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Abstract

In this paper we present a constrained opti-
mization approach to aggregate results from
multiple slot fillers taking into account the
confidence values generated by individual slot
fillers. The results obtained from aggrega-
tion were used to validate the individual runs.
We demonstrated that the proposed aggrega-
tion approach led to a significant performance
improvement over individual runs for single-
value slots.

1 Introduction

The TAC KBP Slot Filler task requires that each
participant provide a confidence value associated
with each slot response. Since no further informa-
tion is provided regarding how the confidence val-
ues were generated, it is not clear whether this addi-
tional feature provides any utility in analyzing, pre-
dicting, or further filtering of the SF results. Re-
sults from (Tamang, Chen, and Ji, 2012) based on
2012 TAC KBP SF data suggested that confidence
values are informative as system features for valida-
tion and may be used for slot-filling system combi-
nation. In this paper, we present a constrained opti-
mization framework for aggregating the confidence
values produced by 2013 TAC KBP SF submissions.
The question we intend to address is, without prior
information on how the confidence values were esti-
mated, is it possible to produce a system that aggre-
gates the outputs of individual systems to improve
the performance while taking into account the con-
fidence values. In this paper, we provide a brief
summary of the aggregation approach and present

initial results based on 2013 data. The preliminary
experimental results obtained using 2013 SF data
have been encouraging. Using a subset of TAC KBP
SF submissions (48 runs in total), we demonstrated
that the proposed aggregation approach led to signif-
icant performance improvement over individual runs
for single-value slots. We observed a more moder-
ate performance improvements for list-value slots as
measured by the F-score.

2 Technical Approach

To take into account the confidence values provided
by slot fillers, we consider the problem of aggregat-
ing probabilistic evidence. We will refer to each in-
stance of a slot value and its associated confidence
as a probabilistic evidence, denoted by (E, c), where

• E is a specific slot value extracted from docu-
ments by a slot filler; and

• c ∈ [0, 1] is a nonnegative real number that rep-
resents the confidence of the slot filler on E.

Specifically, given a set of probabilistic evidence for
an entity from a collection of slot fillers

{(E1, c1(j))}N1
j=1, . . . , {(EM , c1(j))}NM

j=1, (1)

where

• E1, . . . , EM areM distinct values produced by
the slot fillers;

• Ni is the number of times the value Ei is ex-
tracted by a slot filler; and



• ci(j) ∈ [0, 1] denotes the j-th confidence value
associated with assertion Ei produced by a slot
filler.

Our goal is to aggregate these “raw” confidence val-
ues produced by individual slot fillers to arrive at a
single aggregated confidence value xi ∈ [0, 1] for
each slot value Ei, where i = 1, . . . ,M . The val-
idation of individual slot fillers is then carried out
based on the aggregated confidence values.

We accomplish aggregation by solving a con-
straint optimization problem:

min
0≤xi≤1

M∑
i=1

Ni∑
j=1

wij (xi − ci(j))2 , (2)

s.t. g(x) ≤ 0,

where x , [x1, x2, . . . , xM ]T , xi denotes the ag-
gregated confidence for Ei, wij ≥ 0 is a non-
negative weight assigned to each instance of ci(j),
and g(x) ≤ 0 is the constraint on the confidence val-
ues. Note that, without the constraint, the optimiza-
tion defined by (2) simply reduces to independent
averaging of confidences associated with each dis-
tinct slot value. The quadratic distance function used
in (2) can be replaced by any strictly proper scoring
function (Gneiting and Raftery, 2007) to improve the
robustness, for example the Huber’s function (Hu-
ber, 1964). Following the approach proposed in
(Predd, Osherson, Kulkarni, and Poor, 2008; Wang,
Kulkarni, and Osherson, 2011), we define the con-
straint g(x) ≤ 0 such that the xs’s are “proba-
bilistically coherent,” that is, there exists a proba-
bility space where xi is the true probability asso-
ciated with the events Ei is true. A partial theo-
retical justification of this approach is provided in
(Predd, Seiringer, Lieb, Osherson, Poor, and Kulka-
rni, 2009), where the theoretical connection between
the probabilistic coherence of forecasts and their
non-domination by rival forecasts with respect to
any proper scoring rule was established.

Our validation system first aggregates the outputs
of the slot fillers to arrive at a single aggregated
confidence value for each distinct slot value pro-
duced by any individual slot filler. The validation
is then carried out by either treating the slot value
with highest aggregated confidence as the truth for
single-value slots, or using the values with aggre-

gated confidence exceeding a threshold as the cor-
rect responses for the list-value slots.

For the submitted system, we considered only
constraints motivated by the mutually exclusion
property of the slot values. In the following, we
first describe our approach to defining the constraint
g(x) ≤ 0 and weights wij for the single-value slots
in Sections 2.1. The approach is extended in Sec-
tion 2.2 to address list-value slots. We describe a
possible extension to incorporate a propositional re-
lationship motivated by the slot hierarchy in Sec-
tion 4.

2.1 Approach for Single-Value Slots

Consider a single-value slot associated with an en-
tity with E1, . . . , Ek as the possible values. Then
the events that any Ei is true are mutually exclusive
and the total sum of their probabilities should not
exceed 1. We will abuse the notation to use P (Ei)
to denote the probability that Ei is the true value for
the slot. Therefore the following constraint resulting
from this mutual exclusion (ME) property should be
incorporated into the optimization problem (2):

P (E1) + P (E2) + · · ·+ P (Ek) ≤ 1. (3)

The choice of weights wij in the optimization
problem (2) will determine how much influence a
particular probabilistic evidence will have on the ag-
gregation. In an idealized setting where feedback on
prior performance of individual slot fillers is avail-
able, appropriate weights can be derived for individ-
ual slot fillers to reflect their anticipated relative per-
formance.1 Each slot-filler specific weight is then
assigned to all probabilistic evidences produced by
the corresponding slot filler.

A straightforward way to define weights based on
the feedback is to use the inverse ranking of the aver-
age precision previously achieved by individual slot
fillers as the weights. Alternatively, we may derive
weights based on the confidence values produced
by the slot fillers to take into account the quality
of confidence estimation associated with individual
slot fillers. Let E = {(E, c)} denote a finite set
of probabilistic evidences produced by a slot filler.
Assume that feedback is provided such that we can

1One may further assign different weights for different slot
types per each slot filler if sufficient data are available.



evaluate whether each E is true or false determin-
istically. Such feedback can be written as a binary
valued function f : F → {0, 1}, where F is the set
of slot values evaluated and

f(E) =

{
1, the assertion E is true,
0, otherwise.

Then the empirical average “penalty” for the slot
filler derived from the feedback on E can be defined
as

ρ ,

∑
(E,c)∈E (f(E)− c)2

|E|
, (4)

where |E| denotes the cardinality of E . A weight for
the slot filler can then be defined as 1 − ρ. We will
refer to this weight design as the quadratic penalty
weights.

Since information on prior performance of the slot
fillers submitted to 2013 TAC KBP SF task is not
available (we do have data from 2012, but no asso-
ciation could be made between the slot fillers from
two separate years), we resorted to “bootstrapping”
to derive weights for our validation system based
only on the 2013 data. Specifically, we use the re-
sults from unweighted aggregation (that is, aggrega-
tion with uniform weights) as the surrogate feedback
to derive weights that were then used in the subse-
quent weighted aggregation.

2.2 Extension to List-Value Slots
To generalize the ME constraint to the list-value
slots, we estimated the expected number of correct
values for each slot from TAC KBP 2012 SF data
and used it to bound the total probability in place
of the unity upper bound in (3). Specifically, let
E1, . . . , En be the distinct slot values produced by
the collection of 2012 slot fillers for a list-value slot
and nc is the number of correct values among them.
We compute the average of the ratios nc/n across all
entities as an estimate of the collective precision for
the slot type achieved by the set of slot fillers. We
assume that a similar rate of correctness is achieved
by the 2013 slot fillers for each slot type (same slot
types are defined for both years). An upper bound on
the total probability is derived by multiplying the es-
timated collective precision (from 2012 data) to the
number of distinct slot value produced by the 2013
slot fillers.

After running the aggregation with the total prob-
ability bound, we further filter the slot values
by thresholding their associated aggregated confi-
dences. The threshold is derived from the 2012 data
for each list-value slot type to minimize the average
error achieved by slot values with aggregated con-
fidence exceeding the threshold. Uniform weights
were used for aggregation of list-value slots.

3 Experiment Results with TAC KBP 2013
SF Submissions

We only consider runs for which the submitted con-
fidence values are deemed “meaningful” (as claimed
by the submission); in total, 48 runs were included
in the aggregation.

Table 1 summarizes the performance of the ag-
gregated results following our approach versus the
best, median, and the worst performance of individ-
ual runs in terms of precision, recall, and F-score.
Note that the best (or median or the worst) perfor-
mance for each metric is defined for the metric inde-
pendently across all runs. That is, the three perfor-
mances across each row were not achieved by a sin-
gle individual run. Performance of three aggregation
methods were included. Results from simple averag-
ing (or equivalently, aggregation without constraint)
are also included as the baseline. All three aggre-
gation methods achieve significantly higher recalls
than individual runs (a consequence of aggregating
results from all runs) while maintaining a high pre-
cision. The overall F-scores also represent clear im-
provements from individual runs. The results clearly
indicate that simple averaging of confidence values
is not a viable approach to aggregation of slot filler
outputs. Table 2 summarizes the performance for
list-value slots. We observe slight increases of recall
and F-score from individual runs. However, these
improvements were marginal relative to what was
achieved for the single-value slots.

In the following, we present more detailed anal-
ysis of the experimental results summarized in Ta-
bles 1 and 2 to provide further insight into the per-
formance of our aggregation approach.

3.1 Analysis of Single-Value Slots

To better analyze the effect of the aggregation ap-
proach, we compare its performance against each



Precision Recall F-score
Ind. (Best) 0.95 0.4765 0.607
Ind. (Median) 0.6888 0.2971 0.4097
Ind. (Worst) 0 0 0
Aggr-Uniform* 0.7729 0.7706 0.7717
Aggr-Weight-1* 0.7670 0.7647 0.7658
Aggr-Weight-2 0.7965 0.7941 0.7953
Aggr-Averaging 0.4543 0.4529 0.4536

Table 1: Summary of Overall Performance for Single-
Value Slots (Aggr-Weight-1: quadratic penalty weights;
Aggr-Weight-2: inverse ranking weights; * denotes sub-
mitted system).

Precision Recall F-score
Ind. (Best) 0.5132 0.2703 0.2955
Ind. (Median) 0.2482 0.1329 0.1709
Ind. (Worst) 0.0323 0.007 0.0135
Aggregated 0.4499 0.3067 0.3647

Table 2: Summary of Overall Performance for List-Value
Slots.

individual run only on the slots that the particular
run attempted to fill. The analysis allows us to de-
couple the relative precision between the two tech-
niques from the impact of their different coverage
(recall). Figure 1 plots the ratios of the number of
correct values produced by each individual run to
the number of correct values achieved by the ag-
gregation approach (with uniform weights), only for
the slots that the run filled. The plot indicates that
the aggregation achieves better accuracy than all but
one individual run (run 18 1). Figure 2 depicts the
relative coverage between the aggregation and indi-
vidual runs as characterized by the ratios of the total
number of slots filled. As expected, the ratios are
all less than 1 since the aggregation will provide a
response for a slot as long as it was filled by any in-
dividual run. In particular, the individual run 18 1
that achieves higher accuracy than the aggregation
filled about half of the slots. Hence the performance
achieved by the aggregation is more significant than
one may perceive based on the standard precision-
recall metric.
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Figure 1: Relative Precision versus Individual Runs for
Single-Value Slots.
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Figure 2: Relative Coverage versus Individual Runs for
Single-Value Slots.

3.2 Impacts of Weight Design

Two approaches to bootstrapping weight designs
were evaluated in our experiments: quadratic
penalty weights and inverse ranking weights (see
Section 2.1 for description of the approaches). As
illustrated by Table 1, the quadratic penalty weights
achieved essentially the same as the uniform weights
while the inverse ranking approach resulted in minor
improvements. As seen in Figure 3, the quadratic
penalty weights computed by bootstrapping do not
“spread out” sufficiently to have an impact on the
aggregation. In contrast, the inverse ranking weights
are distributed linearly and hence may have more
significant effect. Since the performance of aggre-
gation with uniform weights already achieved very



strong performance, we should not expect much
further improvement from the bootstrapping-based
weight designs.
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Figure 3: Quadratic Penalty Weights for Runs.

3.3 Analysis of List-Value Slots

As summarized in Table 2, the aggregation approach
led to minor improvements from the individual runs
for list-valued slots as measured by recall and F-
score with a moderate degradation in precision. As
in the case of single-value slots, we also analyze the
relative precision of the aggregation method against
each individual runs in Figure 4. It is clear that
the aggregation approach is not as effective for the
list-value slots as for their single-value counterparts
as six of the individual runs achieved higher accu-
racy than the aggregation results. Further analysis is
needed to assess whether alternative approaches to
the estimation of total probability bound and/or the
tuning of the filtering threshold may lead to better
performance.

4 Conclusion and Future Work

In this paper we present a constrained optimization
approach to aggregate outputs of a collection of slot
fillers taking into account the confidence values esti-
mated by the individual slot fillers. The approach as-
sumes no prior information on the specific methods
used by the individual slot fillers to compute confi-
dences and does not use any other features associ-
ated with each slot value. Using a subset of TAC
KBP SF submissions (48 runs in total), we demon-
strated that the proposed aggregation approach led
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Figure 4: Relative Precision versus Individual Runs for
List-Value Slots.

to significant performance improvement over indi-
vidual runs for single-value slots. We observed a
more moderate performance improvement for list-
value slots as measured by the F-score. It is expected
that the performance of any aggregation scheme will
likely depend on the size and the collective quality
(in terms of slot filling and confidence estimation) of
the individual slot fillers included. Nevertheless, we
believe that the preliminary results obtained for the
2013 data are very encouraging.

The aggregation approach discussed in the paper
is a general framework that permits incorporation
of prior knowledge on probabilistic dependency be-
yond the simple ME property used here. For exam-
ple, inequality constraints can be derived according
to propositional relationships motivated by known
slot hierarchy (e.g., per:city of birth, versus
per:country of birth).
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