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Abstract: 

The Domino system was SAIC’s student-intern 

entry to the English Entity-Linking track of the 

2012 TAC-KBP competition.  This paper 

describes how Domino was developed using 

components from the CUNY-BLENDER system 

and discusses the features and rules that were 

added to Domino. It analyzes Domino’s 

performance, and suggests ways in which we 

plan to improve the system in the future. 

 

1.Building the Domino Baseline System 

 

1.1 Motivation and Constraints 

Entity linking is a central task that analysts in 

the intelligence community (IC) often perform. 

Analysts must try to determine, for example, 

whether a person who is referred to in an 

intercepted email is the same as a person who is 

reported in some news article to have engaged in 

some terrorist activity. SAIC, which supports IC 

analysts in many different ways, is interested in 

developing methods to help automate the entity-

linking process.  

There are many similarities between the IC 

entity-linking task and the TAC-KBP Entity-

Linking track, which focuses on linking named 

entities in news articles or blog posts with 

Wikipedia articles.  We --- a group of students 

from the University of Maryland who spent the 

summer of 2012 at SAIC, and our supervisor at 

SAIC ---  therefore decided, in mid-June 2012, 

to enter the TAC-KBP Entity Linking 

competition.  

Because most of us --- and in particular, the 

developers among us –were undergraduates with  

little experience in Natural Language 

Processing, and because we knew we had only 

two months to pull together a system, we 

decided that we would try to use existing 

resources as much as possible. Our aim was to 

get an existing entity-linking system and modify 

it in order to improve output results. We were 

especially interested in generalizing the entity-

linking system so that it would be useful for 

more than just Wikipedia’s domain. SAIC’s 

customers will often be interested in people who 

keep a low profile and who would be unlikely to 

have an entry in Wikipedia. 

 

1.2 Harnessing Existing Resources 

We were fortunate that the researchers who had 

developed CUNY-BLENDER, the CUNY’s 

entry to multiple TAC-KBP tracks (entity 

linking and slot filling) in 2010 [Chen et al., 

2010] had made CUNY-BLENDER’s codebase 

available to anyone who wanted to use it. We 

decided to build our system on top of the 

CUNY-BLENDER pipeline. 

Originally, we had envisioned that DOMINO 

would be a superset of CUNY-BLENDER. We 

had hoped to quickly get CUNY-BLENDER 

running, establish a baseline, and then spend 

most of our time experimenting with new 

features which would enhance Domino’s 

performance. In fact, we needed to make 

significant adjustments and modifications to 

CUNY-BLENDER. As a result, while Domino is 
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based on CUNY-BLENDER, it is neither a 

subset nor a superset of it. 
 

1.3 Overview of  CUNY-BLENDER  

 

The architecture for the CUNY-BLENDER 

pipeline is shown below. 

 
 
Figure 1: CUNY-BLENDER’S architecture 

 

 

The general procedure for entity linking is as 

follows: 

 

Preprocessing: 

 

1) The source news articles are indexed using 

Lucene. 

2) The Knowledge Base (the information in 

Wikipedia infoboxes) is indexed using Lucene 

3) The Wikipedia dump is imported into a 

MySQL database 

 

Run-time steps: 

 

4) Given a query, perform Query Expansion 

5) Given the expanded query, perform Candidate 

Generation: that is, determine which possible 

Wikipedia entities might match the queried entity 

6) Given a query and its list of generated 

candidates, perform Candidate Disambiguation: 

that is, figure out which of these possible 

candidates is the best match 

7) If the Disambiguation process returns NIL as 

the answer --- that is, none of the candidates can 

be linked with sufficiently high confidence to the 

query entity --- move the query to the list of NILs 

which will be NIL clustered 

8) Otherwise, link the query with the answer 

 

1.4 Domino’s Modifications of  BLENDER 

 

To develop the baseline Domino system, we 

made the following changes to the CUNY-

BLENDER system: 

 

 Since we entered only the Entity Linking 

track and not the Slot Filling task, we made 

the entity-linking system separate from the 

slot-filling system. This simplified the code-

base. 

 

 Because a new data format was used in this 

year’s conference, an additional step was 

added to the Preprocessing stage that 

converted the new format of the data back to 

the original format. Due to time constraints, 

it was simpler to convert the data than to 

change the entire Preprocessing stage to work 

with the new format. Offsets were a new 

addition to the queries this year, and we did 

not have enough samples to take them into 

account when modifying the system.  

 

 Lucene’s spell checker was removed from 

the Query Expansion stage because it was 

generating extra false positives, thus 

decreasing the precision and F-score. 

 

 Unlike the original system, which relied on 

the collaborative ranking of five different 

rankers, our system only used SVM. We 

realized that we probably would be able to 

incorporate only one of the rankers because 

of our time limitations. We chose SVM 

because it has proven to be very effective 

(Chen and Ji, 2011; Zhang et al, 2010). 

Moreover, since it is the most commonly 

used ML algorithm in KBP, it is more 

reliable compared to other rankers. 

 

 Instead of CUNY’s proprietary IE Toolkit, 

our system used Stanford’s NER to classify 

the types of the query and candidates. 

 

 We used an updated dump of Wikipedia 

(June 2012) instead of the October 2008 

dump that was originally used in CUNY-

BLENDER’s system. 

 



 

 In order to improve the run time of the 

system, the SVM classifiers were saved after 

the training of the data. This enabled us to 

easily compare classifiers with different 

features and training sizes.  

  

 1.5 Domino’s Baseline Performance. 

 To get a baseline performance for Domino, we 

trained on 2009 and 2010 data and tested on 2011 

data. Our measured baseline  performance was: 

 Precision: .67 

 Recall: .69 

 F1 .68 

  

2. Improving the baseline score 

 

2.1 Strategy 

It had taken over a month to get the baseline 

system working. With just a few short weeks 

remaining before the Entity-Linking competition, 

we needed to figure out a way to improve 

performance as quickly as possible. Our strategy 

was twofold: 

 

First, we examined output data and tried to get a 

sense for what the largest sources of error were. 

Could we spot any patterns among the false 

negatives and false positives? Based on these 

patterns, could we think of any features that 

could be added and trained on, or rules that could 

be added, to potentially improve performance? 

 

Second, we were focused primarily on 

techniques that would work well on data that 

intelligence analysts would frequently come 

across. For an example of such a technique, see 

the discussion of Metaphone below. With limited 

time, we decided not to focus on features that 

would be limited to data similar to Wikipedia.  

 

2.2 Improving Candidate Generation 

  

Metaphone: When examining the output, we 

noticed that for some queries, the correct 

candidate would not be generated by baseline 

Domino because a named entity was misspelled 

in the source document (news article or blog 

post).  We realized that this phenomenon could 

occur also when a name with one pronunciation 

had many spellings. For example, the names 

Kerry, Cary, Carrie, and Kari have different 

spellings but identical pronunciations (for most 

speakers). Especially for foreign names that 

originate in languages for which there are no 

standard transliteration schemes, it would be 

helpful to consider all possible spellings for a 

particular string of phonemes.  

 

While we realized that this would not yield a 

large improvement in our F score for the TAC-

KBP competition, because  there were not that 

many examples of this phenomenon in the data, 

we were interested in pursuing this direction 

because SAIC’s customers have told us  that 

intelligence analysts frequently do have to deal 

with this phenomenon. We chose to use the 

Metaphone [Philips, 1990] representation to 

handle this problem, since it would allow the 

system to consider phonetically-equivalent but 

differently-spelled words as equivalent. 

 

Metaphone representations were added using the 

DoubleMetaphone class in Apache Commons to 

take alternate spellings into account as potential 

candidates. Metaphones were actually used 

twice, once in the Query Expansion stage and 

once in the Candidate Generation stage. Apache 

Lucene was first used to determine queries that 

were spelled similarly to the original query. The 

metaphone representation was then applied on 

each of the similar queries, and if it matched the 

metaphone representation of the original query, it 

was added to the QuerySet.  

 

Candidates were then generated based off the 

QuerySet. In addition to the Candidate 

Generation steps that already existed in the 

original  CUNY-BLENDER pipeline, we added 

an additional step that included candidates that 

also had an identical metaphone to one or more 

of the queries in the QuerySet. Furthermore, we 

manipulated each of the queries in the query set 

to find similar metaphone representations that 

may differ due to potential “silent letters”. For 

example, not only do we compare the metaphone 

representation of “Djokovic” to those of the 

candidates, we also compare the metaphone 

representation of “Jokovic” because “D” is a 

silent character. A list of all such mappings 



follows: 

{mb  m; bt  t; dj  j; gm  m; gn  n;  

gh  g; kn  n} 

 

Removing Periods From Initials: The last 

modification made in the Candidate Generation 

stage was the removal of periods from the queries 

within the QuerySet that have initials. For 

example, candidates for “A. K. Antony” would 

be determined based off the name “A K Antony”. 

The reason for this modification was because 

names represented in MySQL do not contain 

periods. This therefore improved the retrieval 

accuracy. 
 

2.3 Improving Candidate Disambiguation 

 

As previously discussed, we used SVM as our 

ranker. Its implementation using LibSVM, 

remained the same as for CUNY-BLENDER. We 

added several different features to SVM, two of 

which are query type matching and candidate 

name frequency 
Query Matching: Query type matching is a 

straightforward binary feature that given a query 

and a candidate returns 1 if they exhibit the same 

type (PER, ORG, or GPE), and 0 otherwise. 

Candidate Name Frequency: Candidate name 

frequency is a feature that measures how often 

each of the candidates’ names appears in a given 

query’s text. We disregarded the following noise 

words: a, an, and, as, for, I, in, is, it, of, on, that, 

the, this, to, was, with. Additionally, we rewarded 

the first match with the largest point value, and 

successive matches with increasingly smaller 

point value. Successive matches were separated 

into two categories: same word, referring to the 

number of times each word from a candidate’s 

name appear in the query’s text, and different 

word, referring to the current number of words 

that appear at least once in the query’s text. 

Let m1 be same word, m2 be different word, and l 

be the number of words in the name (counting 

noise words). Then  the base score of a given 

word can be computed as follows: 

 

base = 1 – 0.2(1 – m2/l) 

 

Let cs be the current score of a given word (cs = 

base).  Then the final score of the current word 

can be computed as follows: 

 

for 1 to m1: cs = cs + 0.25(1- cs) 

 

Let n be the number of words in the name (not 

counting noise words). Then the final overall 

score of a given candidate name can be computed 

as follows: 

finalScore = (cs1 + cs2 + cs3 + … + csn) / n 

 

The value of this feature thus ranges from 0.0 to 

1.0. 

 

Aiding Inference for GPE Queries: We noticed 

in the output data that it frequently happened that 

obvious candidates would be discarded in favor 

of incorrect candidates. For example, Bakersfield 

can refer to a city in California, Missouri, 

Vermont, or Texas. These will typically all be 

generated by Candidate Generation. However, 

Domino would often choose the wrong 

candidate, even if the state was explicitly 

mentioned in the source document. We therefore 

added a rule to explicitly check for a candidate 

GPE’s name in the source text. The rule was 

implemented as follows:  

 
If a given query is a GPE, then check the name of 

its candidates. If the candidate name appears in 

the query’s text, then pick that candidate as our 

final choice. Otherwise, if none of the candidate 

names appear in the query’s text, then follow the 

normal procedure and use SVM to infer the 

choice.  

 

We also expanded the candidate names by 

including abbreviations and alternate spellings. 

For example, CA, Cal., Calif., and California are 

all recognized as alternate spellings of the same 

entity. 

 

2.4 Results of  Enhanced System on Test Data 

 

The combination of the enhancements described 

above took Domino up from an F score of .68 to 

an F score of .76 when testing on 2011 data. The 

following table summarizes how each successive 

enhancement improved the F score: 



 Precision Recall F1 

Baseline .67 .69 .68 
B+ query matching .69 .70 .695 

B+QM + Metaphone .70 .71 .705 

B+QM+MP+ GPE 

rule 

.748 .76 .754 

B+QM+MP+GPE 

rule + Candidate 

Name Frequency 

.755 .767 .761 

Figure 2: Domino’s performance: baseline and with 

several enhancements.  

 

2.5 Features that Didn’t Work 

There were several features that we tried that did 

not enhance performance. These included 

considering hyphenation, the presence of a 

candidate name (and its expanded name) in a 

query's text (similar to candidate name 

frequency, but 0 or 1 instead of real values); 

features combination (if GPE and tfidf < 0.1 and 

CNF > 0.8; Dictionary/Spellchecking/"did you 

mean..." feature of Lucene (during the Query 

Expansion step) 

 
. 

3. Results for 2012 Entity Linking 

Competition 

 
The training data of KBP 2012 for entity linking 

consisted of 3,904 queries in 2009 Eval-set, 

1,500 queries in 2010 Training-set, 2,250 queries 

in 2010 Eval-set, and 2,250 queries in 2011 Eval-

set. Table 2 illustrates the distribution of the 

training data. 
 

Genre/Source Size (entity mentions) 

Person Org. GPE 

2009 Eval 627 2710 567 

2010 Training Web 

data 

500 500 500 

2010 Eval Newswire 500 500 500 

2010 Eval Web data 250 250 250 

2011 Eval Newswire 500 491 500 

2011 Eval Web data 250 259 250 

Figure 3: English monolingual entity linking training 

data 

 

Domino submitted three results to KBP 2012. 

Domino1, Domino2, and Domino3 used SVM 

thresholds of 0.05, 0.10, and 0.50 respectively. 

The results are reported in Table 3. The scoring 

metric used in KBP 2012 to evaluate entity 

linking system is B-Cubed
+
. 

 

System Precisi

on 

Recall F1 

(in 

KB) 

F1 

(All) 

Domino1 0.448 0.588 0.557 0.509 

Domion2 0.440 0.604 0.523 0.509 

Domino3 0.416 0.633 0.499 0.433 

Highest 

submission 

- - 0.687 0.730 

Median 

submission 

- - 0.496 0.536 

Figure 4: Entity Linking submission scores 

 

4. Preliminary Diagnostics 

 
Although our F1 score was a little below the 

median, upon closer inspection we see that our 

F1 score in KB was actually above the median. 

This implies that the NIL Clustering portion of 

our system was underperforming. This is an area 

in which we plan to improve in the future. Due to 

our limited time, we were not able to write our 

own NIL clustering class. Instead, we opted to 

use the one that came with the original system. 

Specifically, the original system clusters NIL 

queries by grouping NIL queries with the same 

names together. This works well as long as the 

names are not ambiguous, but that assumption 

may not have been true of 2012 data.  

 

In terms of specific query types, most teams do 

well in Person queries but suffer from a 

downgrade in performance in GPE. For Domino, 

the trend was the opposite. We did better in GPE 

queries than Person queries, perhaps due to our 

special-purpose GPE rule. Figure 5 illustrates F1 

scores distribution among the three different 

queries types. 

 
System PER ORG GPE 

Domino1 0.467 0.507 0.560 

Domino2 0.471 0.524 0.532 

Domino3 0.450 0.539 0.494 

Highest 0.840 0.717 0.694 

Median 0.646 0.486 0.447 

Figure 5: Distribution of F1 scores among different 

query types 



 

5. Future Work 

 

We plan to improve Domino in the following 

ways: 

 Improve candidate name frequency by 

looking at nearby terms rather than 

through the whole document 

 Come up with new and improved ways to 

handle incorrect and alternate spellings 

 Use a gazetteer with superset and region 

information to disambiguate. For 

example if you see an article about Paris, 

and the article also mentions Marseille 

and Lyons, you’d conclude that the 

article is about Paris, France rather than 

Paris, TX since Marseille and Lyons are 

in the same region as Paris. 

 Use slot-filler information to 

disambiguate. 
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