
Domino: SAIC’s English Entity-Linking System

Alan Buabuchachart
1,2

, Parakh Jain
1,2

, Ryan Murphy
1,2

, Scott White
1,2

, and Leora Morgenstern
1

1
SAIC

4001 North Fairfax Drive

Arlington, VA 22203

2
University of Maryland at College Park

College Park, MD 20742
alan2234637@hotmail.com, jainparakh@gmail.com,

murphy.t.ryan@gmail.com, whiteau@umd.edu, leora.morgenstern@saic.com

Abstract:

The Domino system was SAIC’s student-intern

entry to the English Entity-Linking track of the

2012 TAC-KBP competition. This paper

describes how Domino was developed using

components from the CUNY-BLENDER system

and discusses the features and rules that were

added to Domino. It analyzes Domino’s

performance, and suggests ways in which we

plan to improve the system in the future.

1.Building the Domino Baseline System

1.1 Motivation and Constraints

Entity linking is a central task that analysts in

the intelligence community (IC) often perform.

Analysts must try to determine, for example,

whether a person who is referred to in an

intercepted email is the same as a person who is

reported in some news article to have engaged in

some terrorist activity. SAIC, which supports IC

analysts in many different ways, is interested in

developing methods to help automate the entity-

linking process.

There are many similarities between the IC

entity-linking task and the TAC-KBP Entity-

Linking track, which focuses on linking named

entities in news articles or blog posts with

Wikipedia articles. We --- a group of students

from the University of Maryland who spent the

summer of 2012 at SAIC, and our supervisor at

SAIC --- therefore decided, in mid-June 2012,

to enter the TAC-KBP Entity Linking

competition.

Because most of us --- and in particular, the

developers among us –were undergraduates with

little experience in Natural Language

Processing, and because we knew we had only

two months to pull together a system, we

decided that we would try to use existing

resources as much as possible. Our aim was to

get an existing entity-linking system and modify

it in order to improve output results. We were

especially interested in generalizing the entity-

linking system so that it would be useful for

more than just Wikipedia’s domain. SAIC’s

customers will often be interested in people who

keep a low profile and who would be unlikely to

have an entry in Wikipedia.

1.2 Harnessing Existing Resources

We were fortunate that the researchers who had

developed CUNY-BLENDER, the CUNY’s

entry to multiple TAC-KBP tracks (entity

linking and slot filling) in 2010 [Chen et al.,

2010] had made CUNY-BLENDER’s codebase

available to anyone who wanted to use it. We

decided to build our system on top of the

CUNY-BLENDER pipeline.

Originally, we had envisioned that DOMINO

would be a superset of CUNY-BLENDER. We

had hoped to quickly get CUNY-BLENDER

running, establish a baseline, and then spend

most of our time experimenting with new

features which would enhance Domino’s

performance. In fact, we needed to make

significant adjustments and modifications to

CUNY-BLENDER. As a result, while Domino is

mailto:alan2234637@hotmail.com
mailto:jainparakh@gmail.com
mailto:murphy.t.ryan@gmail.com
mailto:whiteau@umd.edu
mailto:leora.morgenstern@saic.com

based on CUNY-BLENDER, it is neither a

subset nor a superset of it.

1.3 Overview of CUNY-BLENDER

The architecture for the CUNY-BLENDER

pipeline is shown below.

Figure 1: CUNY-BLENDER’S architecture

The general procedure for entity linking is as

follows:

Preprocessing:

1) The source news articles are indexed using

Lucene.

2) The Knowledge Base (the information in

Wikipedia infoboxes) is indexed using Lucene

3) The Wikipedia dump is imported into a

MySQL database

Run-time steps:

4) Given a query, perform Query Expansion

5) Given the expanded query, perform Candidate

Generation: that is, determine which possible

Wikipedia entities might match the queried entity

6) Given a query and its list of generated

candidates, perform Candidate Disambiguation:

that is, figure out which of these possible

candidates is the best match

7) If the Disambiguation process returns NIL as

the answer --- that is, none of the candidates can

be linked with sufficiently high confidence to the

query entity --- move the query to the list of NILs

which will be NIL clustered

8) Otherwise, link the query with the answer

1.4 Domino’s Modifications of BLENDER

To develop the baseline Domino system, we

made the following changes to the CUNY-

BLENDER system:

 Since we entered only the Entity Linking

track and not the Slot Filling task, we made

the entity-linking system separate from the

slot-filling system. This simplified the code-

base.

 Because a new data format was used in this

year’s conference, an additional step was

added to the Preprocessing stage that

converted the new format of the data back to

the original format. Due to time constraints,

it was simpler to convert the data than to

change the entire Preprocessing stage to work

with the new format. Offsets were a new

addition to the queries this year, and we did

not have enough samples to take them into

account when modifying the system.

 Lucene’s spell checker was removed from

the Query Expansion stage because it was

generating extra false positives, thus

decreasing the precision and F-score.

 Unlike the original system, which relied on

the collaborative ranking of five different

rankers, our system only used SVM. We

realized that we probably would be able to

incorporate only one of the rankers because

of our time limitations. We chose SVM

because it has proven to be very effective

(Chen and Ji, 2011; Zhang et al, 2010).

Moreover, since it is the most commonly

used ML algorithm in KBP, it is more

reliable compared to other rankers.

 Instead of CUNY’s proprietary IE Toolkit,

our system used Stanford’s NER to classify

the types of the query and candidates.

 We used an updated dump of Wikipedia

(June 2012) instead of the October 2008

dump that was originally used in CUNY-

BLENDER’s system.

 In order to improve the run time of the

system, the SVM classifiers were saved after

the training of the data. This enabled us to

easily compare classifiers with different

features and training sizes.

 1.5 Domino’s Baseline Performance.

 To get a baseline performance for Domino, we

trained on 2009 and 2010 data and tested on 2011

data. Our measured baseline performance was:

 Precision: .67

 Recall: .69

 F1 .68

2. Improving the baseline score

2.1 Strategy

It had taken over a month to get the baseline

system working. With just a few short weeks

remaining before the Entity-Linking competition,

we needed to figure out a way to improve

performance as quickly as possible. Our strategy

was twofold:

First, we examined output data and tried to get a

sense for what the largest sources of error were.

Could we spot any patterns among the false

negatives and false positives? Based on these

patterns, could we think of any features that

could be added and trained on, or rules that could

be added, to potentially improve performance?

Second, we were focused primarily on

techniques that would work well on data that

intelligence analysts would frequently come

across. For an example of such a technique, see

the discussion of Metaphone below. With limited

time, we decided not to focus on features that

would be limited to data similar to Wikipedia.

2.2 Improving Candidate Generation

Metaphone: When examining the output, we

noticed that for some queries, the correct

candidate would not be generated by baseline

Domino because a named entity was misspelled

in the source document (news article or blog

post). We realized that this phenomenon could

occur also when a name with one pronunciation

had many spellings. For example, the names

Kerry, Cary, Carrie, and Kari have different

spellings but identical pronunciations (for most

speakers). Especially for foreign names that

originate in languages for which there are no

standard transliteration schemes, it would be

helpful to consider all possible spellings for a

particular string of phonemes.

While we realized that this would not yield a

large improvement in our F score for the TAC-

KBP competition, because there were not that

many examples of this phenomenon in the data,

we were interested in pursuing this direction

because SAIC’s customers have told us that

intelligence analysts frequently do have to deal

with this phenomenon. We chose to use the

Metaphone [Philips, 1990] representation to

handle this problem, since it would allow the

system to consider phonetically-equivalent but

differently-spelled words as equivalent.

Metaphone representations were added using the

DoubleMetaphone class in Apache Commons to

take alternate spellings into account as potential

candidates. Metaphones were actually used

twice, once in the Query Expansion stage and

once in the Candidate Generation stage. Apache

Lucene was first used to determine queries that

were spelled similarly to the original query. The

metaphone representation was then applied on

each of the similar queries, and if it matched the

metaphone representation of the original query, it

was added to the QuerySet.

Candidates were then generated based off the

QuerySet. In addition to the Candidate

Generation steps that already existed in the

original CUNY-BLENDER pipeline, we added

an additional step that included candidates that

also had an identical metaphone to one or more

of the queries in the QuerySet. Furthermore, we

manipulated each of the queries in the query set

to find similar metaphone representations that

may differ due to potential “silent letters”. For

example, not only do we compare the metaphone

representation of “Djokovic” to those of the

candidates, we also compare the metaphone

representation of “Jokovic” because “D” is a

silent character. A list of all such mappings

follows:

{mb m; bt t; dj j; gm m; gn n;

gh g; kn n}

Removing Periods From Initials: The last

modification made in the Candidate Generation

stage was the removal of periods from the queries

within the QuerySet that have initials. For

example, candidates for “A. K. Antony” would

be determined based off the name “A K Antony”.

The reason for this modification was because

names represented in MySQL do not contain

periods. This therefore improved the retrieval

accuracy.

2.3 Improving Candidate Disambiguation

As previously discussed, we used SVM as our

ranker. Its implementation using LibSVM,

remained the same as for CUNY-BLENDER. We

added several different features to SVM, two of

which are query type matching and candidate

name frequency
Query Matching: Query type matching is a

straightforward binary feature that given a query

and a candidate returns 1 if they exhibit the same

type (PER, ORG, or GPE), and 0 otherwise.

Candidate Name Frequency: Candidate name

frequency is a feature that measures how often

each of the candidates’ names appears in a given

query’s text. We disregarded the following noise

words: a, an, and, as, for, I, in, is, it, of, on, that,

the, this, to, was, with. Additionally, we rewarded

the first match with the largest point value, and

successive matches with increasingly smaller

point value. Successive matches were separated

into two categories: same word, referring to the

number of times each word from a candidate’s

name appear in the query’s text, and different

word, referring to the current number of words

that appear at least once in the query’s text.

Let m1 be same word, m2 be different word, and l

be the number of words in the name (counting

noise words). Then the base score of a given

word can be computed as follows:

base = 1 – 0.2(1 – m2/l)

Let cs be the current score of a given word (cs =

base). Then the final score of the current word

can be computed as follows:

for 1 to m1: cs = cs + 0.25(1- cs)

Let n be the number of words in the name (not

counting noise words). Then the final overall

score of a given candidate name can be computed

as follows:

finalScore = (cs1 + cs2 + cs3 + … + csn) / n

The value of this feature thus ranges from 0.0 to

1.0.

Aiding Inference for GPE Queries: We noticed

in the output data that it frequently happened that

obvious candidates would be discarded in favor

of incorrect candidates. For example, Bakersfield

can refer to a city in California, Missouri,

Vermont, or Texas. These will typically all be

generated by Candidate Generation. However,

Domino would often choose the wrong

candidate, even if the state was explicitly

mentioned in the source document. We therefore

added a rule to explicitly check for a candidate

GPE’s name in the source text. The rule was

implemented as follows:

If a given query is a GPE, then check the name of

its candidates. If the candidate name appears in

the query’s text, then pick that candidate as our

final choice. Otherwise, if none of the candidate

names appear in the query’s text, then follow the

normal procedure and use SVM to infer the

choice.

We also expanded the candidate names by

including abbreviations and alternate spellings.

For example, CA, Cal., Calif., and California are

all recognized as alternate spellings of the same

entity.

2.4 Results of Enhanced System on Test Data

The combination of the enhancements described

above took Domino up from an F score of .68 to

an F score of .76 when testing on 2011 data. The

following table summarizes how each successive

enhancement improved the F score:

 Precision Recall F1

Baseline .67 .69 .68
B+ query matching .69 .70 .695

B+QM + Metaphone .70 .71 .705

B+QM+MP+ GPE

rule

.748 .76 .754

B+QM+MP+GPE

rule + Candidate

Name Frequency

.755 .767 .761

Figure 2: Domino’s performance: baseline and with

several enhancements.

2.5 Features that Didn’t Work

There were several features that we tried that did

not enhance performance. These included

considering hyphenation, the presence of a

candidate name (and its expanded name) in a

query's text (similar to candidate name

frequency, but 0 or 1 instead of real values);

features combination (if GPE and tfidf < 0.1 and

CNF > 0.8; Dictionary/Spellchecking/"did you

mean..." feature of Lucene (during the Query

Expansion step)

.

3. Results for 2012 Entity Linking

Competition

The training data of KBP 2012 for entity linking

consisted of 3,904 queries in 2009 Eval-set,

1,500 queries in 2010 Training-set, 2,250 queries

in 2010 Eval-set, and 2,250 queries in 2011 Eval-

set. Table 2 illustrates the distribution of the

training data.

Genre/Source Size (entity mentions)

Person Org. GPE

2009 Eval 627 2710 567

2010 Training Web

data

500 500 500

2010 Eval Newswire 500 500 500

2010 Eval Web data 250 250 250

2011 Eval Newswire 500 491 500

2011 Eval Web data 250 259 250

Figure 3: English monolingual entity linking training

data

Domino submitted three results to KBP 2012.

Domino1, Domino2, and Domino3 used SVM

thresholds of 0.05, 0.10, and 0.50 respectively.

The results are reported in Table 3. The scoring

metric used in KBP 2012 to evaluate entity

linking system is B-Cubed
+
.

System Precisi

on

Recall F1

(in

KB)

F1

(All)

Domino1 0.448 0.588 0.557 0.509

Domion2 0.440 0.604 0.523 0.509

Domino3 0.416 0.633 0.499 0.433

Highest

submission

- - 0.687 0.730

Median

submission

- - 0.496 0.536

Figure 4: Entity Linking submission scores

4. Preliminary Diagnostics

Although our F1 score was a little below the

median, upon closer inspection we see that our

F1 score in KB was actually above the median.

This implies that the NIL Clustering portion of

our system was underperforming. This is an area

in which we plan to improve in the future. Due to

our limited time, we were not able to write our

own NIL clustering class. Instead, we opted to

use the one that came with the original system.

Specifically, the original system clusters NIL

queries by grouping NIL queries with the same

names together. This works well as long as the

names are not ambiguous, but that assumption

may not have been true of 2012 data.

In terms of specific query types, most teams do

well in Person queries but suffer from a

downgrade in performance in GPE. For Domino,

the trend was the opposite. We did better in GPE

queries than Person queries, perhaps due to our

special-purpose GPE rule. Figure 5 illustrates F1

scores distribution among the three different

queries types.

System PER ORG GPE

Domino1 0.467 0.507 0.560

Domino2 0.471 0.524 0.532

Domino3 0.450 0.539 0.494

Highest 0.840 0.717 0.694

Median 0.646 0.486 0.447

Figure 5: Distribution of F1 scores among different

query types

5. Future Work

We plan to improve Domino in the following

ways:

 Improve candidate name frequency by

looking at nearby terms rather than

through the whole document

 Come up with new and improved ways to

handle incorrect and alternate spellings

 Use a gazetteer with superset and region

information to disambiguate. For

example if you see an article about Paris,

and the article also mentions Marseille

and Lyons, you’d conclude that the

article is about Paris, France rather than

Paris, TX since Marseille and Lyons are

in the same region as Paris.

 Use slot-filler information to

disambiguate.

Acknowledgements:

We gratefully acknowledge the support of

the Defense Advanced Research Projects

Agency (DARPA) Machine Reading

Program under Air Force Research

Laboratory (AFRL) prime contract number

FA8750-09-C-0184.

References:
Zheng Chen and Heng Ji. 2011. Collaborative

Ranking: A Case Study on Entity Linking. Proc.

EMNLP2011.

Zheng Chen, Suzanne Tamang, Adam Lee,

Xiang Li, Wen-Pin Lin, Matthew Snover, Javier

Artiles, Marissa Passantino, Heng Ji: CUNY-

BLENDER TAC-KBP201: Entity Linking and

Slot Filling System Description, Proceedings

TAC-KBP Workshop, 2010.

Philips, Lawrence: Hanging on the Metaphone,

Computer Language, 7(12), 1990.

Wei Zhang, Jian Su, Chew Lim Tan, and Wen

Ting Wang. 2010. Entity Linking Leveraging

Automatically Generated Annotation. Proc.

COLING2010.

