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Problem Definition:

Given a name (query) and a background document, provide the ID
of the KB entry to which the name refers, or NIL if there is no such
entry. Also, cluster NIL queries referring to the same entities.

Our Goals:

* Develop a baseline system based on supervised learning
principles and simple to compute features;

e Study the importance of different features and learning

algorithms.
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Query Expansion C%S'ng_asc id

* Regular expressions for acronym queries
e The American Broadcast Company (ABC) is an ...

 Apple (AAPL) sold 1.7 million in the first weekend ...
e NEW YORK (CNN) -- Finance ministers from ...
 The US (United States of America) are currently ...

 Named entities containing the query
* As president, Barack Obama signed an economic stimulus ...
 The United States Secretary of State is the head of the ...




Candidate Generation ﬁp&sc id

* Candidates selected based on the n-gram similarity between
qguery and KB entry name. n =[1,4]

e KB entries expanded with alternative names taken from:
* Wikipedia’'s redirect pages
* Wikipedia’s disambiguation Pages

* Wikipedia’s anchors

On February 10, 2007, Obama announced his candidacy for President of the
United States in front of the Old State Capitol building in Springfield,
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Learning to Rank (L2R) approach
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Candidate Ranking C%Jggasc id

Considered features

* Popularity * Named entities similarity
 Text-length, # alternative names  E.g., type-match, common entities
e Text similarity e String similarity
 E.g., TF-IDF cosine similarity * E.g., Levenstein distance, exact-match
* Topic similarity * Page type
 E.g., LDA cosine similarity  E.g.,, web, newswire

40+ ranking features
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Candidate Ranking C%Si%aasc id

Considered L2R algorithms
 Coordinate Ascent
* ListNet
 AdaRank
* Ranking Perceptron
 SVMrank

* We also experimented with models trained specifically for the
estimated query type.

11



Candidate Validation C%S’ngasc id

Supervised Learning approach

* Algorithms
e SVM (RBF kernel)
* Random Forest
* Query-specific models

* Nil-only features
* Ranking score
* Ranking score statistics
 E.g., mean, standard deviation
e Ranking score test for outliers
* E.g., Dixon’s Q test, Grubb’s test 12
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Datasets
Train 2710 3904 57.1%
2009
Test 500 500 500 1500 28.4%
Train 1127 3210 1067 5404 49.1%
2010
Test 750 750 750 2250 54.7%
Train 1877 3960 1817 7654 50.8%
2011

Test 750 750 750 2250 50.0%
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Best accuracy: 82.2% (2009), 85.8% (2010), ??% (2011) 16
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Conclusions and Future Work C%S'ngasc id

* Developed a fully functional, and data-driven, entity-linking
system with state-of-the-art results for many cases;

 Compared different algorithm and feature contributions;

e Studied the impact of query-specific models, with mixed results
but an overall poor impact on performance;

* Resolve full-documents using relational learning techniques.
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