UCD IIRG at TAC KBP 2013

Lorna Byrne, Caroline Fenlon, John Dunnion
School of Computer Science and Informatics
University College Dublin
Ireland
{lorna.byrne@ucd.ie,caroline.fenlon@ucdconnect.ie, john.dunnion@ucd.ie}

Abstract

This paper describes the IIRG system entered
in the TAC 2013 Knowledge Base Population
Track. The overall goal of KBP is to automat-
ically identify salient and novel entities from
multiple languages, link them to correspond-
ing Knowledge Base (KB) entries (if the link-
age exists) in a target language, then discover
attributes about the entities (extract tempo-
ral spans about the attributes if there exist
dynamic changes), and finally expand the KB
with any new attributes (Ji et al., 2011).

1 Introduction

The Knowledge Base Population Track is composed
of two related tasks: Entity Linking (EL), which
links entity mentions to their corresponding enti-
ties in the Knowledge Base, and Slot Filling (SF),
which augments existing Knowledge Base entities
with novel information. The Entity Linking tasks
focus on three entity types: Person (PER), Or-
ganisation (ORG), and Geo-Political Entity (GPE),
whereas Slot Filling tasks are limited to PER and
ORG entity types only. This year we participated in
the Regular English Slot Filling Task and submitted
three runs. In an effort to improve our Regular Slot
Filling system to enhance recall we decided to also
implement a Machine Learning approach to solving
this task and have submitted two runs which apply
Naive Bayes methods, IIRG1 and ITRG2. IIRG3 im-
plements a rule-based pattern-matching approach to
Slot Filling.

2 Regular English Slot Filling Task

The objective of Slot Filling systems is to return
a slot-value in response to a slot query. Each slot
query or target-entity is limited to an entity of the

form PERSON or ORGANISATION. Given the sim-
ilarities between the SF task and Question Answer-
ing (QA), we have adapted a classical QA architec-
ture (Pasca, 2003) for use in the Slot Filling task.
Our system follows a simple pipeline architecture
and consists of three main modules: Pre-Processing,
including query and document collection process-
ing, Passage Retrieval (PR) and Slot-Value Selec-
tion. Firstly, we retrieve a set of documents in re-
sponse to the target-entity from the initial query us-
ing an off-the-shelf document retrieval component,
and then select and extract a slot-value based on
an identified slot-value type. For Pattern-Matching
methods (ITRG3), we have implemented a two-stage
retrieval model, where the second stage reduces the
search space to passages or segments of that adhere
to generated candidate patterns.

2.1 Pre-Processing

In this phase, the source document collection was in-
dexed using Terrier 3.0 (Ounis et al., 2006). During
this phase, we also used the Slot Filling Gold Stan-
dard files from the previous SF tasks as a source of
training data. A subset of the source document col-
lection was identified as relevant training documents
using the Gold Standard files. These documents were
then processed using the Stanford Suite of Core NLP
Tools'. We created a training set of examples by
extracting sentences from this document collection
which contained a correct slot-value. Occurrences of
slot-values and target entities were annotated in each
of these sentences.

For example, consider the following training sen-
tences identified for the slot name per:date_of_birth:

Sean Preston was born in September 2005.
<target-entity> was born in <slot-value>.

Thttp://nlp.stanford.edu/software

Machine Learning Attributes

slot-value WL WR

before_2 before_1 after_1 after_2

BNC Mortgage LLC 2 2

subsidiary | , END

Table 1: Features identified for Machine Learning Approach

Hugo Chavez was born on July 28,1954.
<target-entity> was born on <slot-value>.

In order to generate patterns for use in any
pattern-matching approaches, candidate patterns
were generated around the slot-value using a com-
bination of the Stanford Part-of-Speech (POS) tag-
ger and Named Entity Recognition (NER) tools. To
allow for greater coverage, all verbs were reduced to
their canonical form. This produces a candidate pat-
tern of the form:

<target-entity> VB:bear <slot-value>

for the slot per:date_of_birth from the previous ex-
amples.

The slot-value and target-entity often occurred
within the same sentence in the training examples.
Having identified all of the slot-values, it was also
possible to generate an Expected Value Type (EVT)
for each slot name. For example, per:date_of_birth
requires a date, per:spouse requires a person and
org:website requires a URL as a slot value. Sentences
containing a slot-value were used as input training
snippets for Machine Learning approaches. The to-
kens surrounding the slot-value were used to extract
attributes for use in Machine Learning.

USFD at KBP 2011 (Burman et al., 2011) found
promising results using Machine Learning with the
words found in windows around the target entity and
candidate slot value. This involved binary attributes
for each word in the training data, marking its oc-
currence in the sentence containing the candidate an-
swer. Rather than directly using every word from the
training data as Machine Learning attributes, the to-
kens contained in a window around the prospective
answer were extracted. The number of tokens to
select from each side of the answer was controlled
by two window sizes, WL and WR, denoting win-
dow size left and right respectively, which could be
changed separately to assess the effect of including
additional tokens to either the right or left of the an-
swer. Consequently, the total number of these fea-
tures was WL + WR.

To account for variation in tenses, plurals and other
grammatical categories, the canonical form of tokens
were taken as features. Punctuation was not ignored
in this process; punctuation marks inside the bound-
aries of the windows were included without alter-

Number of Training Examples
Year #Examples
2010 0.018392371
2011 0.010217983
2012 0.028610354

Table 2: Number of Input Training Examples by Year

ation. Regardless of window size, sentence bound-
aries were maintained. For windows extending be-
yond the start or end of sentences, the features were
set to START or END markers.

Table 1 illustrates the extracted attributes for the

following example:
Lehman Brothers said it would absorb charges and
costs totaling 52 million dollars as a result of it clos-
ing down the mortgage subsidiary, BNC Mortgage
LLC.

For each slot-value, the slot-value length was cal-
culated in terms of tokens, so that we could deter-
mine if slot-value length is significant for categorising
answers. The position of the candidate slot-value in
the sentence is determined relative to the length of
the sentence. This is calculated based on number of
tokens, and does not take token length into account.
Relative answer position is calculated by

1
5(3‘1'6)
l

where

s = the index of the first token of the
slot-value within the sentence

e = the index of the last token of the
slot-value within the sentence

1 = the length of the sentence in tokens.

The e€1071 implementation of the Naive Bayes al-
gorithm in R? was trained on these features. Several
different combinations of window sizes were tested by
training on data from a single year and testing on the
entire training set. The performance of the classifiers
increased with the size of the window, except when
trained on the significantly larger 2012 dataset (see
Table 2). As a result, two of the largest window sizes
tested (WL1WR2 and WL2WR2) were selected for

2http://cran.r-project.org/web/packages/e1071/e1071.pdf

use in the testing phase. The results for tests with Official Scores for Submitted SF Runs

an empty window at one side of the slot value indi- RunID Precision Recall F1 Score

cate that words before the value are more useful for HRG1 0.018392371 0.0199262 0.019128587

determining which slot it belongs to. [IRG2 0.010217983 | 0.013748854 | 0.011723328
ITRG3 0.028610354 0.07720588 0.041749503

2.2 DPassage Retrieval

The Passage Retrieval (PR) module identifies pas-
sages of text that are likely to contain a slot-value.
Passages can be segments of texts or entire docu-
ments. Terrier retrieves a set of documents in re-
sponse to each target-entity as an input query. This
set of relevant passages are processed using the Stan-
ford Core NLP tools and occurrences of the target-
entity (query) are annotated, after which, occur-
rences of target entity tokens are also identified and
annotated as candidate-target-entity. The sentences
are then ranked based on the features they con-
tain, that is, sentences containing a target-entity or
candidate-target-entity will be ranked higher than
sentences which contain no entity mentions. These
sentences are then used as input to the Slot-Value
Selection Module as candidate slot-bearing passages.

2.3 Slot-Value Selection

The final phase of the pipeline selects and extracts
the segment of text that is the most likely slot-value.
Each returned slot-value must also contain the
docid of the supporting document from which the
slot-value was extracted, along with the relevant
document offsets identifying the slot-value within
the document. The Slot-Value selection module
processes the candidate slot-bearing passages re-
turned by the PR module. Passages that are of
the Expected Value Type are selected. ML runs
ITRG1 and ITRG?2 ignore the sentence rank feature
produced during the PR phase, considering all
sentences as candidate slot-bearing passages. IIRG3
considers only the highest ranked sentences as input
for the slot-value selection phase, that is sentences
that contain the target-entity.

For ITRGS3, if these segments of texts contain an
EVT and/or comply with the candidate patterns for
that slot name, the candidate slot-value is selected
and added to the set of all candidate slot-values for
that slot-name. Similar slot-values which occur in
the KB and in the candidate answer set are identi-
fied using Levenshtein Distance (Levenshtein, 1966),
thereby removing redundant values. The candidate
slot-value set is then ranked according to frequency
of occurrence, where the highest ranked slot-value
occurs in the most documents. For list-value slots,
the entire set of candidate slot-values is returned,
for single-value slots, the highest ranked slot-value
in the set is returned. If no candidate slot-values

Table 3: Results of IIRG SF Runs Submitted to TAC
2013

have been found, a value of “NIL” is returned as
the slot-value. That is, if the PR module fails to
return any candidate slot-bearing passages or if an
EVT is not identified within these passages, or a
given passage fails to satisfy any of the generated
candidate patterns that slot is given a “NIL” value.

For runs IIRG1 and ITRG2, the Naive Bayes clas-
sifier was used to select slots for potential answers
in the test data. The generation of candidate slot-
values was performed using every sentence in the
documents linked to the target entity; sentences
without some reference to the target were not ex-
cluded. Candidates were selected by extracting se-
ries of tokens tagged as the entities used in training
(LOCATION, PERSON, ORGANIZATION, DATE
and MISC). For each candidate answer, the classifier
calculates the probability that the answer belongs to
each of the possible slots. The proposed slot is the
one with the highest probability. Where multiple
candidate values have the same proposed slot, the
one with the highest probability is selected as the
slot value. If the classifier does not predict a certain
slot for any candidate answers, that slot is given a
“NIL” value.

3 Results

We submitted three official runs for the Slot Filling
task, two runs which implemented a Machine Learn-
ing approach using Naive Bayes methods (ITIRG1 and
ITRG2) and one run which implemented a rule-based
pattern matching approach (IIRG3). All three sub-
mitted runs performed very poorly on this year’s
tasks, as illustrated in Table 3. While the pattern
matching run, ITRG3, slightly out-performed both of
the ML runs, neither approaches achieved any rea-
sonable coverage of the document collection for this
task, with the best run only scoring 2.9% in terms of
recall.

4 Additional Experiments

An additional run was performed using a similar
method to ITRG1 and ITRG2. This consisted of a
move towards a more intelligent hybrid of a rule-

based system and Machine Learning. This again in-
volved extracting tokens from a window bounding
a candidate answer, creating some other attributes,
and training Machine Learning classifiers.

For each slot, a Naive Bayes classifier was used to
select the correct answer(s) for the target-slot pair.
In contrast to the first ML runs, this was performed
on a per-slot basis; a distinct classifier was trained
on data pertaining to each slot. For most slots, can-
didate answers were selected by extracting strings
of NER tagged tokens from the XML files gener-
ated for each document. Candidate values for the
org:website, per:cause_of_death and per:charges slots
were extracted using regular expressions.

Each classifier predicts the probability that a slot
value is correct, independently of the other possible
answers. For slots needing only a single value, the
candidate with the highest probability of being cor-
rect is selected. If no candidates are predicted likely
to be correct (i.e. probability below 0.5), a NIL value
is returned. For slots taking lists of values, all dis-
tinct candidates predicted to be correct are chosen.

Some of the other attributes used in earlier runs
were retained; answer length and answer offset were
again calculated. To reduce and improve the lists of
candidates, only values taken from a sentence also
containing the target entity were used. As another
measure of the relevance of a value to the target, a
binary attribute indicating the target’s presence in
the preceding sentence was included.

Boundary windows up to five tokens to the left
and right of the candidate were considered. All com-
binations of window sizes were tested to find the op-
timal solution for each slot. This was carried out
for three different token extractions: canonical forms
(lemmas), NER tags, and part of speech tags. The
testing for this run was carried out using gold stan-
dard data from this task for the years 2010 and 2011
to train the classifiers, which were then tested using
the same dataset from 2012.

4.1 Results

The Naive Bayes classifiers for each slot were eval-
uated using the F-score measure. The performance
of the classifiers varies greatly between slots. As ev-
ident in Table 4, the most accurate token type and
window sizes also differ from slot to slot. Predictions
could not be carried out for some slots, due to the
small amount of positive instances in the gold stan-
dard data.

5 Conclusions

This year we participated in one KBP task, Regu-
lar English Slot Filling. We submitted three runs

for this task, one run based on pattern matching
techniques and two runs which implemented Naive
Bayes methods. All of the submitted runs performed
poorly at this task, with the highest F-score limited
to 4%. The additional implementation of Machine
Learning methods did not improve the coverage of
our system, this approach did not obtain anything
reasonable in terms of recall. While we have yet to
complete a comprehensive error analysis, upon initial
inspection it would seem that the search space iden-
tified for the ML approaches is too large, while the
search space identified for pattern-matching meth-
ods is too narrow. The ML runs (IIRG1 and IIRG2)
fail to achieve any reasonable accuracy in identify-
ing slot-values due to the large volume of noise that
is not filtered before the Slot-Value Selection phase
begins, while the narrow search space identified in
ITRG3 means that this run fails to identify many can-
didate slot-values and in most cases this run reverts
to returning a “NIL” value. It remains an extremely
challenging task for our system to achieve any rea-
sonable recall score in the Slot Filling Task.

The additional hybrid run carried out after the
task greatly outperformed the initial ML runs. Fu-
ture work on this task will involve implementing an
increasingly hybrid approach based on both of these
approaches, perhaps using the generated candidate
patterns as a means of reducing the search space for
the final Machine Learning system. In addition, an
approach involving a window of tokens around the
target value itself, or a linked entity would poten-
tially offer more information about the probability
of the candidate value being correct and related to
that specific target. Producing more positive exam-
ples, perhaps manually, may help improve classifiers
that performed poorly, or could not predict outcomes
at all, for slots with few instances in the gold stan-
dard data.

References

Amev Burman, Arun Jayapal, Sathish Kannan, Madhu
Kavilikatta, Ayman Alhelbawy, Leon Derczynski, and
Robert J. Gaizauskas. 2011. Usfd at kbp 2011: Entity
linking, slot filling and temporal bounding. In Pro-
ceedings of the TAC 2011 Workshop.

H. Ji, R. Grishman, and H.T. Dang. 2011. Overview of
the TAC2011 Knowledge Base Population Track. In
Proceedings of the TAC 2011 Workshop. NIST publi-
cation.

I. Ounis, Amati G., Plachouras V., B. He, Macdonald
C., and Lioma C. 2006. Terrier - A High Performance
and Scalable Information Retrieval Platform. In ACM
SIGIR06 Workshop on Open Source Information Re-
trieval (OSIR 2006).

Scores for Additional ML Run

Slot Tag Window_L | Window_R | Precision Recall F1 Score
org:alternate_names NER 1 0 0.51 0.43 0.46
org:city_of_headquarters lemma 2 1 0.13 0.46 0.20
org:country_of_headquarters NER 0 1 0.27 0.36 0.31
org:date_dissolved no predictions

org:date_founded lemma 3 0 0.58 0.54 0.56
org:founded_by lemma 4 0 0.23 0.37 0.28
org:member_of NER 1 4 1.00 0.11 0.20
org:members NER 4 5 0.54 0.38 0.45
org:number_of_employees_members | lemma 1 1 0.64 0.75 0.69
org:parents lemma 4 1 0.14 0.44 0.22
org:political religious_affiliation POS 3 5 0.11 0.71 0.19
org:stateorprovince_of_headquarters no predictions

org_subsidiaries lemma 1 5 0.27 0.30 0.28
org_top_members_employees lemma 2 4 0.48 0.77 0.59
per:age lemma 1 4 0.65 0.81 0.72
per:alternate_names POS 3 0 0.65 0.60 0.62
per:cause_of_death POS 1 1 1.00 0.60 0.75
per:children lemma 3 0 0.65 0.31 0.42
per:cities_of_residence lemma 2 0 0.81 0.73 0.77
per:city_of_birth lemma 3 5 0.57 0.76 0.65
per:city_of_death lemma 1 0 0.53 0.48 0.50
per:countries_of_residence lemma 3 1 0.60 0.48 0.53
per:country_of_birth lemma 4 0 0.18 1.00 0.31
per:country_of_death no predictions

per:date_of_birth POS 0 1 [0.64 0.67 0.65
per:date_of_death no predictions
per:employee_or_member_of lemma 4 1 0.70 0.74 0.72
per:origin lemma 1 1 0.38 0.55 0.45
per:other_family lemma 3 4 0.33 0.60 0.43
per:parents lemma 2 0 0.55 0.33 0.41
per:religion POS 0 1 0.45 0.56 0.50
per:schools_attended lemma 2 1 0.86 0.84 0.85
per:siblings lemma 2 0 0.72 0.62 0.67
per:spouse lemma 4 3 0.63 0.53 0.58
per:stateorprovince_of_birth POS 4 5 0.29 0.27 0.28
per:stateorprovince_of_death no predictions
per:statesorprovinces_of_residence lemma 3 4 0.47 0.41 0.44
per:title POS 1 1 0.80 0.86 0.83

Table 4: Results of IIRG Additional ML Run

