
CUNY-BLENDER TAC-KBP2012 Entity Linking System and Slot Filling
Validation System

Suzanne Tamang, Zheng Chen and Heng Ji
Computer Science Department and Linguistics Department

Queens College and Graduate Center
City University of New York
hengji@cs.qc.cuny.edu

Abstract

This year the CUNY-BLENDER team partici-
pated in the English Entity Linking and Slot
Filling Validation tracks. for entity linking,
we apply two new techniques, collaborative
clustering and query reformulation. For an-
swer validation, we use a logistic regression
model trained on within-system and cross-
system features to re-rank the merged answer
sets generated by individual systems. In this
paper, we describe our approaches to each task
in more detail, assess the impact of out tech-
niques, and presents new directions for future
work.

1 Introduction

This is the third year we participated in KBP2012
evaluation. Since our systems are based on extend-
ing our previous approaches, in the following we
will focus on describing the new techniques that we
have developed this year, for English Entity Linking
(Section 2 and Section 3) and Slot Filling Validation
(Section 5 and Section 6) respectively.

2 English Entity Linking Approach

2.1 System Overview

We enhanced our English entity linking system
which has been developed in the past two years.
There are two major improvements we made in the
new system:

(1) Enhance the query preprocessing by reformu-
lating ambiguous query names with less ambiguous
query names.

(2) Apply a new clustering scheme which is called
collaborative clustering (CC) to NIL clustering.

Figure 1 shows how we have enhanced our en-
tity linking system through the year of 2010, 2011
and 2012. In 2010, we applied Wikipedia re-
sources for query expansion (e.g., extra names from
Wikipedia redirect and disambiguation pages), and
used Lucene search engine to retrieve candidate KB
entries. For candidate ranking, we only applied two
simple unsupervised ranking methods (Chen et al.,
2010).

In 2011, we proposed a new ranking scheme
called “collaborative ranking” (CR) (Chen and Ji,
2011). In contrast to traditional non-collaborative
ranking scheme which solely relies on the strengths
of isolated queries and one stand-alone ranking al-
gorithm, the new scheme integrates the strengths
from multiple collaborators of a query and the
strengths from multiple ranking algorithms. We
specified three forms of CR, namely, micro collab-
orative ranking (MiCR), macro collaborative rank-
ing (MacR) and micro-macro collaborative rank-
ing (MiMaCR). We applied this new scheme to en-
hance the candidate ranking component in our entity
linking system. Furthermore, we extended ranker-
level macro collaborative ranking to system-level
macro collaborative ranking by combining CUNY
entity linking system with UIUC entity linking sys-
tem (Cassidy et al., 2010).

This year, we proposed a new clustering scheme
called “collaborative clustering” (CC). In contrast
with traditional non-collaborative clustering scheme
which only relies on the information in cluster-
ing instances and one single clustering algorithm,



the proposed scheme can leverage more informa-
tion from collaborative instances which help to bet-
ter reshape the clustering structure in the origi-
nal data set, and furthermore, it can leverage the
strengths from multiple clustering solutions. We
specified three forms of CC, namely, micro collabo-
rative clustering (MiCC), macro collaborative clus-
tering (MaCC) and micro-macro collaborative clus-
tering (MiMaCC). We have applied this new cluster-
ing scheme to entity clustering problem, especially
NIL clustering problem. However, after analyzing
the queries in this year’s evaluation, we conclude
that the NIL clustering problem is still not challeng-
ing enough such that our new clustering scheme can-
not be taken full advantage of.

In the following two sections, we focus on the two
major improvements we made in the new system.

2.2 Query Reformulation
Ambiguity is an important index to measure the dif-
ficulty of entity linking task. A name is ambiguous
if it can refer to more than 2 entities. After ana-
lyzing the queries, we found that the queries in this
year’s evaluation are much more ambiguous than the
previous two years, as there are many more single
word queries which can indicate very diverse enti-
ties. More specifically, we found that

(1) if the query name is a person name, it is often
expressed only using last name rather than the full
name which can be found in the context document.

(2) if the query name is an organization name, it
is often expressed using its acronym, rather than the
expanded name which may or may not be found in
the context document. Some queries are about the
abbreviations of sport teams and their full names can
be found in the context document.

(3) if the query name is a GPE name, it is often ex-
pressed using the city name, but the city name often
appears in the structure ”[City name], [State name]”
in the context document.

We reformulated to significantly reduce the ambi-
guity in the queries. For example, we reformulated a
person’s last name by his/her full name, an acronym
of an organization name by its expanded form, and
a city name by a more precise form of [City name],
[State name].

The ambiguity can be measured as the number
of ambiguous names divided by the total number

of names in the evaluation corpus. Using this met-
ric, we obtained the ambiguity values of 19.6%
(101/514)1, 12.9% (97/752), 13.1% (173/1325) and
46.3% (376/812) for 2009, 2010, 2011 and 2012
evaluation respectively. We can clearly see that
the names in this year’s evaluation are far more
ambiguous than previous years. However, by ap-
plying query reformulation, the ambiguity in 2012
evaluation drops significantly from 46.3% to 11.2%
(200/1780). That clearly shows that query reformu-
lation can significantly reduce the difficulty of entity
linking task.

The main techniques for our query reformulation
are as follows:

(1) if the query name is a person name, and it
only has one token, we applied within document en-
tity coreference resolution (part of our CUNY Infor-
mation Extraction toolkit) to reformulate the query
using the proper name with the maximum num-
ber of tokens. For example, if the query name is
“Obama” and the following proper names are men-
tioned in the context document “Barack Obama”,
“Barack Hussein Obama”, which are found to core-
fer to each other by within document coreference re-
solver, we then pick “Barack Hussein Obama” as the
new query.

(2) if the organization name is an acronym, we ap-
plied pattern matching “[Expanded name] ([Query
name])” or “[Query name] ([Expanded name])” to
get the expanded name for the query. We picked the
expanded name as the new query.

(3) if the GPE name starts with only [City name],
we than applied pattern matching “[City name],
[State name]” to get the expanded name for the
query. We also picked the expanded name as the
new query.

Although the above query reformulation tech-
niques can significantly reduce the ambiguity of
queries, however, due to the imperfect performance
of within-document coreference resolution and pat-
tern matching, erroneous reformulated queries may
be introduced.

1in the parenthesis, the left side shows the number of am-
biguous names, and the right side shows the number of total
names



 
 

enhanced 

enhanced 

enhanced 

Knowledge 
Base 

Queries 

Query Expansion & 
Candidate Generation 

Candidate Ranking (single ranker) 
 

 

Answers 

2010 CUNY English entity linking system 

Collaborative Ranking 
(MiCR,MaCR, MiMaCR) 

Knowledge 
Base 

Queries 

Query Expansion & 
Candidate Generation 

Answers 

NIL clustering (one-in-one) 

Collaborative Ranking 
(MiCR,MaCR, MiMaCR) 

Knowledge 
Base 

Queries 

Query Expansion & 
Candidate Generation 

Answers 

NIL clustering (collaborative 
clustering) 

2011 CUNY English entity linking system 

Query Reformulation 

2012 CUNY English entity linking system 

Figure 1: Evolution of CUNY English Entity Linking System through 2010,2011 and 2012

2.3 Collaborative Clustering

2.3.1 Motivation

Clustering is generally formulated as grouping a
set of instances into clusters such that members in
each cluster are more similar than those in other
clusters. Clustering is known to suffer from little
prior knowledge of underlying data population. As
a result, instances from the original data set may
not always convey a good clustering structure. A
promising solution is to add a predominant number
of representative instances such that they can possi-
bly reshape or enhance the clustering structure. For
example, in Figure 2 (a), the original data set con-
tains three instances A, B and C, since B and C
are physically closer than A and B, it is likely that
a clustering algorithm clusters B and C together.
However, the actual case is that A and B belong to
the same cluster and they are located at the border of
the cluster. After we add instances that fill the core
of the cluster which contains A and B, the cluster-
ing structure becomes visible. In the other example
shown in Figure 2 (b), the original data set also con-
tains three instances A,B and C. Since A and B
are physically closer than B and C, it is likely that a
clustering algorithm clusters A and B into one clus-
ter. However, the actual case is that A and B be-
long to two clusters and each is located at the border
of its own cluster. Only after adding representative
instances as shown in Figure 2 (b), the clustering

structure becomes visible. We call the extra added
instances as “collaborative instances” and this style
of clustering approach as “instance-level collabora-
tive clustering”.

 
 
 
 
 
 
 
                           (a) 
 
 
 
 
 
 
 

  (b)                                                          

C A B 

C A B 

Figure 2: Motivating examples for instance-level
collaborative clustering.

It is also known that there does not exist a sin-
gle perfect clustering algorithm that can always dis-
cover a good clustering structure in every data set.
For example, K-means algorithm is good at clus-
tering spherical shapes of clusters, but can be very
sensitive to noise and can not handle well with non-
convex shapes of clusters. A clustering algorithm
normally optimizes some objective function which
measures the clustering quality based on the infor-



mation embedded in the data, however, it turns out
that in most cases solving the optimization is a NP-
Hard problem, and as a result, the clustering is al-
ways sub-optimal due to some approximative algo-
rithm. A promising solution is to apply a set of di-
verse clustering approaches and then obtain a con-
sensus clustering by combining multiple clustering
results. We call this style of clustering approach as
“clusterer2-level collaborative clustering” which has
a well-known name of “clustering ensemble” in the
literature.

Based on the above two motivations, we present a
collaborative clustering scheme which includes the
following three specific forms.

(1) MiCC (corresponding to instance-level3 col-
laboration) leverages the information contained in
the collaborative instances.

(2) MaCC (corresponding to clusterer-level4 col-
laboration) integrates the strengths from multiple
clustering algorithms.

(3) MiMaCC combines the advantages of MiCC
and MaCC.

2.3.2 Micro Collaborative Clustering (MiCC)
Micro collaborative clustering (i.e.,instance-level

collaborative clustering) takes the advantage of
looking into a bigger and better vision of the cluster-
ing structure by adding collaborative instances. The
success of MiCC involves the following key issues:

(1) mechanism of populating collaborative in-
stances which deals with a method to produce po-
tential collaborative instances;

(2) internal measure which computes the qual-
ity of clustering structure purely based on the data
rather than the gold clustering;

(3) algorithm of MiCC which deals with how
to gradually add collaborative instances and deter-
mines when to stop adding collaborative instances;
Mechanism of Populating Collaborative In-
stances

Generally, since we do not know the function of
data distribution for a clustering problem, it is hard

2A clusterer is a full-functional clustering approach that pro-
duces a clustering

3Instance is normally represented by a small-scale data
structure, so we call it micro.

4Clusterer is normally implemented by a large-scale algo-
rithm, so we call it macro.

to populate collaborative instances out of the void.
However, in many real clustering applications, it is
possible to find such collaborative instances. For
example, in document clustering, we can use other
documents collected from the same source as poten-
tial collaborative documents, for example, if the test-
ing data set is mostly from New York Times, we can
collect more documents published from the same
data source.
Internal Measure

The basic hypothesis of adding collaborative in-
stances is that they can help uncover a good clus-
tering structure. Therefore, an important question
is how to measure the quality of clustering structure
only using information in the data rather than exter-
nal information (thus called internal measure). Most
of the previous proposed internal measures are based
on two criteria including cohesion which measures
how cohesive the instances in a cluster are and sep-
aration which measures how separated a cluster is
from other clusters (Tan et al., 2005).

We studied 12 internal measures that can repre-
sent a good coverage of the previous proposed mea-
sures, including 6 measures (I1,I2,ε1,H1,H2 and
G1) discussed in (Zhao and Karypis, 2004) and an-
other 6 measures (CH, DI, SC,DB, SD,S Dbw) dis-
cussed in (Liu et al., 2010). Most of the previous
work on internal measures has focused on whether
they can correctly identify the true number of clus-
ters. In this paper, we will examine the 12 internal
measures from another aspect: can they help recover
the good clustering structure? An important issue re-
lated with internal measure is whether the “optimal”
clustering computed by an internal measure really
turns out to be a good clustering by validating with
an external gold clustering using some external mea-
sure. A possible solution is to compute the Pearson
correlation between the score computed by an inter-
nal measure and the score computed by an external
measure. The higher correlated they are, the better
the internal measure is.
Algorithm of MiCC

The basic idea of MiCC is that we continually
check the clustering quality of the original set of in-
stances by incrementally add instances from the pool
for multiple rounds (niterations). For each round, we
identify a certain number of “best” collaborative in-
stances (nstep) which help to achieve the best score



computed by an internal measure. In order to iden-
tify the “best” nstep collaborative instances for each
round, we repeat ntrials trials by randomly selecting
nstep collaborative instances from the selection pool.
At some point, the clustering quality reaches the op-
timal and adding more instances can no longer im-
prove or even hurt the score computed by an internal
measure. Once the optimal point is reached, we then
obtain the best set of collaborative instances, and the
clustering result on the expanded data set. The clus-
tering on the original data set can be retrieved by
only looking at the cluster ids of those instances in
the original data set. The final evaluation using some
external measure (i.e., validating with a gold cluster-
ing) is still conducted on the original data set. The
detailed algorithm is presented in Algorithm 1.

2.3.3 Macro Collaborative Clustering (MaCC)
Macro collaborative clustering (i.e., clusterer-

level collaborative clustering) takes the advantage of
leveraging the integration of diverse clustering re-
sults. There are two key issues involved in MaCC:

1. Ensemble generation: A clustering ensemble
is a set of clusterings, each of which is generated
by a clusterer. Diversified clusterers can be imple-
mented through: (1) different clustering algorithms;
(2) different distance functions to compute the dis-
tance between two instances; (3) different parameter
settings for a specific algorithm; (4) different dimen-
sion reduction methods which project from high di-
mensional space to lower dimensional space.

We denote a clustering ensemble as Π =
{π1, ..., πr} in which r is the number of clusterers
and each clustering πi consists of ki number of clus-
ters, i.e., πi = {Ci

1, ..., C
i
ki
} where Ci

1 ∪ ... ∪Ci
ki

=
X .

2. Consensus function: Given a clustering en-
semble Π = {π1, ..., πr}, a consensus function Γ
maps the ensemble to an integrated clustering, i.e.,
Γ : Π→ C.
Ensemble Generation

We applied the following set of clustering algo-
rithms:

(1) 3 linkage based agglomerative clustering al-
gorithms including complete linkage, single link-
age and average linkage (Manning et al., 2008).
We use symbols slink,clink,alink to represent the
three linkage based algorithms respectively.

Algorithm 1 MiCC algorithm.
Input:

X = {x1, x2, ..., xn}: instances in the data set;
Y = {y1, y2, ..., ym}: a pool of candidate col-
laborative instances;
F : a clustering algorithm;
M: an internal measure; //Assume optimal is
achieved when this measure is maximized
nstep: maximum number of collaborative in-
stances picked in each iteration;
ntrials: number of times
niterations: number of iterations

Output:
a set of best collaborative instances: Copt;
the optimal value computed by the internal mea-
sure Oopt;

1: Apply F on X and output a clustering, com-
pute the clustering quality by the internal mea-
sureM.

2: initialize a list of best found candidate collabo-
rative clustering instances C1, ...,Cniterations

3: initialize a list of best found values of clustering
quality O1, ...,Oniterations

4: for i = 1→ niterations do
5: for j = 1→ ntrials do
6: Randomly pick nstep collaborative clustering in-

stances (naming the set as Yj) from Y and produce

a new set of instances by X ∪ Yj .

7: Apply F on X ∪Yj , compute clustering quality Oij

using M.

8: end for
9: Find Oik such that Oik ≥ Oij for j ∈

{1, ..., ntrials}, expandX such thatX = X∪
Yk, remove Yk from Y such that Y = Y −Yk.

10: Ci = Yk, Oi = Oik

11: end for
12: Find Ou such that Ou ≥ Oi for i ∈
{1, ..., niterations}

13: Oopt = Ou

14: Copt = C1 ∪ ... ∪ Cu

15: return Copt and Oopt

(2) 6 agglomerative clustering algorithms that op-
timize the internal measure I1,I2,ε1,H1,H2 and G1

respectively (Zhao and Karypis, 2002). We use
symbols I1, I2, ε1, H1, H2 to represent the six al-
gorithms.



(3) 6 repeated bisectional partitioning cluster-
ing algorithms that optimize the internal measure
I1,I2,ε1,H1,H2 and G1 respectively (Zhao and
Karypis, 2002). We use symbols rI1, rI2, rε1, rH1,
rH2 to represent the six algorithms.

(4) 6 direct k-way partitioning clustering al-
gorithms that optimize the internal measure
I1,I2,ε1,H1,H2 and G1 respectively (Zhao and
Karypis, 2002). We use symbols dI1, dI2, dε1,
dH1, dH2 to represent the six algorithms.

Various clustering results can be obtained by com-
bining the above clustering algorithms together with
similarity functions. In our name entity clustering
(NIL clustering), we applied four similarity func-
tions (Chen, 2012), including cosine similarity of
two documents, correlation similarity of two docu-
ments, maximum entropy based model to compute
the similarity of two feature vectors representing the
two query context, and SVM model to compute the
similarity. We use symbols cos, cor, maxen, svm to
represent the four similarity functions.
Consensus Functions

A consensus function maps a set of clusterings
into a final clustering. Various approaches have
been proposed, including mutual information based
(Topchy et al., 2003; Luo et al., 2006), voting
based (Fischer and Buhmann, 2003; Fred, 2001), co-
association matrix based (Fred and Jain, 2002), mix-
ture model based (Topchy et al., 2004), and three
graph based approaches(Strehl and Ghosh, 2002;
Fern and Brodley, 2004). In this paper, we fo-
cus on co-association matrix based and three graph
based approaches, namely instance-based graph
formulation (IBGF), cluster-based graph formula-
tion(CBGF) and hybrid bipartite graph formulation
(HBGF).

2.3.4 Micro Macro Collaborative Clustering
(MiMaCC)

It is quite natural to combine instance-level col-
laborative clustering and clusterer-level collabora-
tive clustering so that we can first recover good clus-
tering structure by using collaborative instances and
then apply multiple clustering algorithms to produce
a final clustering. The hypothesis is that cluster-
ing on data in which good structure is embedded
can produce better results than clustering on data in
which ill structure is embedded.

A basic algorithm to implement MiMaCC is as
follows:

(1) expand the data set by introducing collabora-
tive instances;

(2) apply clusterer-level collaborative clustering
to produce a final clustering on the expanded data
set;

(3) down-scale the clustering by removing those
collaborative instances from clusters.

2.3.5 Case Study: Name Entity Clustering
In this paper, we define name entity clustering

as follows and NIL clustering is a specific form of
name entity clustering in which each instance is NIL
query.

Let Q = {q1, . . . , qn} denote the set of n in-
stances. Each instance q = (q.id, q.string, q.text)
is a triple consisting of instance id (q.id), name
string (q.string) and context document (q.text ∈ C)
in which C is source document corpus.

The goal of name entity clustering is to generate
a hard (non-overlapping) clustering for Q, i.e., Q =
(Q1, ..., QK) such that

(1) Qi 6= ∅ for i ∈ {1, ..., k}.
(2) Qi ∩Qj = ∅ for i, j ∈ {1, ..., k} and i 6= j.
(3) Q1 ∪ ... ∪Qk = Q
in which each cluster Qi refers to an entity.

3 Entity Linking Experiments

3.1 Data and Evaluation Metric

For the English entity linking experiments, we used
KBP 2012 English entity linking evaluation corpus
for testing, and used KBP 2009 English entity link-
ing evaluation corpus for training as shown in Table
1. The training corpus was basically used to train
supervised ranking models. The English reference
Knowledge Base is the same as the one used in pre-
vious evaluations which consists of 818,741 nodes
derived from an October 2008 dump of English
Wikipedia. The English source collection is also
the same as the one used in 2011 evaluation which
includes 1,286,609 newswire documents, 490,596
web documents, and 683 other documents.

We applied the official evaluation metric which
has been proposed during KBP 2011 entity linking
evaluation. The metric is called modified B-Cubed
(B-Cubed+) F-measure which is the harmonic mean



Table 1: Data sets

 Corpus #Queries 
PER ORG GPE Total 

Testing KBP2012 918 706 602 2226 
Training KBP2009 627 2710 567 3904 

 

of B-Cubed+ precision and B-Cubed+ recall. It
is worth noting that this measure has shown to be
highly correlated with the old micro-averaged ac-
curacy metric in KBP2009 and KBP2010 (Ji et al.,
2011).

As we will discuss in the later section, the NIL
clustering is still not challenging enough in KBP
2012 evaluation, so simple clustering approach can
perform reasonably well. To validate the effective-
ness of collaborative clustering we proposed, we
created a data set by following the procedure as fol-
lows:

(1) we first collected all the queries from KBP
2009, 2010 and 2011 entity linking evaluation cor-
pus. We obtained 6652 queries distributed in 1379
unique spelling names.

(2) we wrote a program to automatically pick
out names that satisfy the following conditions: (a)
the name should be ambiguous, which means the
queries that contain the name should be able to be
clustered into 2 or more clusters according to the an-
swer keys; (b) the number of queries that contain the
name should be larger than 4; (c) the entity types in
those queries that contain the name should be con-
sistent and those name with mixed entity types are
filtered; (d) besides the context documents in those
queries which share a name, we can find at least 5
relevant documents that also contain the name.

As a result, we obtained a data set consisting of
1686 queries distributed in 106 names, including
21 person names, 67 organization names, and 18
GPE names.

Instead of B-Cubed+ F-measure, we applied the
V-measure to evaluate name entity clustering, be-
cause in our previous study (Chen, 2012), we stud-
ied more than 20 evaluation metrics by taking into
account whether they can capture the few constraints
discussed in (Amigo et al., 1987) and whether they
can overcome the “uniform effect” discussed in (Wu
et al., 2009). We conclude that V-measure which
was proposed by (Rosenberg and Hirschberg, 2007)

has superior advantages and then in the later experi-
ments, we use it as our evaluation metric.

3.2 Experiment Results

3.2.1 Scores of Our Submitted Runs
We submitted 6 runs, including 5 runs using

Wikipedia texts and 1 run without using Wikipedia
texts. The 6 runs are common in using the same
query reformulation, candidate generation and NIL
clustering techniques, however, they differ from
each other in using different ranking models (Chen
and Ji, 2011)

(1) query level collaborative ranking using maxi-
mum entropy based ranking model (Micro-Maxen)

(2) query level collaborative ranking using SVM
ranking model (Micro-SVM)

(3) query level collaborative ranking using List-
wise ranking model (Micro-Listwise)

(4) query level collaborative ranking using TF-
IDF ranking model (Micro-TFIDF)

(5) query level and ranker level collaborative
ranking by combining the above four ranking results
together with the non-wiki result (Micro-Macro)

The only one run without using Wikipedia texts
is based on ranking KB entries by popularity scores
(Popularity), i.e., we always pick the most popu-
lar KB entry as output, and the popularity score
is equivalent to the default relevant score retrieved
from KB candidates using Lucene API.

The scores evaluated by B-Cubed+ F-measure are
shown in Table 2, in which each row represents a
submitted result and the column with scores rep-
resents a category of queries, i.e., ALL (for all
queries), KB (for queries with KB entries), NIL (for
queries which cannot be linked to KB), NW (for
queries with associated documents from Newswire
sources), WB (for queries with associated docu-
ments from Web blogs), PER (for queries with per-
son type), ORG (for queries with organization type),
and GPE (for queries with GPE type). The highest
score for each category is highlighted in bold.

Not surprisingly, the runs using Wikipedia texts
outperform those without using Wikipedia texts.
Queries from web data proved more challenging
than those from news wire documents. Among the
three entity types, our systems performed the best on
person queries.



Table 2: Scores of our submitted 6 results

 Submitted 
result 

B-Cubed+ F-measure 
ALL KB NIL NW WB PER ORG GPE 

wiki Micro-Maxen 0.678 0.545 0.826 0.728 0.580 0.832 0.671 0.449 
Micro-SVM 0.688 0.595 0.789 0.741 0.583 0.833 0.666 0.488 
Micro-Listwise 0.660 0.530 0.804 0.717 0.547 0.802 0.655 0.446 
Micro-TFIDF 0.533 0.474 0.597 0.599 0.405 0.717 0.502 0.284 
Micro-Macro 0.680 0.561 0.812 0.733 0.576 0.831 0.666 0.461 

non-wiki Popularity 0.604 0.386 0.847 0.650 0.513 0.796 0.632 0.275 
 

Among the 6 runs, the best overall score is Micro-
SVM, Micro-Macro the second, Micro-Maxen the
third, and Micro-Listwise the fourth. These con-
tradict with the results we obtained in KBP2011
where we showed that Micro-Macro can perform
the best, while Micro-Listwise can perform bet-
ter than the other two pointwise based ranking ap-
proaches, i.e., Micro-Maxen or Micro-SVM. The
reasons might be that (a) the training models cre-
ated from KBP2009 cannot handle some new test-
ing instances in KBP2012 because of unexpected
data peculiarities or changes in data distribution; (b)
Micro-Macro only integrates 5 runs which may not
provide enough varieties and some results may actu-
ally hurt the overall performance after combination
(e.g., the worst result from Micro-TFIDF). As dis-
cussed in our previous paper (Chen and Ji, 2011), the
success of Micro-Macro depends on several factors,
including the diversity of ranking results, choices of
selecting ranking results (extremely bad results can
hurt), and combination scheme (voting, average).

3.2.2 Impact of Query Reformulation
As we also discussed in section 2.2, the ambigu-

ity of queries mainly come from three sources. We
report the detailed impact of query reformulation as
follows.

Source 1. Person Name: using last name as query
string

For example, there are 48 queries with the query
name of “Clark”. However, in many cases, we can
find the full name of “Clark” from the context docu-
ment.

Example 1: District Attorney Mitch Mor-
rissey announced at a news conference at
the Denver Police Administration building
that Willie Clark faces 39 counts ...

Example 2: Instead,“figure out what

kicks off asthma symptoms,” says Noreen
Clark, director of the Center for Manag-
ing Chronic Disease ...

Example 3: Early on New Year’s Day, Bill
Clark, a long-distance trucker who was
picking up cargo from Maine, ...

Source 2. Organization Name: using acronym as
query string For example, there are 4 queries with
the query name of “MMA”, and we can find their
expanded names from the context documents.

Example 4: Trouble flared as po-
lice tried to arrest leaders of the six-
partyIslamic alliance Muttahida Majlis-
e-Amal (MMA) for staging arally in...

Example 5: Meanwhile, the Myanmar
Medical Association (MMA) has ap-
pealed tolocal private doctors to voluntar-
ily provide ...

Source 3. GPE Name: using city name as query
string For example, there are 4 queries with the
query name of “BRECKENRIDGE”, and we can
find the unambiguous form of “BRECKENRIDGE”
followed by a state name from the context document.

Example 6: BRECKENRIDGE, Minn.
Minerva Hinojosa and her family mi-
grated north again last month...

Example 7: BRECKENRIDGE, Texas
2008-04-10 05:43:14 UTC
Powerful storms including apparent tor-
nadoes moved...

Example 8: BRECKENRIDGE, Col-
orado 2008-01-03 18:41:29 UTC
An 11-year-old British boy died Thurs-
day...

To reduce the ambiguity from the three sources,
we applied within-document coreference resolution,
acronym expansion, city name expansion respec-
tively.

We used the following formula to compute ambi-
guity (a name is ambiguous if it can refer to at least
2 entities):
ambiguity = #ambiguous names

#names



Table 3 shows that within-document coreference
resolution contributes the most in reducing the ambi-
guity, from 46.3% to 14.6%, while acronym expan-
sion and city name expansion further reduce the am-
biguity to 11.2%. Without using any query reformu-
lation, the popularity based non-wiki approach only
obtains the B-Cubed+ F-measure of 0.471. How-
ever, after applying within-document coreference
resolution and replacing the person names with the
full names, the performance significantly increases
to 0.576. Acronym expansion and city name ex-
pansion further help to improve the performance to
0.604.

Table 3: Impact of query reformulation

 ambiguity B-Cubed+ F-measure (Popularity 
based approach) 

Original query file 376/812=46.3% 0.471 
+within document 
coreference resolution 

242/1660=14.6% 0.576 

+acronym expansion 229/1698=13.5% 0.577 
+city name expansion 200/1780=11.2% 0.604 
 

3.2.3 Impact of Collaborative Clustering
Long tail effect in name entity clustering

By analyzing the data set prepared for name entity
clustering, we observed two types of long tail effect:

Type I: As shown in Figure 3, most ambiguous
names only refer to a few entities (i.e., clusters). For
example, 39 names (36.8% of the total) only have
two clusters, and 91 names (85.8% of the total) have
fewer than and equal to 6 clusters. There are only
a few names that have extremely large number of
clusters.

 

39 

26 

12 
9 

5 
3 4 

2 3 
1 1 1 

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6 7 8 9 10 11 12 13

#n
am

es
 

#clusters 

Figure 3: Type I long tail effect

Type II: As shown in Figure 4, most names have
very unbalanced class distribution, in other words,
most queries (instances) are clustered in a few large
clusters, while the other queries are clustered into

small clusters including many singleton clusters.
The number on each bar is computed as follows: we
rank the clusters for each name from high to low by
computing the number of queries contained in each
cluster, so the first cluster (as shown in the most left
bar in Figure 4) always contains the largest number
of queries; we then compute the average number of
queries for the ith cluster among all the names. The
figure shows that the top cluster contains 9.4 queries
in average, and the second largest cluster only con-
tains 3.3 queries, and more clusters contains even
fewer queries.

 

9.4  

3.3  

2.1  
1.5  1.5  1.3  1.3  1.2  1.1  1.0  1.0  1.0  1.0  

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1 2 3 4 5 6 7 8 9 10 11 12 13

#i
ns

ta
nc

es
 

the ith cluster 

Figure 4: Type II long tail effect

Impact of Clustering Algorithms
As discussed in 2.3.3, we applied 21 clustering al-

gorithms and 4 similarity functions to get 81 (21*4)
clustering solutions. We also experimented two set-
tings of each clustering algorithm, one is to use fixed
K (assuming that we know the prior of the number
of clusters), the other is to compute Silhouette Co-
efficient (Rousseeuw, 1987) to automatically deter-
mine the number of clusters. The results are shown
in Figure 5 and 6 respectively.

We have the following observations based on the
two figures:

(1) In general, the three linkage based agglomer-
ative clustering algorithms can perform well using
any of the four similarity functions. For example,
in Figure 5 using cosine similarity, the highest score
(0.658) is achieved by clink, and using maximum
entropy based similarity function, the highest score
(0.660) is achieved by alink.

(2) Normally, the scores of unknown prior K are
lower than those of known prior K because de-
termining the number of clusters is an extra effort
which can introduce errors.
Impact of MiCC



similarity 
function 

Agglomerative Clustering Partitional Clustering 
linkage optimizing internal measure repeated bisection direct k-way 

slink clink alink 𝐼1 𝐼2 ℰ1 𝐺1 𝐻1 𝐻2 𝑟𝐼1 𝑟𝐼2 𝑟ℰ1 𝑟𝐺1 𝑟𝐻1 𝑟𝐻2 𝑑𝐼1 𝑑𝐼2 𝑑ℰ1 𝑑𝐺1 𝑑𝐻1 𝑑𝐻2 
cos 0.587  0.658  0.645  0.545  0.554  0.513  0.612  0.529  0.535  0.544  0.572  0.521  0.627  0.541  0.544  0.542  0.573  0.530  0.613  0.546  0.547  
cor 0.511  0.528  0.538  0.521  0.534  0.533  0.418  0.527  0.540  0.516  0.526  0.545  0.453  0.522  0.536  0.513  0.528  0.546  0.472  0.525  0.540  
maxen 0.602  0.557  0.660  0.626  0.615  0.616  0.615  0.570  0.568  0.587  0.591  0.561  0.609  0.566  0.566  0.580  0.586  0.561  0.596  0.570  0.569  
svm 0.603  0.567  0.647  0.644  0.643  0.614  0.561  0.567  0.561  0.585  0.596  0.575  0.586  0.576  0.575  0.575  0.584  0.578  0.591  0.570  0.565  

 

 

 

0.660  

0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.700

V 
Sc

or
e 

cos cor maxen svm

1I 2I 1ε 1G 1H 2H 1rI 2rI 1rε 1rG 1rH 2rH 1dI 2dI 1dε 1dG 1dH 2dHslink clink alink

Figure 5: Performance of 21 clustering algorithms for all names (known prior K)

similarity 
function 

Agglomerative Clustering Partitional Clustering 
linkage optimizing internal measure repeated bisection direct k-way 

slink clink alink 𝐼1 𝐼2 ℰ1 𝐺1 𝐻1 𝐻2 𝑟𝐼1 𝑟𝐼2 𝑟ℰ1 𝑟𝐺1 𝑟𝐻1 𝑟𝐻2 𝑑𝐼1 𝑑𝐼2 𝑑ℰ1 𝑑𝐺1 𝑑𝐻1 𝑑𝐻2 
cos 0.520  0.632  0.551  0.555  0.557  0.509  0.561  0.546  0.538  0.549  0.563  0.507  0.615  0.537  0.520  0.549  0.565  0.513  0.605  0.534  0.529  
cor 0.474  0.557  0.515  0.551  0.558  0.556  0.417  0.563  0.563  0.556  0.560  0.565  0.480  0.554  0.557  0.552  0.557  0.555  0.484  0.556  0.555  
maxen 0.525  0.493  0.545  0.532  0.537  0.537  0.515  0.537  0.540  0.536  0.528  0.525  0.498  0.536  0.536  0.531  0.524  0.520  0.510  0.531  0.531  
svm 0.511  0.508  0.552  0.549  0.553  0.528  0.524  0.533  0.534  0.536  0.533  0.510  0.525  0.530  0.523  0.530  0.533  0.518  0.532  0.534  0.530  

 

 

 

0.632 0.615 0.605 

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

V 
Sc

or
e 

cos cor maxen svm

1I 2I 1ε 1G 1H 2H 1rI 2rI 1rε 1rG 1rH 2rH 1dI 2dI 1dε 1dG 1dH 2dHslink clink alink

Figure 6: Performance of 21 clustering algorithms for all names (unknown prior K)

 

0.587  

0.658  
0.645  

0.545  
0.554  

0.513  

0.612  

0.529  0.535  
0.544  

0.572  

0.521  

0.627  

0.541  0.544  0.547  

0.577  

0.604  

0.575  
0.593  

0.573  

0.594  

0.572  
0.556  

0.577  
0.593  

0.560  

0.624  

0.593  

0.560  

0.500

0.520

0.540

0.560

0.580

0.600

0.620

0.640

0.660

0.680

V 
Sc

or
e 

non-collaborative collaborative (MiCC)

1I 2I 1ε 1G 1H 2H 1rI 2rI 1rε 1rG 1rH 2rHslink clink alink

Figure 7: Impact of MiCC (known K)

For each name, we first applied Lucene5 to search
at most 100 documents that mention the name and
use them as the pool of collaborative instances. It
is worth noting that the selected instances are ac-
tually ranked by the default ranking model in the
Lucene. Similar with document clustering, we se-

5http://lucene.apache.org/

lected Silhouette Coefficient (SC) as our internal
measure. For each iteration, we selected at most
nstep = 5 collaborative instances. To pick the best
5 collaborative documents in each iteration, we tried
ntrials = 10 times by randomly selecting 5 docu-
ments from the pool. For each trial, we added the
5 documents into the expanded set of documents,
and applied a clustering algorithm on the newly ex-



 

0.520  

0.632  

0.551  0.555  0.557  

0.509  

0.561  
0.546  0.538  

0.549  
0.563  

0.507  

0.615  

0.537  
0.520  

0.542  

0.576  

0.627  

0.599  
0.620  

0.600  

0.627  

0.566  

0.593  
0.574  

0.606  

0.574  

0.650  

0.589  
0.566  

0.450

0.500

0.550

0.600

0.650

0.700

V 
Sc

or
e 

non-collaborative collaborative(MiCC)

1I 2I 1ε 1G 1H 2H 1rI 2rI 1rε 1rG 1rH 2rHslink clink alink

Figure 8: Impact of MiCC (unknown K)

panded set of document and then computed the clus-
tering quality of the original set of instances using
the internal measure SC. Among the 10 trials, we
picked the best 5 collaborative documents which led
to the best clustering quality. We set niterations = 6,
in other words, we at most selected 30 collaborative
documents in the end.

We tested on the 15 baseline clustering algorithms
(alink,clink,alink,I1, I2, ε1, G1, H1, H2, rI1, rI2,
rε1, rG1, rH1, rH2) , and validated whether the
MiCC algorithm can help each baseline algorithm to
achieve better performance evaluated by V-measure.
Figure 7, 8 show the results for known K and un-
known K respectively.

We observed that MiCC achieves limited success
for some clustering algorithms while fails for some
other clustering algorithm if the number of clusters
(K) is given. There are two reasons that lead to the
possible failure: (1) in name entity clustering, the
cluster distribution in instance collaborators are still
quite close to the original set of instances. There-
fore the added collaborators can only enhance some
already well-formed clusters in the original data set
and still lack the ability to help uncover bad clus-
ters; (2) the added collaborators may belong to a
new cluster that is not in the original data set. Thus
ifK is set to be fixed, those new added collaborators
which belong to a new cluster will be distributed to
clusters in the original data set, thus they are intro-
duced as noises which make the results worse.

However, ifK is not given, MiCC works for most
of the clustering algorithms. That clearly shows the
approach that automatically determines K helps to
reduce the side-effect of introducing new clusters as
K can be dynamically changed.

Impact of MaCC
We collected 84 clustering results, which is a

combination of 21 clustering algorithms and 4 simi-
larity functions.

We experimented four combination schemes and
four consensus functions, specifically,

Scheme 1. The 84 clustering results are catego-
rized into 4 serial groups, the first group uses cosine
similarity, the second group uses correlation simi-
larity, the third group uses maxen similarity and the
final group uses svm similarity. Each group contains
21 clustering results. We use notations “cos”, “cor”,
“maxen” and “svm” to represent the four groups.

Scheme 2. The 84 clustering results are catego-
rized into 3 serial groups, the first group includes
24 repeated bisectional clustering results (6 repeated
bisectional clustering algorithms times 4 similarity
functions), the second group includes 24 direct k-
way clustering results (6 direct k-way clustering al-
gorithms times 4 similarity functions) and the third
group includes 36 agglomerative clustering results(9
agglomerative clustering algorithms times 4 similar-
ity functions), . We use notations “rbr”, “direct” and
“agglo” to represent the three groups respectively.

Scheme 3. The 84 clustering results are ranked
from the highest to the lowest by the scores com-
puted by the internal measure “silhouette coeffi-
cient”, and then split into 4 groups, each group con-
taining 21 ranked clustering results.

Scheme 4. The 84 clustering results are ranked
from the highest to the lowest by the scores com-
puted by the external measure “V-measure”, and
then split into 4 groups, each group containing 21
ranked clustering results.

The four consensus functions include co-



association matrix based, IBGF, CBGF, and HBGF.
Figure 9 and Figure 10 show the performance

of the four combination schemes and four consen-
sus functions for known K and unknown K respec-
tively. We can observe that:

(1) In Figure 9 (a), after cor related clustering re-
sults are added, the performance significantly drops
which clearly show that they hurt the performance.
However, after adding maxen and svm related clus-
tering results, the performance increases again. The
final best performance is obtained after adding all
the 84 clustering results, however, the score 0.646
cannot beat the best one (0.660) among the 84 clus-
tering results although it beats 95.2% of 84. This
observation does not quite hold for unknown K in
which case, cor related clustering results are signifi-
cantly worse than the others, and the best combina-
tion performance (0.621) is obtained only by adding
cosine related clustering results and it also cannot
beat the best score among the 84 clustering results
(unknown K) which is 0.632.

(2) In Figure 9 (b), we do not observe significant
improvement after adding direct related clustering
results which is consistent with the fact that direct
related results are not significantly better than rbr,
however, after adding agglomerative related results,
the performance can increase significantly, because
we already know that three linkage based agglom-
erative clustering algorithms perform well. This ob-
servation also holds for unknown K.

(3) Better performance can be obtained by
Scheme 3 and Scheme 4 either for known K or
unknown K. Most importantly, the best combined
score can all outperform the best one in the 84 clus-
tering results. For known K, in Figure 9 (c), we
obtained the best score of 0.699, in Figure 9 (d), we
obtained the best score of 0.750. They outperform
the best individual score of 0.660 by 3.9% and 9.0%
respectively. For unknown K, in Figure 10 (c), we
obtained the best score of 0.646, in Figure 10 (d),
we obtained the best score of 0.751. They outper-
form the best individual score of 0.632 by 1.4% and
11.9% respectively. All those performance gains are
statistically significant.

We claim that
(1) the success of MaCC relies on clustering di-

versity. For example, direct related clustering results
perform comparably with rbr related clustering re-

sults in Figure 9 (b), therefore, direct related results
do not have enough diversity to further improve the
combined score.

(2) the success of MaCC relies on selection of
clusterers. Good clusterers tend to produce even bet-
ter final result, while bad clusterers tend to produce
negative result. This is obvious from Figure 9 (c)
and (d).

(3) the success of MaCC also relies on consen-
sus function. Co-association matrix based is a good
choice according to our experiments.

3.2.4 Why NIL Clustering is So Simple in
KBP2012

Among the NIL queries, we found that 34.9%
(178/510) of names refer to more than 2 clusters,
however, after applying our query reformulation
techniques, only 5.8% (55/947) of names are am-
biguous. That clearly shows that a simple strategy
based on all-in-one (clustering all queries with the
same name into one cluster) may beat any sophisti-
cated clustering algorithms. What is more, we found
that there are only 1049 NIL queries dispersed in
510 names before query reformulation, which means
that for each name, there are only 2 queries in av-
erage. This also makes traditional clustering algo-
rithms on such small scale of data ineffective. Al-
though we have developed very sophisticated clus-
tering approaches as presented in this paper for NIL
clustering, unfortunately, they cannot be applied ef-
fectively because a simple all-in-one can do suffi-
ciently well for the queries with the current selection
criteria.

We propose the following criteria to select good
queries to evaluate NIL Entity Clustering in the
coming years:

(1) The query name after query reformulation
should also be ambiguous, which means the full
name refer to at least two entities.

(2) The number of queries (clustering instances)
which share the same query name after query refor-
mulation should be at least four.

(3) (optional to favor MiCC in collaborative clus-
tering) at least 5 relevant documents can be retrieved
from the source collection that contain the query
name.



 

0.636  

0.602  

0.616  
0.623  

0.602  

0.588  

0.606  
0.615  

0.638  

0.623  

0.640  0.644  0.646  

0.589  

0.632  
0.625  

0.550
0.560
0.570
0.580
0.590
0.600
0.610
0.620
0.630
0.640
0.650
0.660

Co-association
Matrix

IBGF CBGF HBGF

V 
Sc

or
e 

cos +cor +maxen +svm

(a) Scheme 1: combination by series of similarity functions
(known K)

 

0.589  

0.579  
0.584  

0.597  
0.589  

0.579  
0.591  0.589  

0.646  

0.589  

0.633  0.630  

0.540

0.560

0.580

0.600

0.620

0.640

0.660

Co-association
Matrix

IBGF CBGF HBGF

V 
Sc

or
e 

rbr +direct +agglo

(b) Scheme 2: combination by series of clustering algorithms
(known K)

 

0.699  0.682  
0.687  0.688  

0.686  0.680  0.685  0.686  
0.652  0.653  0.655  0.658  

0.646  

0.589  

0.635  0.626  

0.500

0.550

0.600

0.650

0.700

0.750

Co-association
Matrix

IBGF CBGF HBGF

V 
Sc

or
e 

21 42 63 84

(c) Scheme 3: combination by ranks of silhouette coefficient
(known K)

 

0.743  0.737  0.750  0.746  
0.717  0.706  

0.721  0.718  

0.664  0.661  
0.679  0.670  

0.646  

0.589  

0.633  0.623  

0.500

0.550

0.600

0.650

0.700

0.750

0.800

Co-association
Matrix

IBGF CBGF HBGF

V 
Sc

or
e 

21 42 63 84

(d) Scheme 4: combination by ranks of V measure (known K)

Figure 9: Four combination schemes of MaCC
(known K)

 

0.621  

0.550  0.555  
0.554  

0.615  

0.580  

0.555  

0.583  

0.616  

0.584  
0.593  0.596  

0.614  
0.601  

0.576  0.576  

0.500

0.520

0.540

0.560

0.580

0.600

0.620

0.640

Co-association
Matrix

IBGF CBGF HBGF

V 
Sc

or
e 

cos +cor +maxen +svm

(a) Scheme 1: combination by series of similarity functions (un-
known K)

 

0.594  

0.581  0.574  

0.591  

0.602  
0.594  

0.580  

0.597  

0.614  
0.601  

0.567  

0.587  

0.500

0.520

0.540

0.560

0.580

0.600

0.620

Co-association
Matrix

IBGF CBGF HBGF

V 
Sc

or
e 

rbr +direct +agglo

(b) Scheme 2: combination by series of clustering algorithms
(unknown K)

 

0.631  

0.589  
0.575  0.578  

0.637  

0.573  
0.565  

0.584  

0.646  

0.604  

0.570  
0.590  

0.614  

0.601  

0.565  

0.583  

0.500

0.520

0.540

0.560

0.580

0.600

0.620

0.640

0.660

Co-association
Matrix

IBGF CBGF HBGF

V 
Sc

or
e 

21 42 63 84

(c) Scheme 3: combination by ranks of silhouette coefficient
(unknown K)

 

0.751  

0.697  
0.718  0.715  0.705  

0.653  
0.677  0.663  0.667  

0.632  0.623  
0.644  

0.614  0.601  

0.559  
0.585  

0.500

0.550

0.600

0.650

0.700

0.750

0.800

Co-association
Matrix

IBGF CBGF HBGF

V 
Sc

or
e 

21 42 63 84

(d) Scheme 4: combination by ranks of V measure (unknown
K)

Figure 10: Four combination schemes of MaCC (un-
known K)



4 Entity Linking Related Work

Clustering is an extensively researched topic and
there is a considerable amount of literature which
covers every aspect of clustering problem includ-
ing clustering algorithm, clustering validation, dis-
tance function computation etc. We refer readers to
two most recent thorough surveys (Jain et al., 1999;
Xu and II., 2005). A considerable amount of work
has also published on clustering ensemble which
is called as “macro collaborative clustering” in our
term. As far as we know, this is the beginning work
that takes both instance-level and clusterer-level col-
laboration into consideration.

The name entity clustering task defined here
is closely related with other research topics such
as person name disambiguation(Chen and Martin,
2007), web people search (Artiles et al., , 2009),
cross-document entity coreference resolution. The
common thing in these research topics is that they all
can be formulated as a clustering problem. However,
person name disambiguation and web people search
focus on clustering person name entity mentions
into unambiguous entities. Cross-document entity
coreference resolution studies not only name enti-
ties “Mike Jordan”, but also nominal entities such
as “professor” and pronominal entities such as “he”
and “she”. The clustered results in cross-document
entity coreference resolution are often mentioned as
coreference chains, for example, a chain can contain
the following mentions, “Mike Jordan”, “professor”
and “he”. In this paper, we focus on name entities,
and do not explore nominal entities and pronominal
entities. We used name entity clustering as an ap-
plication of “collaborative clustering”, and validated
its effectiveness.

System Validation: extensive work has been per-
formed on reranking techniques to enhance the per-
formance of NLP systems for a variety of tasks in-
cluding but not limited to name tagging (Ji et al.,
), parsing /citeCharniak2005, and machine transla-
tion (Huang et al., ). Although successful appli-
cations, these approaches generally focus on im-
proving a stand-alone, or a limited number of sys-
tems to produce the n-best hypotheses. To this
end, our previous work (Tamang and Ji, 2011) ap-
plies re-ranking to combine the aggregated output
of many systems developed by different researchers,

and demonstrates that overall gains can be accom-
plished even in the ‘black-box’ setting where in-
termediate system output is unavailable. Also, this
work suggests the benefit of system combination is
maximized when there are many systems available
for combination, the component systems are devel-
oped using diverse resources, and systems demon-
strate comparable performance.

5 Slot Filling Validation

This section describes our work on the new Slot Fill-
ing Validation task. After the evaluation runs are
submitted by the participating teams, the answer set
are merged, functioning as the input to a validation
system. For each candidate answer in the merged
answer set, a label the original answer to indicate a
valid or invalid answer.

5.1 Validation System Overview

Our automatic slot filling validator was trained from
the system output from previous years based on a
logistic regression model for all 42 slot types, us-
ing several types of answer characteristics. We can
broadly described our feature types as shallow, con-
textual or emergent. Shallow features exploit the ba-
sic knowledge about a query, slot fill and deeper,
contextual features require context that is provided
by a supporting document. Both types are exam-
ined on individual basis and the predictive informa-
tion is independent of all other answers. Emergent
features arise when the answers from multiple runs
are aggregated, and draw from the notion of voting
or consensus. For the purpose of answer validation,
we can view this as a systems approach to tapping
the“wisdom of crowds”, which like human consen-
sus, has it’s strengths and weaknesses.

Our previous work (Tamang and Ji, 2011) has
shown that there are benefits to system combination
with as few as two systems. Based on out partici-
pation in the task and a detailed analysis of system
results, we had the following observations using the
merged results of twenty-six from X systems that we
feel can help to improve framing the task and task
evaluation. Currently, generating an answer key is
a laborious task that involved multiple human asses-
sors. In addition, we will identify the common error
types across slot filling systems. In summary, our



key insights are:
(1) There are several conditions that should be

met for successful combining of KBP slot-filling sys-
tems beyond that of requiring a uniform represen-
tation. This includes the use of systems that can
produce reasonably good results. When the per-
formance of individual systems is variable, combin-
ing based on voting, or emergent features, becomes
more challenging, especially when low performance
systems produce a large number of answers relative
to the number of answers provided by good system.
In the extreme case, system or run consensus based
features can amplify the contributions of poor per-
formers and punish smarter systems.

(2) With the exception of syntactic features that
embody known structural patterns a regular expres-
sions, features extracted from the answer justifica-
tion, or contextual features, are more robust than
other types of features. That is, contextual features
are not as sensitive to noisy component systems.
However, it relies on the presence and accuracy of
justification offsets and strategies for their use in val-
idation should be shaped accordingly.

(3) Shallow features alone are limited in their
ability to discern answer correctness but helpful to
training a classifier. This is likely due to the fact
that it is measuring consistency of answer type (i.e.
title, country, lastname, number of tokens) and does
not consider the context in which the answer was re-
trieved. Since systems with lower F1 measures typ-
ically report many more answers that top systems,
contextual features have the most potential.

(4) The detailed methods of confidence estima-
tion and the ranks of systems are unknown during
evaluation. We will show that information about the
performance of component systems is important to
our validator. We demonstrate a simple method of
automatically assessing quality to obtain a rough es-
timation of system quality that can be used to adjust
the re-ranking based confidence. Also, we discuss
the benefits and challenges of using system gener-
ated confidence values, and voting features when the
quality of component systems is uncertain.

5.2 Feature Description
We hypothesize that implicit constraints can inform
the likelihood that a slot fill is correct. Features
that are extracted based on characteristics of a slot

fill use gazetteers for labeling, structural features, or
surface level answer features. For example, all resi-
dence slots will be filled with a country, state or city.
Similarly, slots for a query’s spouse or other fam-
ily member will correspond with a name, and that
name isn’t likely to be 4 tokens in total length. The
shallow features we extracted and are based on char-
acteristics of the slot fill, and not the answer context
from which the answer was derived fare in Table 4.

The next broad class of validation techniques
shown in Table 4 we will describe as contextual.
Based on the offsets provided in the standard answer
format to indicate the justification for the slot-fill,
it involves retrieving the supporting document from
the test collection and analyzing the context from
which a slot-fill was generated.

Lastly, the third category of slot-filling valida-
tion techniques, emergent, were weighted voting
features, which make use of collective, group deci-
sion power. Our results in KBP2012 evaluation have
shown that our validator can produce a combined
system output with good performance, and promote
good answers and thus can significantly reduce the
cost of human assessment. We will report the im-
pact of our validator on each individual system, the
combined system, and speed up human assessment.

5.3 Learning Methods
The first step in answer validation is classification.
To develop the slot-based classifiers for the evalua-
tion, our automatic slot filling validator was trained
with previous KBP output and uses a logistic regres-
sion model to obtain an answer likelihood on a scale
from 0-1 for all 42 slot types. We extracted the ap-
propriate features for each slot that are broadly de-
scribed as shallow, contextual or emergent and col-
lectively appear in Table 4.

For each slot’s training data, and based on the re-
sults of 10-fold cross-validation, a stepwise proce-
dure was used to test the contribution of each fea-
ture in the classification model to develop the slot-
based classifiers for the KBP validation task. The
model parameters that generated the lowest AIC
were selected for the evaluation runs with one ex-
ception. In some cases where AIC-based selection
resulted in a single voting feature. For these cases,
if a model with more features had approximately the
same AIC, it was used for the evaluation.



System consensus and answer consensus were
significant predictors of answer validity for all but
two slots. However, these two slots had a relatively
few training examples. Surprisingly, document type
was not a significant predictor in any of the classifi-
cation models.

The second step of validation consists of confi-
dence adjustment and rule based filtering. During
training, we observed that on some slots, such as an
organization’s top member’s and employee’s, emer-

Table 4: Validation Features

Feature Description Value Type
document
type

provided by docu-
ment collection as
news wire, broadcast
news, web log

category shallow

number of to-
kens

count of white spaces
(+1) between con-
tiguous character
string

integer shallow

acronym identify and concate-
nate first letter of
each token

binary shallow

url structural rules to de-
termine if a valid url

binary shallow

named entity
type

label with gazetteer category shallow

city, state,
country, title,
ethnicity,
religion

appears in specific
slot-related gazetteer

binary shallow

alphanumeric indicate if numbers
and letters appear

binary shallow

date structural rules to de-
termine if an accept-
able date format

binary shallow

capitalized first character of to-
ken(s) caps

binary shallow

same if query and fill
strings match

binary shallow

keywords used primarily for
spouse and residence
slots

binary context

dependency
parse

length from query to
answer

integer context

system votes proportion of systems
with answer agree-
ment

0-1 emergent

answer votes proportion of answers
with answer agree-
ment

0-1 emergent

gent features are sensitive to relatively bad systems
with many answers. The impact of poor performers
can be reduced by using a feature that captures sys-
tem or slot level performance as shown in our pre-
vious work. Since the performance of component
systems would be unknown at testing time, we used
a heuristic for automatically assessing performance
of a system. Specifically, we assessed the number
of type inconsistent fills (e.g., returning a state name
for a country slot) to get a rough estimate of high
and low performers and used the training data to es-
timate an appropriate level of answer confidence ad-
justment.

Based on the rough assessment of high and low
performing systems, we adjusted confidence scores
in the evaluation. Be did not weight or eliminate an-
swers, rather if an answer was only returned by the
set of lowest performers the validation confidence
was reduced. Alternatively, is a answer did not have
many votes, but a high performer was one of the vot-
ers, the confidence of the answer was increased.

For the contextual features, the training data pro-
vided the document ID not the provenance informa-
tion that is new to KBP 2012. Using the document
ID we retrieved the first sentence that the q,q pair
co-occurrs. This heuristic introduced noise, but pro-
vided a useful approximation. The contextual fea-
tures were not selected for the classification model
based on AIC. However, we found the contextual
characteristic derived from what we retrieved helped
remove invalid answers when used in a filtering step.
This involved adjusting the confidence predicted by
the validator when a slot relevant keyword appeared,
and setting a threshold to remove very long depen-
dency parses. The best parameters for rule-based fil-
tering were then used for evaluation.

Also, for two slots that were not well represented
in the training data we could not train a classifier
and only rule-based filtering could be applied. n
the case of org:website, strong shallow feature pre-
dictors based on regular expressions can be used to
eliminate invalid answers. On all other slots, syntac-
tic feature were not as useful.



6 Slot Filling Validation Experiments

6.1 Experiment Results

Table 5 shows the recall, precision, and F1 measure
for the LDC annotation, the aggregated output from
the KBP 2012 slot-filling task that served as input
to the validator, the results form phase one of the
validation method, and phase two.

Table 5: Performance

System Recall Precision F1
LDC 0.73 0.77 0.75
Validation input 0.70 0.03 0.06
Validator P1 0.12 0.07 0.09
Validator P2 0.35 0.08 0.13

6.2 Analysis

6.2.1 Slot-filling Validation Features
Figure 11 shows the KBP 2012 F1, mean system

confidence and total number of answers returned by
each system. The size of each point is proportional
to the size of the data set, and the color, the F1 mea-
sure. It suggests that better systems use higher mean
confidence values. Unlike emergent features that are
limited when favorable conditions for system com-
bination cannot be met, confidence values appear to
be more useful for validating and combining multi-
ple systems even in the presence of poor performers.
However, this is not a robust feature, and will not
work in a setting with many ‘ignorant systems’ that
are very confident about their invalid answers.

In the evaluation task, which reported 27 total
runs for 10 different system submissions, the 10
worst performers accounted for more than half of
the total answers. Not only has the range of system
performance increased in 2012, but the relative num-
ber of invalid answers in the merges system output.
This suggests a setting that can be unfavorable for
voting based features. Also, the importance of de-
tailed system characteristics such as methods used
and quality.

Although the overall F1 measure was better than
the median system performance rank, our post-
evaluation analysis indicates that the validator was
unable to improve on the results of top systems.
Since emergent features were consistently the most
significant predictors of valid answers on the train-

Figure 11: System F1 measures by mean confidence
and total answers returned

ing set, and the number of answers returned by sys-
tems with low F1 measures were two and even three
times the size of top systems, it is likely that the val-
idator was limited by its dependance on voting fea-
tures, and surface features are too weak. Automat-
ically assessing system quality by the proportion of
consistent answers, and extracting contextual char-
acteristics provided by answer provenance informa-
tion proved beneficial as indicated in Table 5, corre-
sponding with the gains from validation phases P1,
and P2.

6.2.2 Answer Key Generation
To assess the impact of validation methods to

expedite the generation of answer keys, we fur-
ther explored the potential role of system confi-
dence values, our current validator, and automatic
methods to assess system quality when performance
is unknown. Figure 12 shows several answer fil-
tering strategies and the number of true-positives
versus total candidate answers returned including:
adding systems by known F1 measure (F1 rank),
‘blind’ assessment of system quality using answer
consistency (consist), system reported answer con-



fidence (sys conf), our KBP evaluation validator
(e validator), random inclusion (random) and a com-
bination of the e validator at the threshold submit-
ted for KBP2012 (0.5) with the incremental addi-
tion of system answers with a confidence at least
.90 in the sequence of system consistency rank
(valid conf). For the methods consist, F1 rank, ran-
dom and valid conf, only the first ten out of the
total 27 systems in each category were used. For
e validator and sys conf and we show results start-
ing with all answers at the 0.90 level cumulatively
added at 0.10 increments.

Figure 12: Alternative answer reranking strategies

Figure 12 suggests that knowing the system per-
formance beforehand provides the most immedi-
ate rewards in terms of efficiency gains and saved
human labor hours (F1 rank). However, when
the quality of each system is unknown, it can be
roughly assessed by simple inconsistency checks us-
ing gazetteers and heuristics. In practice, we ex-
amined the percent of answers that appeared in a
country, state/province or title gazetteer to approx-
imate system ranking, and show the cumulative re-
sults based on adding the top ten systems based on
this approach (consist).

Also, this chart demonstrates that useful informa-
tion can be obtained by system reported confidence
levels. Adding the most confident answers first by
0.10 increments (sys conf) indicates that almost 75
percent of the correct answers have been assigned a
system confidence of 0.90 or greater. Also, starting
with our validator at the evaluation threshold, adding
answers with a confidence of 0.90 or greater in the
order of system consistency also shows a notable im-

provement on the base validator.

7 Slot Filling Validation Related Work

Extensive work has been performed on reranking
techniques to enhance the performance of NLP sys-
tems for a variety of tasks including but not limited
to name tagging (Ji et al. 2006) and machine trans-
lation (Huang and Papineni, 2007). Although suc-
cessful applications, these approaches generally fo-
cus on improving a stand-alone, or a limited number
of systems to produce the n-best hypotheses. To this
end, our previous work (Tamang and Ji, 2011) ap-
plies re-ranking to combine the aggregated output
of many systems developed by different researchers,
and demonstrates that overall gains can be accom-
plished even in the ‘black-box’ setting where in-
termediate system output is unavailable. Also, this
work suggests the benefit of system combination is
maximized when there are many systems available
for combination, the component systems are devel-
oped using diverse resources, and systems demon-
strate comparable performance.

8 Slot Filing Validation Discussions

This work describes a validator developed with pre-
vious KBP slot-filling output. Using surface fea-
tures, consensus, and some deeper contextual analy-
sis, tens of thousands of invalid answers can be fil-
tered, notably improving (0.06 to 0.13 F1) on the
combined output from all evaluation systems. Also,
the number of invalid answers is not evenly dis-
tributed among systems, suggesting that for many
low scoring teams, post-processing based on this
framework will provide immediate benefits.

It is important to note that we view the goal of
validation as part of an iterative loop involving that
pairs KBP systems with human assessors (Tamang
and Ji, 2011) to expedite the generation of answer
keys. It is related too, but distinct from system com-
bination, which seeks improve the overall F1 score.
The motivation for validation is to cull less valid an-
swers so that assessment hours be used more effec-
tively. Currently, the task of composing answer keys
to assess slot-filling performance is a bottleneck in
that developers cannot fully understand the strengths
and limitations of automated systems without com-
prehensive assessment keys.



Based on our experience validating the 2012 En-
glish KBP data, we were able to glean some insights
into the main challenges of the task that should be
considered for future validation work. The first is
due to sampling variability between training and
testing. That is, the collective systems represented
are notably different in performance and quality.
Our most predictive features for the training data
are answer consensus across systems and runs for
almost all of the slots. However, our evaluation
systems analysis suggests that the disproportionate
amount of answers and runs generated by poorer
relative to better systems was an issue for rerank-
ing performance. Although we feel that consensus
based features are useful, we also recommend the
use of more robust features that are less sensitive to
noise.

We found that surface features based on annota-
tion of the answer with location, title, named entity
and other gazetteers, or syntax checking for data for-
mats or numerical values are useful but limited in
their ability to discern answer correctness, and were
not included in the classifier’s feature set for many
slots. Their advantage is that these features are easy
to generate, and can be used to identify inconsis-
tent answers types. Also, we found them helpful for
automatically assessing very poor systems, which
tend to produce many inconsistent answers relative
to smarter systems.

Emergent, or voting based features to indicate
agreement of an answer among runs and systems.
Despite an inability to use the context provided by
answer provenance as effectively as we’d like, sim-
ple checks for keywords within the answer context
are useful based on training results, and filtering to
eliminate long dependency parses is useful when a
justification can be extracted.

Two new fields were added to KBP answer for-
mat for 2013 that can be used for validation: system
confidence (0-1), and answer provenance. The first,
system confidence is useful for validation the KBP
2013 data and a simple rule (i.e. returning only an-
swers ¿.90). In our post-evaluation system analysis,
we show that confidence values are informative as
system features for KBP 2012 validation. However,
their merit could easily be thrown off by a ‘igno-
rant system’ that is very confident but largely incor-
rect. To avoid worst-case scenarios, some knowl-

edge about the performance of the system that gener-
ated the answer and there confidence scheme would
be useful. One approach could be to combine our
method for automatically ranking systems using a
simple heuristic, with rescaling of confidence by
system.

The second new answer attribute in the KBP 2012
system output is answer provenance, which provides
the supporting text for a candidate answer. We feel
this is key information for a good validator that in
addition to shallow and consensus based features,
makes use of deeper semantic features that can be
good predictors and less sensitive to the limitations
of other systems. However, justification offsets were
not available in training data, and erroneous or miss-
ing in some evaluation answer sets.

For training out validator, we had only the docu-
ment ID not the offset justifications for using prove-
nance. For many training examples, we were able
to identify an appropriate sentence based on the co-
occurance of a q,a pair. Although no guarantee this
was the original systems justification, we found this
a reasonable approximation. These contextual fea-
tures were not represented in the models selected us-
ing AIC based criteria. However, recognizing their
value, they were used in a filtering step that involved
adjusting the confidence predicted by the validator
when a slot relevant keyword appeared, and to filter
some bad answers associated with a very long de-
pendency parse.

For our evaluation test set, we naively assumed
offsets values would follow the guidelines. We were
not prepared with a strategy for partially correct off-
sets, or missing offsets, which made it difficult to
assign dependency parse, or keyword based features.
Also, co-reference resolution was not used in either
testing or training and it is possible some justifica-
tions had the q,a pair present, but was not detected.

The amount of data for developing classifiers that
make use of deeper, semantic features for the KBP
can be an issue, especially for slots that are less
represented. We found rule-based filtering to ad-
just the confidence of answers is helpful in this case.
Also, we feel that validation strategies that can ap-
proximate missing offsets, or partially correct prove-
nance, and co-reference can more easily extract con-
textual features for classification. One trick that can
be used for co-reference detection that does not en-



tail the annotation of the entire corpus is to use the
alternate names slot value for the entity already pro-
vided in the answer set.

In summary, this work describes a variety of fea-
tures that were engineered for validation and our col-
lective insights on their strengths and limitations.
There are many ways to approach the validation
task, and this framework is designed to benefit the
generation of more comprehensive answer keys in a
shorter amount of time. Our approach seeks to lever-
age syntactic and semantic information in a variety
of features to provide predictive information about
the validity of each slot-fill in the merged output of
27 KBP 2012 Slot Filling systems. Despite the chal-
lenges, we are excited by the new resources for val-
idating KBP answers, and optimistic about their use
for improving validation and ultimately, expediting
answer-key generation.

Acknowledgments

This work was supported by the U.S. Army Re-
search Laboratory under Cooperative Agreement
No. W911NF-09-2-0053, the U.S. NSF Grants IIS-
0953149 and IIS-1144111 and the U.S. DARPA
BOLT program. The views and conclusions con-
tained in this document are those of the authors and
should not be interpreted as representing the offi-
cial policies, either expressed or implied, of the U.S.
Government. The U.S. Government is authorized
to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright nota-
tion here on.

References

S. Tamang and H. Ji. 2011. Adding smarter systems in-
stead of human annotators: re-ranking for system com-
bination. Proc. CIKM2011 workshop on Search and
mining entity-relationship data.

H. Ji, C. Rudin and R. Grishman. 2006. Re-ranking al-
gorithms for name tagging. Proc. NAACL2006 work-
shop on Computationally Hard Problems and Joint In-
ference in Speech and Language Processing.

F. Huang and K. Papineni. 2007. Hierarchical Sys-
tem Combination for Machine Translation. Proc. the
2007 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL 2007).

Y. Chen and J. Martin. 2007. Towards Robust Un-
supervised Personal Name Disambiguation. Proc.
EMNLP2007.

J. Artiles, J. Gonzalo and S. Sekine 2009. Weps 2 Evalu-
ation Campaign: Overview of the Web People Search
Clustering Task. Proc. WePS 2009.

Z. Chen 2012. Collaborative ranking and collaborative
clustering. Ph.d. thesis, Graduate Center, City Univer-
sity of New York.

P. Rousseeuw 2012. Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis. J.
Comput. Appl. Math., 20, 1987, pp. 53-65

E. Amigo and J. Gonzalo and J. Artiles and F. Verdejo
2008. A comparison of extrinsic clustering evaluation
metrics based on formal constraints. Information Re-
trieval

H. Ji, R. Grishman and H. T. Dang. 2011. An Overview
of the TAC2011 Knowledge Base Population Track.
Proc. Text Analysis Conference (TAC2011).

X. Z. Fern and C. E. Brodley. 2004. Solving cluster en-
semble problems by bipartite graph partitioning. Pro-
ceedings of the Twenty First International Conference
on Machine Learning.

B. Fischer and J. M. Buhmann. 2003. Bagging for path-
based clustering. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 25(11):1411-1415.

A. Fred 2001 Finding consistent clusters in data par-
titions. In Multiple Classifier Systems, volume LNCS
2096, pages 309-318. Springer.

A. Fred and A. K. Jain. 2002. Data clustering us-
ing evidence accumulation. In Proc. of Sixteenth In-
ternational Conference on Pattern Recognition, pages
IV:276-280.

A. K. Jain, M. N. Murty and P. Flynn. 1999. Data clus-
tering: a review. ACM Computing Surveys,31(3):264-
323.

G. Karypis 2007. Cluto - software for clustering high-
dimensional datasets. version 2.1.1.

Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu. 2010. Un-
derstanding of internal clustering validation measures.
Proceedings of the 2010 IEEE International Confer-
ence on Data Mining, p.911-916.

H. Luo, F. Jing, and X. Xie. 2006. Combining multi-
ple clusterings using information theory based genetic
algorithm. IEEE International Conference on Compu-
tational Intelligence and Security, vol. 1, pp. 84-89.

J. B. MacQueen. 1967. Some methods for classifica-
tion and analysis of multivariate observations. Pro-
ceedings of 5th Berkeley Symposium on Mathemati-
cal Statistics and Probability, University of California
Press. pp. 281-297.

C. D. Manning, P. Raghavan, and H. Schütze 2008. In-
troduction to information retrieval. Cambridge Uni-
versity Press.



A. Rosenberg and J. Hirschberg, J. 2007. V-measure: A
conditional entropy-based external cluster evaluation
measure. In Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Language Learning.

G. Salton, A. Wong, and C. S. Yang 1975. A vector
space model for automatic indexing. Communications
of the ACM, vol. 18, nr. 11, pp. 613-620.

M. Steinbach, G. Karypis, and V. Kumar 2000. A com-
parison of document clustering techniques. KDD.

A. Strehl and J. Ghosh. 2002. Cluster ensembles - a
knowledge reuse framework for combining multiple
partitions. Journal of Machine Learning Research, 3:
583-617.

P. N. Tan, M. Steinbach, and V. Kumar 2005. Introduc-
tion to data mining. Addison Wesley.

A. Topchy, A. Jain, and W. Punch. 2004. A mixture
model for clustering ensembles. In Proc. SIAM Data
Mining, pages 379-390.

A. Topchy, A. K. Jain,and W. Punch. 2003. Combin-
ing multiple weak clusterings. Proceeding of the Third
IEEE International Conference on Data Mining.

J. Wu, H. Xiong, and J. Chen 2009. Adapting the right
measures for k-means clustering. SIGKDD09,pages
877-886.

R. Xu and D. W. II. 2005. Survey of clustering algo-
rithms. IEEE Trans. Neural Networks,16, pp. 645-
678.

Y. Zhao and G. Karypis. 2002. Comparison of agglom-
erative and partitional document clustering algorithms.
Technical report , University of Minnesota.

Y. Zhao and G. Karypis. 2004. Empirical and theoretical
comparisons of selected criterion functions for docu-
ment clustering. Machine Learning, 55(3):311-331.

Y. Zhao and G. Karypis. 2005. Hierarchical clustering
algorithms for document datasets. Data Mining and
Knowledge Discovery, Vol. 10, No. 2, pp. 141 - 168.

Z. Chen, S. Tamang, A. Lee, X. Li, W. P. Lin, J. Artiles,
M. Snover, M. Passantino and H. Ji. 2010. CUNY-
BLENDER TAC-KBP2010 Entity Linking and Slot
Filling System Description. Proc. Text Analytics Con-
ference (TAC2010).

T. Cassidy, Z. Chen, J. Artiles, H. Ji, H. Deng, L.-A.
Ratinov, J. Zheng, J. Han and D Roth. 2011. CUNY-
UIUC-SRI TAC-KBP2011 Entity Linking System De-
scription. Proc. Text Analytics Conference (TAC2011).

Z. Chen and H. Ji. 2011. Collaborative Ranking: A Case
Study on Entity Linking. Proc. EMNLP2011.

S. Tamang and H. Ji. 2011. Adding smarter systems in-
stead of human annotators: re-ranking for system com-
bination. Proc. of the Workshop on Search and Mining
Entity-relationship data, CIKM 2011.

H. Ji., C. Rudin and R. Grishman. 2006. Re-ranking al-
gorithms for name tagging. Proc. of the Workshop on
Computationally Hard Problems and Joint Inference
in Speech and Language Processing, CHSLP ’06.

E. Charniak, M. Johnson. 2005. Coarse-to-fine n-best
parsing and MaxEnt discriminative reranking. Pro-
ceedings of the 43rd Annual Meeting on Association
for Computational Linguistics.

F. Huang, K. Papineni. 2007 Hierarchical System Com-
bination for Machine Translation. Proceedings of
the Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL 2007).


