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Abstract 

This paper presents the design and implementation 
of our English slot filling system. The objective of 
the slot filling task is to extract attribute values of 
the given entities. We developed a slot filling 
system which employs a combinative technique of 
dependency patterns matching and SVM-based 
supervision approach.  Evaluation results show the 
strength and weakness of our technique. 

1 Introduction 

This is the first year that BIT (Beijing Institute of 
Technology) participated in TAC’s Knowledge 
Base Population Track. We participated in two 
main tasks of TAC 2013 knowledge base 
population track: English Slot Filling and Slot 
Filler Validation. English Slot filling is the task of 
extracting attribute values of a given entity from 
large collection of documents. Our approach is 
based on dependency patterns matching and 
SVM-based supervision method, which is similar 
to the works of Li et al. [2011], Grishman et al. 
[2010] and Sun et al. [2011]. Li et al. used a rule-
based method, conditional random field (CRF) and 
maximum entropy (ME) classification methods to 
solve the slot filling task. Grishman et al. applied 
the word sequence patterns and dependency 
patterns to extract slot values and used a 
bootstrapping method to build patterns. In our 
work, a large number of dependency patterns are 
manually constructed, and synonyms of trigger 

words of patterns are used to extend those patterns. 
Moreover, dependency patterns and the support 
vector machine classifier are employed to extract 
attribute values of entities. 
The rest of the paper is organized as follows. 
Section 2 presents the slot filling system 
architecture. We give the main components in 
sections 3, 4, 5 and 6. In Section 7 we present our 
experimental results. The conclusions are drawn in 
Section 8. 

2 System Architecture 

Our slot filling system consists of three main 
modules: passage retrieval and preprocessing, 
query expansion and slot-value selection. We first 
use two approaches based on dependency patterns 
matching and SVM-based supervision method to 
extract attribute values of a given entity. Then, we 
integrate the results of two approaches to output 
the ranked attribute values of a given entity. Fig.1 
shows the framework of our English slot filling 
system. 

3 Passage retrieval and preprocessing 

We have implemented a two-stage passage 
retrieval module [Byrne 2011]. In the first stage, 
we retrieve a set of documents in response to the 
target entity in the initial query using Lucene 
package. For the entities of ORG type, if the query 
is an abbreviation of a certain organization, the full 
name which is obtained through query expansion is 
also used as a query for documents retrieval. First, 
we extract the top 200 documents in the search 



results of Lucene. Then the documents whose 
weights are less than a threshold are removed. The 
threshold is set as 0.4 in our experiment. If there 
are less than 50 documents left, then the top 50 
documents are chosen.  
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Fig 1. The Framework of Our Slot Filling System 

In the second stage, we focus on passages 
retrieval. We extract all the passages that contain 
the target entity (including initial and expanded 
queries) from the retrieved documents. Stanford 
CoreNLP is used for tokenization, lemma, part of 
speech tagging, named entity recognition, 
dependency parsing. Meanwhile, many proper 
nouns which are collected through wikipedia and 
Google are utilized for NER. 

For some particular slots (including org: website, 
per:alternate_names and org: alternate_names), a 
rule-based method is employed to extract their slot 
values. For the slot org: website, we acquire the 
websites which contain the target entity from all 
the related documents.  For the other two slots, the 
extended queries which coexist with the initial 
query in a document are regarded as slot values. 

For other slots except the three slots above, 
dependency patterns and SVM-based supervision 

approach are combined to extract slot values. To 
the slot of location, geo-name lists are employed to 
identify names of cities, countries and states. In 
addition, the testing sentences which contain noise 
words (e.g. say, talk) between entity and candidate 
slot value are often worthless. For example, the 
sentence “Bill Gates said to Apple’s CEO Steve 
Jobs…” cannot represent the relation of “Bill 
Gates” and “Apple”. A set of noise words is used 
to filter this kind of sentences. 

4 Query expansion 

We use four methods to expand the queries, as 
follows [Jian 2011]: 
(1) If the query has Wikipedia redirect pages, the 

titles of the redirected pages are used as the 
query expansion of this entity. 

(2) To the entities of PER (person) type, different 
variations of a person’s name are used as the 
query expansion. For example, given an initial 
query “Ali Akbar Khan”, we can obtain its 
variants “Ali Akbar”, “Ali A. Khan”, etc. 

(3) To the entities of ORG (organization) type, 
different variations of an organization’s name 
are used as the query expansion. For instance, 
given an initial query “IBM”, we can obtain the 
variants “IBM corp. ”, “IBM Corporation”, 
“IBM Ltd”, etc. 

(4) To the entities of ORG (organization) type, if 
the query is an abbreviation or full name of an 
entity, we search its full name or abbreviation 
respectively in the supporting documents. For 
example, given a query “IBM”, we search its 
full name “International Business Machines” in 
the supporting documents. 

5 Dependency pattern match 

In our work, dependency patterns are utilized to 
extract slot values of given slots of entities.  A 
dependency pattern consists of alternating words 
and dependency relation labels. For example, we 
can get the dependency pattern “<Entity> 
nsubjpass-1 born prep_in <Slot-Value>” from the 
sentence “Bill was born in 1955” by Stanford 
dependency parser, where nsubjpass-1 represents 
an inverse arc (from dependent to head) labeled 
nsubjpass (passive subject)) [Grishman 2010]. For 
our slot-value extraction method based on 
dependency patterns, a lot of dependency patterns 
are manually collected. Synonyms of slot trigger 



words are used to expand the dependency patterns. 
As an illustration, to the dependency pattern 
“<Entity>dobj-1 founded prep_in<Slot-Value>”, if 
we find that one of the synonyms of trigger word 
“found” is “establish”,  we can expand the initial 
dependency pattern as “<Entity>dobj-1 established 
prep_in<Slot-Value>”. The number of initial and 
expanded dependency patterns is about 20,000. 

6 SVM‐based	supervision approach 

Support Vector Machine classifier is applied to 
determine whether a candidate slot value is true or 
false. For each slot, a binary probabilistic Support 
Vector Machine classifier (LIBSVM) is trained on 
the collected dataset. Stanford CoreNLP is used to 
preprocess the test sentences. A word or a phrase 
in the sentence whose NER type conforms to the 
value type of a slot is regarded as a candidate slot 
value. Only the candidate slot value whose 
probability is more than a threshold is extracted. 
The threshold is set as different values in various 
submitted runs. The training data consists of two 
parts: first part is the official KBP training data, the 
second part is the data that are collected through 
Google. The training data is divided into two parts 
according to the entity type (PER or ORG). 
Lexical and syntactic features are used as features 
for the classifier. It is pointed out that trigger 
words and noise words as classification features. 
We regard the common words that are inclined to 
disturb the result of classification as noise words. 
For example, for the type of slot per:spouse, the 
word “like” is often between two persons, but it 
cannot represent the relation between the two 
persons.  

In the end, the candidate slot values which are 
extracted by dependency patterns matching and 
SVM-based supervision method are integrated and 
ranked according to the used methods and 
frequencies of those slot values. The confidence 
score of dependency patterns matching is larger 
than that of SVM-based method. For the single-
answer slot, we select the one with the highest 
confidence score, while for the list-answer slot, we 
keep the answers whose confidence scores are 
larger than a threshold after removing extraneous 
slot values. 

7 Experimental results 

Five runs were submitted for the English Slot 
Filling task this year.  Table 1 shows the evaluation 
results. Our run BIT1 only uses dependency 
pattern matching method while the others combine 
dependency pattern matching and SVM-based 
supervision approaches. The difference among our 
runs BIT2, BIT3, BIT4, and BIT5 is the different 
thresholds for filtering the classification results in 
probabilistic SVM-based supervision approach. 
The thresholds represent the probability of 
candidate words which are classified as right slot 
values. Besides, different slots have different 
thresholds, according to the confidence of a slot. 
Result shows that our performance is higher than 
the median team. We think that our results are 
benefited from the large number of dependency 
patterns. The weakness of our system is that the 
recall is low.  There are three main reasons for this 
fact. First, our result of SVM-based supervision 
approach is not very well. Second, we don’t use 
coreference resolution technique to extract more 
candidate slot values. Third, the performance of 
named entity recognition decreased the precision 
of our experiment results. 

Table 1: English Slot Filling Evaluation Results 

 P R F1 
LDC 0.856 0.571 0.685 
Top-1 team 0.425 0.332 0.373 
Top-9 team 0.157 0.150 0.153 
BIT1 0.579 0.221 0.319 
BIT2 0.504 0.229 0.315 
BIT3 0.476 0.237 0.316 
BIT4 0.230 0.252 0.240 
BIT5 0.206 0.260 0.230 

8 Conclusions  

The paper presents our submission to the English 
Slot Filling task. We developed a slot filling 
system which employs a combinative technique of 
dependency patterns matching and SVM-based 
supervision approach. The evaluation result shows 
the feasibility of our approach, which is largely 
benefited from the large number of dependency 
patterns. In the future, we will decrease the manual 
efforts of our approach and try to increase the 
performance of our approach. 
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Abstract 

This paper presents the design and implementation 
of our slot filler validation system. The slot filler 
validation (SFV) track focuses on the refinement 
of output from English slot filling (SF) systems by 
either combining information from multiple slot 
filling systems, or applying more intensive 
linguistic processing to validate individual 
candidate slot fillers. We developed a slot filler 
validation system which employs three RTE 
(Recognizing Textual Entailment) methods, 
including ones based on word overlapping, cosine 
similarity and token edit distance.  

1. Introduction 

The task is situated in the Knowledge Base 
Population (KBP) scenario, and aims at validating 
the outputted knowledge of the systems 
participating in the KBP slot filling task by using 
textual entailment techniques. Given a document D 
and a set of hypotheses S = {H1, …, Hn}, the KBP 
slot filler validation task is to determine whether D 
entails S, that is D entails Hi(i=1,2,…n). In this 
framework, S is a set of roughly synonymous 
sentences representing different linguistic 
realizations of a relation between a target entity 
and a possible value (i.e., “slot-filler”) of an 
attribute of this entity (i.e. “slot”). The assumption 
is that an extracted slot filler is correct if and only 
if the supporting document entails an hypothesis 
created based on the slot filler. Our system is 
developed based on the level of lexical entailment. 
We employed three methods (Word Overlapping, 

Cosine Similarity, and Token Edit Distance) to 
validate the results of slot filling systems, which is 
similar to those work of Pakray et al. [2011]. 

The rest of the paper is organized as follows. 
Section 2 describes the slot filler validation data set. 
Section 3 presents the slot filler validation system 
architecture. The experiments results are given in 
section 4. The conclusions are drawn in section 5. 

2. Slot Filler Validation Data Set 

The 2013 slot filler validation data set is based on 
the data constructed for the KBP 2009, 2010, 2011, 
2012 and 2013 slot filling task. Specially, our 
system’s training data set consists of over 24,808 
T-Hs(text and hypothesis) pairs from the combined 
RTE-7 training and test sets. The test data set was 
constructed from the results of KBP 2013 slot 
filling systems. 

3. Our System Architecture 

Our slot filler validation system includes two main 
modules: pre-processing module and RTE module. 
Fig.1 shows the framework of our slot filler 
validation system. 

The input of our system is pairs of text snippets. 
For example, to the slot “country_of_birth” of the 
entity “Tahawwur Hussain Rana”, the slot filler is 
“Pakistan”. The input of the example is as follows: 

 
T:“AFP_ENG_20100114.0009”, 
Hs :{ H1:Pakistan is the country of birth of 

TahawwurHussainRana.  
H2: Pakistan is the country where 
TahawwurHussainRana was born.} .  
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Fig 1: Architecture of Our Slot Filler Validation 

system 

Here, T is the given source document that was 
cited as supporting the slot filler, and Hs is a set of 
synonymous hypotheses created from the slot filler 
by artificial templates. Our system outputs an 
entailment Boolean value: YES or NO. “YES” 
means that text (T) entails the set of hypothesis 
(Hs), and “NO” denotes the opposite meaning. 

3.1 Pre-processing Module 

In the pre-processing module, first, we use the 
Stanford CoreNLP tools to perform tokenization, 
stemming, part-of-speech tagging and full 
morphological analysis to the source documents. 
Second, the documents are split into sentences, and 
are used as the training and test data sets in our 
experiments. Third, in order to reduce the search 
space, we employ a filter which is used for all the 
submitted runs. That filter chooses the sentences 
which include at least a word within the entity and 
at least a word within the slot filler. As an 
illustration, the filtered sentences must contain 
“Chris” or “Simcox” for “<entity>Chris 
Simcox<\entity>”, and also contain “Tucson” or 
“Ariz.” for the slot filler “<value>Tucson, 
Ariz.<\value>”. If there is no sentence in a 
document which satisfies the condition above, then 
this document is tagged as “NO”. 

Afterwards, a large entailment corpus of T-Hs 
pairs is created, where each filtered sentence is 
paired with the corresponding hypothesis set Hs. 
An example of a T-Hs pair is given as follows, 

where the value or the slot filler of the attribute 
“age” of the target entity “Chris Simcox” is “one”. 

 
T: “Chris Simcox, one of the movement's co-

founders, said three dozen new chapters had 
formed by mid-November.” 

Hs: {H1:Chris Simcox is aged one. 
H2:ChrisSimcox's age is one. 
H3:ChrisSimcox is age one.  
H4:Chris Simcox is one years old}. 

3.2 RTE methods 

In this section, we describe our three RTE methods 
which based on word overlapping, cosine 
similarity, and token edit distance. 

In the approach based on word overlapping, if a 
word within a hypothesis and one of its synonyms 
exists in the filtered sentences, then we call the 
word as “a matched word”. WordNet is used to 
obtain synonyms of words. If n1 represents the 
number of matched words and n2 is the number of 
words in the hypothesis, we define a matching 
degree as n1/n2. If the degree is not less than 0.9, 
then the T-Hs pair is considered as an entailment, 
that is, the T-Hs pair is assigned the value 1. 
Otherwise, the T-Hs pair is assigned the value -1.  

Our RTE method based on cosine similarity is to 
measure the similarity between two vectors about 
T-Hs pairs in an inner product space. A vector 
represents a filtered sentence and another vector 
denotes one of its corresponding hypotheses. The 
dimensions of those vectors are the number of 
different words within the filtered sentence and the 
hypothesis, while the value of those vectors is the 
frequency of words in the filtered sentence or the 
hypothesis. 

Hence, the similarity measure between two 
vectors about T-Hs pairs is a judgment of 
orientation and not magnitude, that is, two vectors 
with the same orientation have a cosine similarity 1, 
and two vectors at an angle of have a similarity of 
0. If the value of cosine similarity is 0.5 or more, 
the text entails the hypothesis, that is, the T-Hs pair 
is assigned the value 1. Otherwise, the T-Hs pair is 
assigned the value -1.  

In information theory and computer science, the 
edit distance between two strings of characters 
usually refers to the Levenshtein distance. Our 
RTE method based on token edit distance is a 
token-based version of the Levenshtein distance 



algorithm, where edit operations are defined over 
sequences of tokens of filtered sentences and 
hypotheses. We compute the value of the token 
edit distance between a filtered sentence and a 
hypothesis. If this value is 40 or less, the T-Hs pair 
is considered as entailment, that is, the T-Hs pair is 
tagged “YES”. Otherwise, the T-Hs pair is tagged 
“NO”. In our experiments, the cut-off values are 
set based on the experiments carried out on 
training data set. 

4. Experimental Results  

For the slot filler validation task, the experimental 
results of our submitted three runs are shown in 
Table 1. The result of Run 1 (BIT1_SFV) is that of 
our RTE method based on word overlapping. The 
Run2 (BIT2_SFV) and Run3 (BIT3_SFV) are 
results of our RTE methods based on cosine 
similarity and token edit distance, respectively. In 
table 1, “F1” means the  average F1 of SFRun 
(runs of slot filling systems) after applying SFV 
filter which is proposed by the organizers; “F1′ ” is 
the average F1 of these systems; “Improve” is the 
average change F1 of SFRun after applying SFV 
filter.  

Table1: Results of Our SFV System  
Runs F1 F1′ Improve
BIT1_SFV 0.0495 0.2079 -0.1583
BIT2_SFV 0.0487 0.2079 -0.1592
BIT3_SFV 0.0384 0.2079 -0.1695

5. Conclusions 

This paper presents our submission to the slot filler 
validation task. We developed a slot filler 
validation system which employs three methods: 
word overlapping, cosine similarity and token edit 
distance. From the Table 1, we can see that the 
experimental results are not satisfactory. The main 
reason is that our RTE methods are based on the 
lexical entailment. Our main challenge is to 
improve the performance of our system in the 
future. We will design other RTE approaches 
which employ syntactic and semantic features and 
some classification methods. 
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