ranking or validating the candi-
dates of the given query. Therefore, we considered hav-
ing four model types readily available, namely models for
people entities, models for locations, models for organi-
zations and generic models for unknown entity types.

4.4 Resolving NIL Entities

When the validation module decides that the top-ranked
candidate is not the correct disambiguation, we assume
that the correct referent is not present in the knowledge
base (i.e., we have a nil entity). Instead of assigning the
reference to the corresponding knowledge base entry, nil
entities should be disambiguated by clustering them to-
gether, i.e. by grouping the entity references that belong
to a same referent, even-though we do not have its de-
scription in the knowledge base. The proposed approach
for resolving nil entities involves the following steps:

1. Build a classification model for detecting duplicate
entity references.

(a) Find pairs of training queries with a string sim-
ilarity greater or equal than a given threshold;

(b) Compute all but the popularity-based ranking
features for the training pairs;

(c) Assign positive labels to query pairs referring
to the same entity, and negative labels to the
others;

(d) Discard all query names without a positive and
negative example;

(e) Build a classification model.

2. Classify pairs of duplicate entity references.

6http://svmlight.joachims.org/
7http://weka.wikispaces.com/



(a) Find all pairs of test queries with a positive nil
estimate and a string similarity greater or equal
than a given threshold;

(b) Compute all but the popularity-based ranking
features for the testing pairs;

(c) Apply the model and build a query graph where
query pairs with a positive estimate are con-
nected;

3. Cluster references through the transitive closure.

Notice that the proposed approach essentially reuses
the learning to rank method from the candidate rank-
ing module, with query-query pairs instead of the query-
candidate pairs.

5 Experimental Validation
We compared different configurations of the proposed
entity linking approach using the training and testing
datasets from previous TAC-KBP events Ji and Grishman
(2011). Table 1 presents characterization statistics for the
considered datasets. The queries correspond to named
entities belonging to one of three groups, namely people,
organizations, and geopolitical entities. The considered
knowledge base was also provided by the TAC-KBP or-
ganization, and it consists of roughly 800.000 English ar-
ticles from an October 2008 Wikipedia snapshot.

Unless otherwise stated, we use accuracy to measure
system performance. Formally, this metric corresponds
to the ratio between the number of correctly disam-
biguated queries, divided by the total number of queries.

CORPUS NIL PER ORG GPE ALL
Train 2009 57.1% 627 2710 567 3904
Test 2009 28.4% 500 500 500 1500
Train 2010 49.1% 1127 3210 1067 5404
Test 2010 54.7% 750 750 750 2250
Train 2011 50.8% 1877 3960 1817 7654
Test 2011 50.0% 750 750 750 2250

Table 1: Number of entity mentions in the TAC-KBP datasets.

The rest of this section details the set of experiments
which was designed to evaluate different aspects of our
entity linking system.

5.1 Candidate Selection
A fundamental aspect in entity linking is the number of
candidates that are passed to the ranking module. Se-
lecting a high number of candidates would improve re-
call, lowering the number of cases when the correct ref-
erent exists in the knowledge base but is not selected for
ranking. However, more candidates also means more

feature computations, as well as more noise, since can-
didates with lower name similarities will be considered.
Our experiments showed that, in our usual system setup,
selecting up to 30 candidates for each query results in a
considerably low candidate miss rate – as shown in Ta-
ble 2. A manual analysis of the results showed that the
majority of candidate misses comes from highly ambigu-
ous place names (e.g., Columbia or St. Louis), followed
by acronyms (e.g., TNT, HDFC or SF) and generic enti-
ties (e.g., democratic party or public security police).

Dataset Misses % of total queries
2009 52 3.5%
2010 47 2.1%
2011 92 4.1%

Table 2: Number of candidate misses.

Regarding the candidate selection process, the afore-
mentioned simple query expansion techniques are very
important to reduce the candidate misses and conse-
quently improve system performance. In the most recent
dataset (i.e., TAC-KBP 2011), the query expansion mod-
ule decreases candidate misses by more than 50%, thus
improving system accuracy by 4%.

5.2 Feature Contribution
One important and interesting question is the contribution
of the different types of features. Namely, how impor-
tant is a particular type of information to the named entity
linking task. We studied this problem by removing fea-
tures of a specific type to see how much they contribute
to the final accuracy scores. Results are presented in Ta-
ble 3, and they were obtained using our best performing
system setup in the 2011 TAC-KBP dataset.

Features PER ORG GPE All
All 88.4% 78.0% 71.6% 79.3%
-Name Sim. 87.1% 75.1% 66.0% 76.0%
-Text Sim. 87.1% 74.7% 66.7% 76.1%
-NER 87.1% 75.7% 68.8% 77.2%
-LDA 87.6% 76.8% 68.5% 77.6%
-Popularity 86.9% 78.3% 68.8% 78.0%
-Page Type 88.1% 77.6% 71.5% 79.1%

Table 3: Accuracy after removing sets of features.

The results show that name and text similarity fea-
tures are the most helpful, since the system performance
dropped significantly after removing them. However, the
impact of other features was not so clear. Given the small
differences in performance after each type of features is
removed, it is possible that several of those features are



complementary or redundant. To confirm it, further ex-
periments were made, where instead of removing one
type of feature from a complete system, we added the
features from this type to a baseline system. We consid-
ered as baseline a system with just the text similarity fea-
tures, which significantly outperformed all other options
according to a separate experiment. Table 4 presents the
obtained results. One of the most interesting conclusions
is that feature importance greatly depends on the type of
query, which further motivated us to perform a set of ex-
periments with query-based models.

As a side note, regarding the LDA features, other ex-
periments showed that changing the number of topics did
not significantly influence the system performance.

Features PER ORG GPE All
Text Sim. 84.9% 73.5% 62.5% 73.6%
+NER 87.6% 76.7% 66.0% 76.8%
+Name Sim. 86.8% 73.1% 68.0% 76.0%
+Popularity 82.7% 75.3% 65.5% 74.5%
+LDA 86.5% 75.1% 61.3% 74.3%
+Page Type 83.3% 75.7% 63.2% 74.1%

Table 4: Accuracy after adding sets of features to a baseline.

5.3 Query-based vs. Single Ranking Models
Following recent proposals for document retrieval, and
considering the observations from the previous experi-
ments, we also wanted to see if using ranking and valida-
tion models specific to a given query type could improve
results in our entity linking system. However, the results
shown in Table 5 are not conclusive, leading us to believe
that considering query-based models does not justify the
increased complexity to the system.

In order to estimate the query type we used the classi-
fications given by the Stanford NER (i.e., Person, Orga-
nization, Location) to the majority of named entities with
the same string as the query. Table 6 shows the accuracy
of our heuristic to determine query types.

5.4 Learning Algorithms
In the following experiment, we measured the impact
that different ranking algorithms could have on the sys-
tem. We also experimented with different validation al-
gorithms, namely SVMs and Random Forests, but the
later consistently outperformed the former, reason why
we focus our presentation of the results on the ranking
algorithms which produced more variability. All the re-
sults presented in the paper were produced with a random
forest classifier as the algorithm in the validation module.

Our results show that there is no ranking model that
clearly outperforms the others, although the Coordinate
Ascent does obtain the best performance in two of the

Ranking Model Dataset Variation

SVMrank
2009 -1.4%
2010 +1.4%
2011 0.0%

Ranking
Perceptron

2009 -2.0%
2010 +1.3%
2011 +0.6%

ListNet
2009 +0.2%
2010 +1.1%
2011 0.0%

Coordinate
Ascent

2009 -3.3%
2010 -0.6%
2011 -1.2%

AdaRank
2009 +0.4%
2010 +0.1%
2011 -1.5%

Table 5: Results in terms of accuracy when using the query-
based approach instead of a single model.

Dataset PER ORG GPE ALL
2009 90.6% 78.6% 92.6% 87.3%
2010 93.7% 69.9% 82.1% 81.9%
2011 85.5% 69.1% 83.9% 79.5%

Table 6: Accuracy when determining query types.

Ranking Model Dataset Accuracy

SVMrank
2009 81.7%
2010 83.5%
2011 79.3%

Ranking
Perceptron

2009 81.7%
2010 84.6%
2011 79%

ListNet
2009 80.2%
2010 83.2%
2011 76.8%

Coordinate
Ascent

2009 82.3%
2010 84.8%
2011 78.8%

AdaRank
2009 78.3%
2010 83.3%
2011 76.0%

Table 7: Results in terms of accuracy when using the different
learning to rank algorithms.

datasets. However, as a downside, it is the most time con-
suming algorithm among the considered group. Overall,
the results for 2009 and 2010 are very competitive with
the best reported results (82.2% and 85.8%, respectively).



The results for the 2011 dataset were weaker than we an-
ticipated, 0.74, 0.78, and 0.76 in terms of B3 precision,
recall, and F1, respectively.

The considerable drop in performance in the 2011
dataset might be explained by two main reasons: (i) we
have a considerably high performance with nil queries
and these are almost 5% less than in 2010, and (ii) the
queries seem more difficult than in past years. Supporting
this last point is our observation that, compared to 2010,
there was a large drop in the usefulness of text similar-
ity, name similarity, and popularity features, suggesting
that the query’s context and name are more ambiguous
and that less queries correspond to the most well-known
entity answering by that query name.

A more detailed analysis of our best system configura-
tion for the 2011 dataset is shown in Table 8. The results
show that the disambiguation of geo-political entities
seems particularly challenging, with the system achiev-
ing the worse results on this particular entity type. Notice
that the accuracy reported for the ranking module takes
only into consideration non-nil queries, and the reported
validation accuracy ignores the queries which were incor-
rectly ranked.

Module PER ORG GPE ALL
Ranking 87.6% 71.9% 77.0% 77.9%

Validation 92.5% 89.3% 85.2% 89.2%
All 88.4% 78.0% 71.6% 79.3%

Table 8: Detailed results for our best system in the 2011 dataset.

6 Conclusions and Future Work
Despite the recent advances in the named entity linking
task, we have that approaches based on machine learn-
ing have not been carefully discussed in the literature,
leaving several open questions for those trying to develop
such systems. Through this work we have presented and
thoroughly evaluated a relatively simple learning-based
approach for named entity disambiguation, which uses
a rich set of features and out-of-the-box learning to rank
methods to achieve a performance in line with that of cur-
rent state-of-the-art approaches.

Our experiments confirm recently published results,
which show that machine learning methods with rela-
tively simple to compute features can match the current
state-of-the-art. Furthermore, we showed that selecting
the most suitable learning to rank model with basis on
the query type brings little improvements to the results.
For future work, we intend to experiment with machine
learning models that use different sets of features better
tailored for each type of entity, particularly for the case
of geo-political entities where we hope to be able to use

features based on geospatial properties (e.g., the spatial
proximity towards other geo-political entities referenced
in the same context).

For future work, it would also be interesting to explore
the usage of more advanced query expansion mechanisms
(e.g., consider hypertext anchors from Wikipedia links as
alternative names for the knowledge base), as well as the
usage of additional features. The considered set of fea-
tures does not, for instance, consider linkage information
from Wikipedia, while some previous works have lever-
aged on the number of inlinks, or on algorithms such as
PageRank, as a way of estimating candidate importance.
We believe that features derived from structured infor-
mation associated to the knowledge based entries (i.e.,
features derived from slot-filling methods) could provide
rich information for entity disambiguation purposes.

The Information Retrieval community has also started
to look at the problem of relational learning to rank, ex-
plicitly considering cases in which there exists relation-
ship between the objects to be ranked (Qin et al., 2008).
For future work, and noticing that entities referenced in
the same context should be similar to one another, we
would like to experiment with such methods in order to
explore full-document disambiguations.

Acknowledgements
This work was partially supported by the Fundação para
a Ciência e a Tecnologia, through project grants with
references PTDC/EIA-EIA/109840/2009 (SInteliGIS)
and PTDC/EIA-EIA/115346/2009 (SMARTIES), and
through the PhD scholarship SFRH/BD/71163/2010.

We would also like to thank David Matos and Mário J.
Silva for their assistance and insightful comments.

References
Baeza-Yates, R. A. and Ribeiro-Neto, B. (1999). Mod-

ern Information Retrieval. Addison-Wesley Longman
Publishing Co., Inc.

Bagga, A. and Baldwin, B. (1998). Entity-based cross-
document coreferencing using the vector space model.
In Proceedings of the 17th international conference on
Computational linguistics - Volume 1, COLING ’98,
pages 79–85. Association Computational Linguistics.

Bunescu, R. and Pasca, M. (2006). Using encyclopedic
knowledge for named entity disambiguation. In Pro-
ceedings of the European Conference of the Associa-
tion for Computational Linguistic, EACL ’06.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H.
(2007). Learning to rank: from pairwise approach to
listwise approach. In Proceedings of the 24th inter-
national conference on Machine learning, ICML ’07,
pages 129–136. ACM.



Collins, M. and Duffy, N. (2002). New ranking algo-
rithms for parsing and tagging: kernels over discrete
structures, and the voted perceptron. In Proceedings of
the 40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, pages 263–270.

Cucerzan, S. (2007). Large-scale named entity disam-
biguation based on wikipedia data. In Proceedings of
EMNLP-CoNLL, pages 708–716.

Etzioni, O., Banko, M., Soderland, S., and Weld, D. S.
(2008). Open information extraction from the web.
Commun. ACM, 51:68–74.

Gale, W. A., Church, K. W., and Yarowsky, D. (1992).
One sense per discourse. In Proceedings of the work-
shop on Speech and Natural Language, HLT ’91,
pages 233–237. Association for Computational Lin-
guistics.

Geng, X., Liu, T.-Y., Qin, T., Arnold, A., Li, H., and
Shum, H.-Y. (2008). Query dependent ranking using
k-nearest neighbor. In Proceedings of the 31st an-
nual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’08,
pages 115–122. ACM.

He, J. and de Rijke, M. (2010). A ranking approach to
target detection for automatic link generation. In Pro-
ceeding of the 33rd international ACM SIGIR confer-
ence on Research and development in information re-
trieval, SIGIR ’10, pages 831–832. ACM.

Ji, H. and Grishman, R. (2011). Knowledge base popu-
lation: Successful approaches and challenges. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies.

Joachims, T. (2002). Optimizing search engines using
clickthrough data. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, KDD ’02, pages 133–142.
ACM.

Leidner, J. (2007). Toponym Resolution: a Comparison
and Taxonomy of Heuristics and Methods. PhD thesis,
PhD Thesis, University of Edinburgh.

Li, H. (2011). Learning to rank for information retrieval
and natural language processing. Synthesis Lectures on
Human Language Technologies, 4(1):1–113.

Li, P., Burges, C., Wu, Q., Platt, J., Koller, D., Singer, Y.,
and Roweis, S. (2007). Mcrank: Learning to rank us-
ing multiple classification and gradient boosting. Ad-
vances in Neural Information Processing Systems.

Liu, T.-Y. (2009). Learning to rank for information re-
trieval. Foundations and Trends in Information Re-
trieval, 3(3):225–331.

Metzler, D. and Bruce Croft, W. (2007). Linear feature-
based models for information retrieval. Inf. Retr.,
10:257–274.

Mihalcea, R. and Csomai, A. (2007). Wikify!: linking
documents to encyclopedic knowledge. In Proceed-
ings of the sixteenth ACM conference on Conference on
information and knowledge management, CIKM ’07,
pages 233–242. ACM.

Mohan, A., Chen, Z., and Weinberger, K. Q. (2011).
Web-search ranking with initialized gradient boosted
regression trees. Journal of Machine Learning
Research, Workshop and Conference Proceedings,
14:77–89.

Peng, J., Macdonald, C., and Ounis, I. (2010). Learn-
ing to select a ranking function. In 32nd European
Conference on Information Retrieval, ECIR ’10, pages
114–126. Springer.

Qin, T., Liu, T.-Y., Zhang, X.-D., Wang, D.-S., Xiong,
W.-Y., and Li, H. (2008). Learning to rank relational
objects and its application to web search. In Proceed-
ing of the 17th international conference on World Wide
Web, WWW ’08, pages 407–416. ACM.

Sarmento, L., Kehlenbeck, A., Oliveira, E., and Ungar, L.
(2009). An Approach to Web-Scale Named-Entity Dis-
ambiguation. In Proceedings of the 6th International
Conference on Machine Learning and Data Mining
in Pattern Recognition, MLDM ’09, pages 689–703.
Springer-Verlag.

Whitelaw, C., Kehlenbeck, A., Petrovic, N., and Ungar,
L. (2008). Web-scale named entity recognition. In Pro-
ceeding of the 17th ACM conference on Information
and knowledge management, CIKM ’08, pages 123–
132. ACM.

Xu, J. and Li, H. (2007). Adarank: a boosting algorithm
for information retrieval. In Proceedings of the 30th
annual international ACM SIGIR conference on Re-
search and development in information retrieval, SI-
GIR ’07, pages 391–398. ACM.

Zheng, Z., Li, F., Huang, M., and Zhu, X. (2010). Learn-
ing to link entities with knowledge base. In Human
Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics, HLT ’10, pages 483–491.
Association for Computational Linguistics.

Zhu, Z. A., Chen, W., Wan, T., Zhu, C., Wang, G., and
Chen, Z. (2009). To divide and conquer search rank-
ing by learning query difficulty. In Proceeding of the
18th ACM conference on Information and knowledge
management, CIKM ’09, pages 1883–1886. ACM.


