The Effectiveness of Traditional and Open Relation Extraction
for the Slot Filling Task at TAC 2011

Filipe Mesquita*, Ying Xu*, Aditya Bhargava'
Mirko Bronzi*, Denilson Barbosa*, Grzegorz Kondrak*
*University of Alberta, TUniversity of Toronto, Roma Tre University
{mesquita, yx2,denilson, kondrak}@cs.ualberta.ca

Abstract

Our goal in this paper is to investigate the ef-
fectiveness of relation extraction techniques
for the slot-filling task. We discuss two rela-
tion extraction systems. YRES follows the tra-
ditional paradigm in relation extraction, where
a system takes advantage of available exam-
ples for each relation to be extracted. On the
other hand, SONEX follows the open relation
extraction paradigm, where the relations to be
extracted are assumed to be unknown a priori.
In particular, SONEX applies clustering tech-
niques to identify relations in an unsupervised
way. The results of our submissions show that
the performances of the two systems are fairly
similar.

1 Introduction

The TAC slot-filling task comprises the identifica-
tion of values for certain attributes, or slots, about
an entity. Each named entity is given as a query
and the answers are often called slot fillers. There
are 100 queries this year, half being person and
half being organizations. Examples of slots are
per:date_of birth (a person’s date of birth)
and org:subsidiaries (a organization’s sub-
sidiaries). Each slot allows either a single answer
(e.g., per:date_of birth) or a list of answers
(e.g.,org:subsidiaries).

In the past, slot-filling has been attempted with
techniques from different fields, such as question
answering, machine learning, information retrieval
and information extraction. We are particularly in-
terested in investigating the viability of relation ex-
traction techniques for this task. Relation extraction
aims at identifying relations among named entities

in text. For example, the sentence “Baraka Obama
is married to Michelle Obama” presents the relation
“married to” between the entities “Baraka Obama”
and “Michelle Obama”. Every slot is concerned as a
relation between the query and the slot value.

We discuss the application of two relation extrac-
tion systems to the slot-filling task: SONEX and
YRES. YRES follows the traditional paradigm in
relation extraction, where the relations of interest
are known and examples for each relation are avail-
able. YRES extracts trigger words for each slot. For
example, “parent”, “dad”, and “mother” are trigger
words for the per:parents slot. On the other
hand, SONEX follows the open relation extraction
paradigm (Banko and Etzioni, 2008), where the re-
lations of interest are too many (requiring great ef-
fort to provide examples) or unknown a piori. There-
fore, open relation extraction systems aim at extract-
ing every relation from a collection with no relation-
specific training. Both systems got higher precision
and lower recall than median.

The remainder of the paper is organized as fol-
lows. Section 2 discussed the related work. Section 3
presents the preprocessing of the two systems, such
as part of speech tagging and named entity recog-
nition. Section 4 describes the SONEX system and
Section 5 describes the YRES system. Section 6
presents our post-processing step. This step includes
converting the relations extracted by each system
into answers for slots. Section 7 analyzes the results.
Finally, Section 8 concludes the paper.

2 Related work

The traditional approach to relation extraction is de-
fined as a classification problem: given a relation

R and a pair of entities in a sentence S, does S
asserts R between this pair of entities? Supervised
systems use manually labeled examples to train a
classifier for each relation. This classifier is either
based on extracted features (GuoDong et al., 2005)
or kernel functions (Zelenko et al., 2003; Culotta and
Sorensen, 2004; Bunescu and Mooney, 2005). Boot-
strapping systems require significantly less training
data. These systems discover new relation instances
by using a small set of entity pairs (Brin, 1998;
Agichtein and Gravano, 2000) or hand-crafted ex-
traction patterns (Etzioni et al., 2004). Our system
YRES tries to reduce the training effort even further
by requiring only a few keywords that indicate a re-
lation.

A limitation of the traditional approach to rela-
tion extraction is that it scales linearly with the num-
ber of relations. Open relation extraction (ORE) is
a new paradigm that aim at overcoming this limi-
tation by extracting unanticipated relations (Banko
and Etzioni, 2008). ORE systems (Banko and Et-
zioni, 2008; Zhu et al., 2009; Hasegawa et al., 2004;
Mesquita et al., 2010) are designed to extract any
relation expressed in text with no relation-specific
training. The seminal work of TextRunner (Banko
and Etzioni, 2008) proposes a CRF model to recog-
nize tokens describing a relation between a pair of
entities. O-CRF relies on relation-independent fea-
tures, such as prepositions and part-of-speech tags.
Our system SONEX (Mesquita et al., 2010) is based
on the approach proposed by Hasegawa et al. (2004).
In this approach, the relationship between two enti-
ties is indicated by the sentences where they appear
together. In order to find all pairs of entities belong-
ing to the same relation, a clustering algorithm is
used to group pair of entities that are cited in sim-
ilar sentences.

3 Pre-processing

The first step in our approach is to convert each
document in the TAC source collection into plain
text for easier manipulation. We start by replac-
ing HTML tags (e.g., <p>) with their correspond-
ing plain text alternatives. Next, we convert Unicode
characters to ASCII.

Each document is annotated by the Stanford natu-

ral language processing tool' as follows. First, this
tool splits each document into sentences. A tok-
enizer identifies individual tokens in a sentence. In
addition, the tool annotates each token with part-of-
speech tags and lemma.

Next, we identify mentions to entities in a sen-
tence. We use the Stanford named entity recognition
system (Finkel et al., 2005) to perform this task. This
system is able to recognize several types of entities,
such as people, organizations, locations, dates and
numbers. In addition, we identify mentions that refer
to the same entity using OrthoMatcher (Bontcheva et
al., 2002), a coreference resolution system provided
by the GATE framework?.

4 SONEX

SONEX identifies the relationship (if any) between
entities e, es by analyzing the sentences that men-
tion e; and ey together. An entity pair is defined by
two entities e; and ey together with the context in
which they co-occur. For our purposes, the context
can be any textual feature that allows the identifica-
tion of the relationship for the given pair. As an il-
lustration, Table 1 shows entity pairs where the con-
text consists of the exact text in between the men-
tioned entities. As we discuss later, we actually em-
ploy techniques to extract the context from the text
in the sentences.

We extract entity pairs as follows. For each sen-
tence, we search for pairs of entities separated by
at most five intervening words. We store each en-
tity pair along the sentences where they appear in
a Lucene® index. This index enables several types
of search operators and provides an efficient mech-
anism (inverted indices) to store statistics about to-
kens and entity pairs.

SONEX works by clustering entity pairs with
similar context. Once this clustering step is done,
each cluster is analyzed and a common label is as-
signed by inspecting the contexts of the pairs within
the cluster. The intuition behind this approach is
that entity pairs belonging to the same relation often
present similar contexts. We use the context of an

"http://nlp.stanford.edu/software/
corenlp.shtml

http://gate.ac.uk/

*http://lucene.apache.org/

http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://gate.ac.uk/
http://lucene.apache.org/

Entity 1 \

Context

\ Entity 2

(Barack Obama, PER)

’s wife
better than his wife
and

(Michelle Obama, PER)

(Tom Cruise, PER)

, accompanied by wife
’s fiancee ,
is inspired by

(Kate Holmes, PER)

Table 1: Entity pairs and their context from the TAC source collection.

entity pair to produce a vector where each dimen-
sion corresponds to a token in the context. There-
fore, every pair is represented by a vector in the Vec-
tor SpaceModel (Manning et al., 2008).

Many tokens in the context are irrelevant to de-
scribe a relation. These tokens are often consid-
ered as noise. This includes prepositions, determin-
ers, adjectives, adverbs, among others. We also ob-
served that relations are often better described by
verbs and nouns. Therefore, we consider only those
tokens tagged as verb or noun. In order to make no
distinction between tokens that are inflections of the
same word (e.g., “acquired”, “acquires”), we replace
the original token by its lemma (e.g., “acquire”).

A token t in a context vector is weighted by the
widely-adopted t f - idf weighting scheme (Manning
et al., 2008). Here, tf is the normalized frequency
of the token in the context, while idf = log(%),
where |D| is the total number of entity pairs,and
d : t € d is the number of entity pairs that contain
the token ¢ at least once. We compute the similarity
between context vectors by using the cosine similar-
ity measure. We use the Mahout library* to store and
manipulate context vectors.

4.1 Clustering algorithm

In order to cluster context vectors, we use the Hi-
erarchical Agglomerative Clustering (HAC) algo-
rithm (Manning et al., 2008). One of the advantages
of HAC is that it does not require the number of
clusters to be produced as a parameter. This is a de-
sirable property since one can seldom estimate the
number of relations described in a collection a pri-
ori. On the other hand, HAC does not scale well for
a large number of vectors. This is because the time

*nttp://mahout .apache.org/

and space complexity for HAC is at least quadratic
in the number of vectors (Manning et al., 2008).

We extracted more than three million vectors
from the TAC source collection, a number well be-
yond our capacity for running the HAC algorithm.
SONEX however implements the buckshot algo-
rithm (Cutting et al., 1992). This algorithm reduces
the time and space complexity of the HAC by clus-
tering a sample of the three million vectors. By run-
ning a quadratic clustering algorithm over a sample
of size VN ,where N is the total number of vectors,
the buckshot algorithm is able to find cluster cen-
troids in linear time and space. It is well-accepted
that the centroids of clusters produced from a repre-
sentative sample are often as good as the centroids
of the clusters produced from all vectors (Cutting et
al., 1992).

Once we have the cluster centroids, we assign
a cluster to each vector. We adopt the assign-to-
nearest method, where the assigned cluster is the one
that maximizes the similarity between the vector and
the cluster centroid. We label each cluster with the
token in the cluster centroid with the highest weight.

4.2 Mapping clusters to slots

We use the cluster label that SONEX provides
to map a cluster to its appropriate slot (if any).
To do so, we manually construct a list of valid
labels for each slot by observing which clusters
generated from the training data correspond to
which slots. For example, a cluster with the label
“husband” can be mapped to the per:spouse
slot, so “husband” is added to the list of al-
lowed labels for per:spouse. We were unable
to find clusters for 5 slots, which forced us
to submit NIL answers for them. The slots
are: per:cause_of_death, per:title,

http://mahout.apache.org/

per:charges, org:website and

org:political religious_affiliation.

5 YRES

Similar to SONEX, YRES looks within a certain
context of a pair of entities, but considers words
around the entities in the text as well as in between
them. YRES applies an approach based on relative
entropy as well as one that manually finds appropri-
ate keywords for slots.

We hypothesize that if a word occurs more often
in contexts for person/person pairs than for person/
organization pairs, the word is likely to be indica-
tive of a personal relationship between the entities.
We refer to these pair classes (person/person, etc.) as

pair types. To exploit this, YRES employs relative
p(z)
q(z)’
p (z) is the frequency of z in contexts of a given pair

type and ¢ () is the frequency of x in contexts of an-
other pair type. Words with high relative entropy val-
ues are chosen with a manually-set threshold as key-
words, which are manually mapped to slots for later
use. We find that this method works well with per-
son/person pair types for p and person/organization
pair types for g, as well as vice versa, but other pair
types are too noisy.

For these other pair types, YRES employs a sim-
pler approach. Using the example training queries,
entity pairs are generated using the various queries
and the filled-in slot values. For each query-value
pair, all sentences containing these pairs are gath-
ered. Keywords are then manually chosen based
on the terms appearing most frequently in the
sentences mentioning the given pair and the key-
word is mapped to the appropriate slot (based
on the query and the value being examined). For
example, the term “born” is quite frequent for
the per:date_of birth slot, and is therefore
marked as a keyword mapping to that slot.

Finally, to extract relations from text, an en-
tity pair is marked with slots based on the pres-
ence of relevant keywords. As defined above, an
entity pair consists of all sentences mentioning a
pair of entities; if a keyword (as found above)
appears often (for some threshold defined manu-
ally based on the keyword) among these sentences,

entropy RE = p(z)log where for a word z,

then the pair is marked as having the relation-
ship (slot) corresponding to the keyword. When
searching for the keyword, specific “context shapes”
are defined for the various slots: for example, the
per:date_of birth slot looks for a keyword
before and in between the two entities, while the
org:employees slot looks in between and after;
these windows are determined manually based on
where the keywords tend to appear for the particular
slots. Note that multiple keywords can be triggered,
so a given pair can be marked as having multiple re-
lationships.

6 Post-processing

To convert the relations extracted by SONEX and
YRES to answers for slots, we apply a series of
rules.

Because the relation extraction systems provide
entities as they occur in the text, there must be some
method of matching names found by the systems
to those queried when there is not an exact match.
For example, sometimes a name may include a title
such as “Congressman’ or “Senator”, which would
mean that exact matches would not work if given
the name only as a query. We use a taboo list of ti-
tles, constructed from the Wikipedia “List of Titles”
page’, and ignore any words at the start of an entity
name that appear on the list, so long as this leaves
at least two words in the name. Similarly, we have a
manually-constructed list of taboo endwords for or-
ganizations (including “corp.”, “Itd.”, etc.).

Both SONEX and YRES simply provide pairs of
entities, which we use to construct a list of entities
and slot values. While some slots imply a symmet-
ric relation (per : spouse, for example), direction
is distinctive for others (such as per:parents).
Given a pair of entities in a given order, then,
we first add the pairs to the entity-value list in
that order; for instance, given ‘“Barack Obama”
and “Michelle Obama” with the per:spouse
slot, we add “Michelle Obama” as a spouse of
“Barack Obama”. We then swap the order, which re-
quires a different slot to be substituted in case di-
rection is important. Of the slots considered, this
means that per:children and per:parents

Shttps://secure.wikimedia.org/wikipedia/
en/wiki/List_of_titles

https://secure.wikimedia.org/wikipedia/en/wiki/List_of_titles
https://secure.wikimedia.org/wikipedia/en/wiki/List_of_titles

System ‘ Precision ‘ Recall ‘ F-measure
SONEX | 0.3684 | 0.0518 0.0909
YRES 0.2602 | 0.0878 0.1313

Figure 1: TAC results for YRES and SONEX.

are swapped, as is the case with org: parent s and
org:subsidiaries. We must also verify that
the two entities are of valid types so that we don’t
return people for the org:parents slot, etc.

Given a query, we can then look up the entity in
our entity-value list, keeping in mind the taboo lists.
We perform some simple checks on the location-
valued slots such as per:city_of_birth and
per:origin. Using the MONDIAL database®,
we ensure that the location value is a valid loca-
tion and use MONDIAL to determine which slot
(city, province, or country) should be filled. For
the per:origin slot, we infer from cities or
provinces to countries; if there are multiple cities or
provinces with the given name, we choose the one
with the highest population. We also perform checks
for religion against a manually-constructed list of al-
lowable religions or denominations.

Finally, once we have the slots filled for a given
query, we need to adjust for single-valued slots as
well as merge similar values together. For person-
values, we group together all values having the same
first name since the person slots that we fill are all
familial. We also employ the taboo list for both per-
sons and organizations as above. To pick a final
value for a group, we choose the longest string to
provide the most specific value possible (e.g. a full
name instead of a first name only), reverting to sys-
tem scores in case of a tie.

7 Results

We submitted two runs, one for YRES and another
one for SONEX. Figure 1 shows the results for these
submissions. We analyze the results in the following
sections.

7.1 YRES

Ignoring slot types which have less than 10 en-
tries in the standard result, the following are some

*http://www.dbis.informatik.
uni-goettingen.de/Mondial/

Slot Precision
ORG:Number of Employees 0.95
PER:Employee of 0.92
PER:Member of 0.92
ORG:Headquarters 0.90
PER:Place of birth 0.88
PER:Children 0.66
ORG:Subsidiaries 0.65
ORG:Alternate Names 0.56
ORG:Parents 0.55
ORG:Shareholders 0.50
Average 0.79

Figure 2: The slots in descendant order of precision as
measured in the preliminary experiment. For brevity, only
the top and bottom five are shown.

specific statistics. The slot we miss the most is
org:alternate_names, for which we extracted no an-
swer. Slots with the maximum number of correct an-
swers are per:title and org:top_members/employees.
The slot with the maximum number of wrong an-
swers is per:member_of, with 8 correct and 57
wrong. After much scrutiny we found there are two
major types of error causes. One is that the relation
word is not related to the entity pairs. For example,
in “PER told leaders of ORG...”, “leader” is not re-
lated to the “PER—ORG” pair. The other is named
entity recognition, the entity names are mismatched
or incomplete. For instance, “Democratic Senator
John Kerry”, the ORG “Democratic” is incomplete,
which should be “Democratic party”.

7.2 SONEX

Preliminary results. We conducted a preliminary
experiment to estimate the precision of the clusters
produced by SONEX. We randomly selected 50 en-
tity pairs from clusters mapped to slots. We asked
four students to verify whether the entity pairs of
each slot were supported by any document in source
collection. Entity pairs with a supporting document
were deemed as correct. Figure 2 shows the preci-
sion for ten slots, being five with highest score and
five with the lowest. The average precision for all
slots is 0.79.

http://www.dbis.informatik.uni-goettingen.de/Mondial/
http://www.dbis.informatik.uni-goettingen.de/Mondial/

TAC results. Figure 1 shows the scores for the
SONEX submission. SONEX was able to correctly
answer 49 fillers (out of 945 correct answers). One
could expect a low recall score from SONEX, given
its limitation of extracting exactly one relation for
each entity pair (as oppose to all relations between a
pair of entities).

While low recall was expected, we were surprised
by the low precision score in our TAC submission
(in light of our preliminary experiment). In order
to understand the discrepancy between the results
from TAC and our experiment, we looked carefully
at the answers not judged as correct. Out of 84
non-correct answers, 62 are incorrect, 15 are redun-
dant and 7 are inexact. The majority of incorrect
answers are from the slots per:employee_of
(21) and per:top-members_employees (13).
Analyzing the slot fillers for these two slots, we
have found that 38% of the incorrect answer in
these slots are due to mistakes when handling en-
tities. For example, our coreference resolver in-
correctly determined that “U.N.” (United Nations)
and “US Navy“ refers to the same entity. Observe
that the initials of “US Navy” match “U.N.”. This
coreference decision resulted in a wrong extrac-
tion from the text portion “U.N. nuclear watchdog
chief Mohamed ElBaradei”. In particular, SONEX
answered “US Navy” (instead of “U.N.”) for the
slot per:employee_of of the entity “Mohamed
ElBaradei”. We observed that mistakes that arise
from mishandling entities are not equally distributed
through the entities. That is, some entities are more
likely to be mishandled. The random samples used
in our preliminary experiment is unlikely to show
this distribution. This is because we selected indi-
vidual entity pairs as oppose to all slot fillers for a
target entity.

8 Future work & conclusion

We have presented two approaches to the slot-filling
task. YRES identifies slot fillers by leveraging key-
words indicative of each slot. SONEX relies on open
relation extraction, where the relations to be ex-
tracted are assumed to be unknown a priori. We
manually mapped each slot (e.g., per: spouse) to
corresponding relations extracted by SONEX (e.g.,
wife, husband). SONEX (0.09) and YRES (0.13)

achieved similar F-measure scores. SONEX pre-
sented a higher precision at expense of a lower re-
call.

To increase the recall of both system systems, we
are considering expanding the context of an entity
pair to include the text windows appearing before
and after the pair in all sentences. In addition, we
are investigating the impact of adding prepositions
into the context of an entity pair, especially when
nouns and verbs are not present. In order to improve
precision, we plan to train a classifier to identify a
whether two entities are related in a sentence.

The plans for future work also include reducing
the number of incorrect extractions due to entity
mishandling by combining different named entity
recognition and coreference resolution systems. We
will also investigate how we can improve the entity
type classification by linking the entities found in the
corpus to those in a knowledge base.

We plan to replace SONEX’s feature extraction
step, which consider individual tokens, by a more
sophisticated one. In particular, we are investigating
techniques to extract relational phrases (e.g., “was
acquired by”) as oppose to individual tokens only.

Finally, both YRES and SONEX are unable to
recognize the directionality of some relations. By di-
rectionality, we mean the correct order of the entities
in a relation. For example, we expect that the first
entity of relation “children” to be a parent, while the
second entity should be a child. We plan to study
methods to discover the correct directionally of a re-
lation even when the entities are shown in reverse
order (e.g., “C, children of P”).

References

Eugene Agichtein and Luis Gravano. 2000. Snowball:
extracting relations from large plain-text collections.
In Proceedings of the ACM Conference on Digital li-
braries, pages 85-94. ACM.

Michele Banko and Oren Etzioni. 2008. The tradeoffs
between open and traditional relation extraction. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics, pages 28-36, Colum-
bus, Ohio, June. Association for Computational Lin-
guistics.

Kalina Bontcheva, Marin Dimitrov, Diana Maynard,
Valentin Tablan, and Hamish Cunningham. 2002.
Shallow methods for named entity coreference res-

olution. In Chaines de references et resolveurs
d’anaphores, workshop TALN, June.

Sergey Brin. 1998. Extracting patterns and relations
from the world wide web. In Proceedings of the
World Wide Web and Databases (WebDB) Interna-
tional Workshop, pages 172—183.

Razvan C. Bunescu and Raymond J. Mooney. 2005. A
shortest path dependency kernel for relation extrac-
tion. In Raymond J. Mooney, editor, Proceedings of
the Conference on Human Language Technology and
Empirical Methods in Natural Language Processing,
pages 724-731. Association for Computational Lin-
guistics.

Aron Culotta and Jeffrey S. Sorensen. 2004. Depen-
dency tree kernels for relation extraction. In Proceed-
ings of the Annual Meeting of the Association for Com-
putational Linguistics, pages 423—-429. Association for
Computational Linguistics.

Douglass R. Cutting, David R. Karger, Jan O. Pedersen,
and John W. Tukey. 1992. Scatter/gather: a cluster-
based approach to browsing large document collec-
tions. In Proceedings of the 15th annual international
ACM SIGIR conference on Research and development
in information retrieval, SIGIR *92, pages 318-329,
New York, NY, USA. ACM.

Oren Etzioni, Michael Cafarella, Doug Downey, Stanley
Kok, Ana-Maria Popescu, Tal Shaked, Stephen Soder-
land, Daniel S. Weld, and Alexander Yates. 2004.
Web-scale information extraction in knowitall: (pre-
liminary results). In Proceedings of the International
conference on World Wide Web, pages 100-110, New
York, NY, USA. ACM.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-

tion into information extraction systems by Gibbs sam-
pling. In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL
'05), pages 363-370, Ann Arbor, MI, USA, June. As-
sociation for Computational Linguistics.

Zhou GuoDong, Su Jian, Zhang Jie, and Zhang Min.
2005. Exploring various knowledge in relation extrac-
tion. In Proceedings of the Annual Meeting of the As-
sociation for Computational Linguistics, pages 427—
434. Association for Computational Linguistics.

Takaaki Hasegawa, Satoshi Sekine, and Ralph Grishman.
2004. Discovering relations among named entities
from large corpora. In Proceedings of the Annual
Meeting of the Association for Computational Linguis-
tics, page 415. Association for Computational Linguis-
tics.

Christopher D. Manning, Prabhakar Raghavan, and Hin-
rich Schiitze. 2008. Introduction to Information Re-
trieval. Cambridge University Press, 1 edition, July.

Filipe Mesquita, Yuval Merhav, and Denilson Barbosa.
2010. Extracting information networks from the blo-
gosphere: State-of-the-art and challenges. In Proceed-
ings of the International Conference on Weblogs and
Social Media (ICWSM), Data Challenge Workshop,
Washington D.C., 05/2010.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation
extraction. J. Mach. Learn. Res., 3:1083-1106.

Jun Zhu, Zaiqing Nie, Xiaojiang Liu, Bo Zhang, and
Ji-Rong Wen. 2009. Statsnowball: a statistical ap-
proach to extracting entity relationships. In Proceed-
ings of the International Conference on World Wide
Web, pages 101-110. ACM.

	Introduction
	Related work
	Pre-processing
	SONEX
	Clustering algorithm
	Mapping clusters to slots

	YRES
	Post-processing
	Results
	YRES
	SONEX

	Future work & conclusion
	References

