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Abstract

This paper describes the Knowledge Resolver
system (KRes) and its performance on the
TAC-KBP 2013 English Slot Filling task.
KRes is a logic-based inference system aimed
at improving statistical relation extraction by
deduction and abduction inference towards the
best document-level interpretation. For the
2013 evaluation we developed an initial KRes
system that extracts a subset of seven TAC-
KBP relations using manually constructed de-
pendency patterns in concert with entity type
and name-linking rules. For our baseline ex-
traction engine we used the Blender Lab’s
KBP-Toolkit 1.5, which was also exploited at
the front-end of KRes for its document index-
ing, selection and name expansion capabili-
ties. Instead of trying to improve upon KBP-
Toolkit results using inference, for this year
we simply combined its results with those of
KRes for our best system which landed us in
the middle of the pack (only addressing 13
out of the 40 KBP slot types). We also re-
port results for KRes relativized to the seven
slot types it addressed which shows promise
for future evaluations.

1 Introduction

This paper describes the Knowledge Resolver sys-
tem (KRes) and its performance on the TAC-KBP
2013 English Slot Filling task. KRes is a logic-based
inference system based on the PowerLoom knowl-
edge representation and reasoning system, aimed at
improving statistical relation extraction by linking
extractions from across a section or whole docu-

ment, and then using abduction to combine alterna-
tive extractions into the best document-level inter-
pretation. We call this story-level inference which
we have applied successfully for relation extraction
and question answering in a sports domain (Chalup-
sky, 2012). We are currently generalizing this ap-
proach for more open domains such as the ones tar-
geted by TAC-KBP.

This was our first participation in TAC-KBP and
we are only partly along the way towards achieving
our overall goal. For the 2013 evaluation we devel-
oped an initial KRes system that extracts a subset
of seven TAC-KBP relations using manually con-
structed dependency patterns in concert with entity
type and name-linking rules. We used Stanford’s
CoreNLP system for dependency parsing, corefer-
ence resolution and NER-typing as well as title lists
we mined from Gigaword 4. For our baseline ex-
traction engine we used the Blender Lab’s KBP-
Toolkit 1.5, which was also exploited at the front-
end of KRes for its document indexing, selection
and name expansion capabilities. Instead of trying
to improve upon KBP-Toolkit results using infer-
ence, for this year we simply combined its results
with those of KRes for our best system which landed
us in the middle of the pack (only addressing 13 out
of the 40 KBP slot types). Relativizing results to the
slot types addressed by KRes shows a significantly
improved picture and gives us promise for this ap-
proach for future evaluations if we cover a larger
number of slots.
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Figure 1: System architecture

2 Approach

Figure 1 shows the overall architecture of our TAC-
KBP system. We have two mostly independent
pipelines: (1) an extraction baseline built upon the
KBP Toolkit 1.5 from the CUNY (now RPI) Blender
Lab.1 (2) The Knowledge Resolver pipeline which
uses Stanford’s CoreNLP 1.3 toolkit2 for all core
language processing tasks, and then applies depen-
dency pattern matching and name linking as well
as type inference to extract KBP slots. KRes ex-
ploits KBP-TK in two important ways: first, it is
only applied to documents that are sources for any
of the slots extracted by the KBP-TK which greatly
reduces processing time and automatically focuses
in on query-relevant documents. Second, it ex-
ploits KBP-TK’s name and acronym expansion tool
for its query name matching component. For our
best Run 1 result, we combine the results of both
pipelines in a simple, non-intelligent merge. We de-
scribe these systems in more detail below.

2.1 KBP Toolkit Pipeline

The KBP-TK provides tools for both entity linking
and slot filling. A variant of the toolkit was used in

1http://nlp.cs.qc.cuny.edu/kbptoolkit-1.5.0.tar.gz
2http://nlp.stanford.edu/software/stanford-corenlp-full-

2013-06-20.zip

the TAC-KBP 2010 evaluations (Chen et al., 2010).
We only used its slot filling tools which are com-
prised of a pattern-based QA pipeline (labeled “PA
Slot Filling” in Figure 1) derived from the OpenE-
phyra question answering system, and an IE-based
pipeline (labeled “IE Slot Filling”) using NYU’s Jet
system trained on ACE data (for relations that are
similar but do not match exactly the TAC-KBP rela-
tion set).

The toolkit starts with a name-expansion step that
processes the names of the evaluation queries and
adds variants by dropping first name and/or middle
initials, substituting nicknames and hypothesizing
acronyms for organizations. The set of query names
and their expansions is then fed to Lucene to filter
potentially relevant documents from the source cor-
pora. On the 2,000,000 news and web documents
of the 2013 TAC-KBP source corpora,, these steps
selected about 9,000 documents with potentially rel-
evant matches. The filtered document set is then run
independently through a pattern-based (PA) and an
IE-based (IE) slot-filling pipeline. Both pipelines
have respective filtering steps and produce a final re-
sults file each for query-relevant slots and their val-
ues.

We followed the manual included with the soft-
ware and used the KBP-TK more or less out of



the box without any retraining or reconfiguration.
We had to make some minor adjustments to ac-
count for some changed slot names (e.g., map
per:member-of and per:employee-of onto
a single per:employee-or-member-of), and
to compute the newly required document offsets for
relation provenance. Unfortunately, our offset com-
putation tured out to be incorrect, since it was done
on improperly detagged documents where SGML
tags were simply deleted instead of replaced by
whitespace. When we caught the mistake, it was too
late to change our submission. It is unclear how sig-
nificantly our evaluation results were affected by this
problem, since the severity depends on the length of
a document.

As configured, KBP-TK extracts values for these
eight slots:

per:cities_of_residence
per:countries_of_residence
per:statesorprovinces_of_residence
per:employee_or_member_of
per:spouse
per:title

org:member_of
org:top_members_employees

We did not perform any experiments to see
whether opening this up to the full set would have
been productive. Since KBP-TK is merely a base-
line and our KRes pipeline currently only extracts
a subset of the TAC-KBP slots, having a larger set
of baseline slots unrelated to anything in the KRes
pipeline would have not generated any useful in-
sights.

To the best of our knowledge, the version of the
KBP-TK we were using does not include a com-
ponent to merge the results of its pattern-based
and IE-based pipelines. We therefore built a sim-
ple merge algorithm that combines the results of
both pipelines, ensures single-valued slots are only
reported once, normalizes confidences of the two
pipelines onto 0-1 intervals and computes docu-
ment offsets for the arguments of a relation (with
the caveat mentioned above that these offsets were
based on incorrectly detagged documents). Offsets
were recovered by matching slot argument strings to
the context sentence provided by KBP-TK. This was
slightly tricky for cases where a hypothesized query
name acronym was used as the argument which then

had to be linked to the full query name. When we
failed to recover argument offsets for acronym argu-
ments, we simply dropped the associated slot value
from the result, since manual inspection on develop-
ment data showed that those were generally incor-
rect.

2.2 Knowledge Resolver Pipeline
Our main effort consisted of the development of the
Knowledge Resolver system (or KRes). KRes is a
logic-based inference system based on the Power-
Loom knowledge representation and reasoning sys-
tem,3 aimed at improving statistical relation extrac-
tion through story-level inference. This process
links extractions from across a section or whole
document and uses abduction inference to evaluate
alternative extractions towards the best document-
level interpretation. See (Chalupsky, 2012) for an
application of this type of inference in the domain
of sports news. We are currently generalizing this
approach for more open domains such as the ones
targeted by TAC-KBP.

This was our first participation in TAC-KBP and
we are only partly along the way towards achieving
our overall goal. At this time the relation extrac-
tors available to us did not have the coverage and
quality necessary to drive the document-level KRes
inference. For this reason, we developed a small
set of high-precision relation extractors that can sup-
port this inference in the future. The main approach
taken was to detect relations based on manually for-
mulated dependency tree patterns augmented with
type information coming from CoreNLP, word lists
(e.g., for titles) and specialized relation dictionaries
(e.g., for family relations).

KRes uses the Stanford CoreNLP 1.3 toolkit4

for all core language processing tasks such as to-
kenization, POS-tagging, sentence detection, NER-
typing, dependency parsing and coreference resolu-
tion. CoreNLP annotations (such as sentences, men-
tions, NER-types, parse trees, etc.) are then trans-
lated into a logic-based data model for the Power-
Loom knowledge representation and reasoning sys-
tem. We use an extended version of PowerLoom
(compared to the publicly released version), that im-

3http://www.isi.edu/isd/LOOM/PowerLoom/
4http://nlp.stanford.edu/software/stanford-corenlp-full-

2013-06-20.zip



plements a variety of extensions relevant to NLP
such as an extensive data model to represent text an-
notations, logic-based access to word lists and dic-
tionaries, dependency tree matching, fuzzy string
matching, various annotation translators, range in-
dices for efficient annotation inclusion inference,
and a number of other utilities. These extensions al-
low us to run the whole dependency pattern match-
ing, inference and result generation process via the
PowerLoom inference engine.

For TAC-KBP, KRes makes use of the KBP-TK
document indexing and name expansion facilities.
After the KBP-TK pipelines were run, KRes was
only run on the subset of documents referenced in
any of the KBP-TK results. This cuts down on pro-
cessing time and also gives a better chance on select-
ing relevant documents only, since some of the query
names are ambiguous. Of the about 9,000 docu-
ments selected in KBP-TK’s initial document filter-
ing step, only about 700 yielded results reported in
KBP-TK’s result files. Once relations are extracted,
arguments are mapped onto query names in a name
matching step that exploits the name variants gener-
ated by KBP-TK. These dependencies are depicted
with two arrows from KBP-TK modules to KRes
modules in Figure 1.

2.2.1 Dependency Pattern Matching
After processing a document through CoreNLP,

a first phase would find potential relation matches
based on various dependency patterns. Due to time
constraints, we only developed patterns for seven
of the TAC-KBP relations, age, family relationships
and titles:

per:age
per:children
per:other_family
per:parents
per:siblings
per:spouse
per:title

These accounted for about one third of all an-
swers in past evaluations and do not seem to be ad-
dressed very well by KBP-TK. To develop the req-
uisite patterns, we collected relevant example sen-
tences from the outputs of IBM’s SIRE relation ex-
tractor (the outputs but not the extractor were avail-
able to us from participation in DARPA’s MRP pro-
gram). These were then manually inspected, cor-

rected and augmented and used for pattern develop-
ment. We also mined about 4,300 titles from Giga-
word 4 using a simple pattern-based approach with
manual inspection for quality control, and about
2,800 job titles from the CareerBuilder web site.

Dependency tree patterns were represented as
PowerLoom list terms which were then interpreted
by a pattern evaluation predicate. For example, the
following pattern would match simple possessive
constructs such as “John’s father”:

(listof dg-poss ˆ family-relation-word)

Elements in the pattern can be dependency
graph edge labels (such as dg-poss), named
or unnamed PowerLoom relations (such as
family-relation-word which accesses a
small special-purpose dictionary for indicators
of family relations), verbatim strings (such as
prepositions) or the special root anchor constraint
indicated by ˆ. This pattern would then match
the path from “John” to “father” in the following
example dependency tree for “There he met John’s
father Frank”:

(There
RCMOD (met

NSUBJ he
XCOMP (Frank

NSUBJ (father
POSS John))))

Here is a more complex age apposition patterns
that would match phrases such as “Hussein Ali
Awad, 30, ...”. The kappa construct is used to de-
fine an unnamed PowerLoom relation which can be
used in patterns to match more complex scenarios
such as context tokens that are not directly part of a
relation dependency path, in this case, a punctuation
token following the age expression:

(listof dg-nn ˆ dg-appos
(kappa (?t ?p ?g)

(and (possible-age-word ?t ?p ?g)
(punctuation-token

(token-next-token ?t)))))

Using this approach, we defined ten patterns
for age relations, eleven patterns for family re-
lationships and nine for title relations. A set
of leveled type constraints were used to restrict
elements in these patterns. For example, an
organization-word constraint would require
the NER type of a token to be “organization”. A



plausible-organization-word would re-
lax this to also include NER types of “location”.
Finally, a possible-organization-word
would allow NER types of “organization”, “loca-
tion”, “misc”, or “other” with the additional con-
straint that it had to be a noun-like construct.

CoreNLP only detects a small set of twelve NER
types that does not include titles. To be able to detect
title expressions, we mined about 4,300 titles from
Gigaword 4 and about 2,800 job titles from the Ca-
reerBuilder web site. These were then normalized,
stemmed and matched in a fairly relaxed way to ex-
tend this dictionary as much as possible. For exam-
ple, if we had entries for “shop keeper” and “store
owner” but not “shop owner”, we would also match
“shop owner” since it could be constructed by com-
bining head and tail of two existing entries.

Documents were then pattern-matched with
queries such as the one below, that retrieved all sen-
tences and their dependency trees, matched them for
patterns as done for age patterns below, and then as-
serted any matches so that they could be further an-
alyzed and refined in subsequent steps:
(assert-from-query
(retrieve all (?g ?p ?x ?y)
(and (sentence-dependencies ?s ?g)

(age-relation-pattern ?p)
(dep-pattern-match ?g ?p ?x ?y)))

:relation dep-pattern-match-result)

Similar materialized queries would handle family
and title relations. A matched pattern does not nec-
essarily mean the relation holds, since an argument
might link to multiple candidates in a sentence via
different patterns (this often happens for complex
conjunctive lists). Subsequent steps described below
would then select between such alternative matches
by linking to names and/or selecting the closest can-
didate argument for a match.

2.2.2 Name Linking
Answers to TAC-KBP queries always involve at

least one named argument, the query name, and pos-
sibly a second named argument for the slot value as
is the case for family relations. Identifying names
and linking them to relation arguments is therefore a
central part of the task. We chose to separate relation
detection and name linking into two separate phases.
For example, when processing the sentence “After
John left his wife, Susan, ....” we would first detect

the spouse relation between “his” and “wife” and
then link those arguments to their respective names
“John” and “Susan” via pronoun coreference and an
apposition pattern. Decoupling these steps instead
of performing them in a single pattern match allows
us to reuse the same mechanism across several pat-
terns. It also makes the name linking step explicit
which allows us to more easily perform additional
inference when choosing between alternative candi-
date arguments.

Name links are established by linking a relation
mention argument such as “wife” in the example
above to the head token of a named mention of the
appropriate NER type such as “person”. Named
mentions are detected by CoreNLP’s deterministic
coreference engine. We use those mentions but ad-
ditional refine them by “tightening” them, since they
might contain entire relative clauses or other de-
scriptive phrases. In such cases we look for the men-
tion head and then find the largest set of consecu-
tive tokens around it that has the same NER type.
Moreover, we detect additional hidden named men-
tions by looking for named token sequences with a
non-trivial NER type that are not part of any known
named mentions.

Given a relation argument x and the head n of
a tight named mention, we look for a link between
the two tokens as follows: we first check whether
x = n, and, if that fails, for a connection via one
of these dependency edges in this preference order:
NN, APPOS, NSUBJ and DEP. Once a connection
is found a name link is established which will pre-
vent a name token to be linked to any other relation
arguments in a sentence. In the next step, relative
pronouns are resolved to any named referents via
coreference links detected by CoreNLP. In the final
step, we link personal pronouns to their referents via
coreference. Given that we were focusing on fam-
ily relations, and that CoreNLP’s coreference engine
has a weakness with overmerging named strings that
have the same postfix (such as a last name shared
by multiple family members), we restricted personal
pronoun resolution to within a single sentence only,
to avoid being hit by this problem (at the cost of
some recall).



2.2.3 Slot Filling
In the final phase, we use the pattern matches

and name links established in prior phases to extract
TAC-KBP slot values for named mentions found in
a document. We additionally perform some value
normalization here (e.g., to normalize age values
or handle multi-element arguments), and we map
relation types such as “cousin” onto the appropri-
ate TAC-KBP slot (such as per:other family).
We also perform some simple inference to han-
dle inverse slots, e.g. infer per:parents from
per:children and vice versa.

Finally, we process all slots found in a document
and see whether they answer any of the given evalu-
ation queries. For each named slot argument, we test
whether it matches any of the query names or their
variants as determined by KBP-TK’s query name ex-
pansion tool via a Jaro fuzzy string match with a 0.9
threshold. If the argument name only had a single
content token (e.g., a person’s last name), we look
for some additional match evidence to increase the
probability of a correct match. For this we addition-
ally test whether any of the variants associated with
the query name contains a token different from the
slot argument token that does appear somewhere in
the document (such as a person’s first name). De-
spite the simplicity of this mechanism, this seems to
eliminate most spurious matches.

At this point we generate a KBP results file ac-
cording to the constraints given by the slot and query
definitions. Single-valued slots are given a single re-
sult value only. Since we do not have any confidence
values at the moment, we choose one value at ran-
dom. Ignored slots are suppressed. Otherwise, each
relation mention found in a document that supported
a slot value was output as a result. We did not ad-
dress obviously redundant slot values resulting from
this strategy which significantly impacted our preci-
sion score. In the evaluation section below, we show
how a simple redundancy elimination scheme would
improve our overall score.

3 Evaluation Results

Each run extracted slot fillers only from the TAC
KBP 2013 source documents (only news and web
corpora were processed, the discussion fora were ig-
nored). No other external resources were used. Nei-

ther the KBP-TK nor the KRes pipeline runs did
make use of the information in the reference knowl-
edge base (the KBP-TK might have used the ref-
erence KB during the training and pattern learning
phase).

We submitted three runs: a KBP-TK-only base-
line (Run 2), a KRes-only baseline (Run 3) and a
union of the two (Run 1). The Run 1 union was a
simple non-intelligent merge similar to the merge of
the PA and IE pipelines of KBP-TK. Results of these
runs are summarized in Table 1.

Run ID R P F1
KRes (Run 3) 0.088 0.277 0.133
KBP-TK (Run 2) 0.078 0.122 0.096
KBP-TK + KRes (Run 1) 0.150 0.157 0.153
KRes unique 0.087 0.490 0.148
KBP-TK unique 0.078 0.126 0.097
KBP-TK + KRes unique 0.146 0.190 0.166
KRes relative 0.318 0.490 0.386
KBP-TK relative 0.176 0.126 0.148
KBP-TK + KRes relative 0.273 0.190 0.224

Table 1: Evaluation Results

The first section of the table shows our official run
results as submitted. Our best Run 1 lands us in the
middle of all runs submitted this year. Note, that this
system only extracts 13 out of the 40 TAC-KBP slot
types. Despite the relatively low precision of KBP-
TK, the combination of the two systems approxi-
mately doubles the individual system recalls due to
the complementarity of their addressed slot types.
Note that the results of KBP-TK were achieved by
us (a third-party uninformed user) without any re-
configuration or tuning, therefore, they should not
be used to assess the general performance character-
istics of the toolkit.

The second section shows results after a simple
literal duplicate removal, since we did not prop-
erly obey this value uniqueness constraint when con-
structing KRes and merged results. This shows
a very significant jump in precision for KRes and
slightly improved results for the other variants. Fi-
nally, the last section shows results relativized to
the subset of slot types actually attempted by each
system (these subsets are different for each variant,
seven slots for KRes, eight for KBP-TK and thirteen
for the combined system). These results are partic-
ularly relevant for KRes, since they were achieved



with only about ten dependency patterns per slot
type which gives us promise for a significant upside
once we expand the set of addressed slots. Also note
that inexact matches such as “TV news man” instead
of “news man” count as incorrect in the result com-
putation due to the strict annotation guidelines for ti-
tles. Judging those more tolerantly would obviously
improve results for all systems (not just ours).
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