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Abstract

This document describes the University of
Texas at Austin 2013 system for the Knowl-
edge Base Population (KBP) English Slot Fill-
ing (SF) task. The UT Austin system builds
upon the output of an existing relation extrac-
tor by augmenting relations that are explicitly
stated in the text with ones that are inferred
from the stated relations using probabilistic
rules that encode commonsense world knowl-
edge. Such rules are learned from linked open
data and are encoded in the form of Bayesian
Logic Programs (BLPs), a statistical relational
learning framework based on directed graph-
ical models. In this document, we describe
our methods for learning these rules, estimat-
ing their associated weights, and performing
probabilistic and logical inference to infer un-
seen relations. In the KBP SF task, our system
was able to infer several unextracted relations,
but its performance was limited by the base
level extractor.

1 Introduction

In 2013, UT Austin was a first-time participant
in the English Slot Filling task of the Text Anal-
ysis Conference (TAC) Knowledge Base Popula-
tion (KBP) evaluation. The system we developed
aims to infer relations that are missed by a standard
relation extraction system or that can be guessed
using general world knowledge. Our approach,
called Bayesian Logic Programs for Textual Infer-
ence (BLP-TI) constructs Bayesian Logic Programs,
a formalism that combines the power of first or-
der Horn logic with probabilistic inference using di-

Figure 1: System overview

rected graphical models, to model probabilistic com-
monsense rules such as “the parents of a child are of-
ten spouses” or “children often live in the same state
as their parents”. It is our hope that such learned
rules can increase the recall of relation extraction
and provide useful information to other downstream
systems. This work builds upon the approaches de-
scribed in Raghavan et al. (2012).

2 System Architecture

The BLP-TI system architecture is shown in Fig-
ure 1. We train our system using processed relation
instances from DBpedia 3.8 (Lehmann et al., 2013),
as described in Section 4. An online inference-rule
learning system (Raghavan and Mooney, 2013) pro-
poses a set of first-order definite-clause rules from
these relation instances, and subsequently a MLE
weight learner uses counts of relation instances to
assign weights to each rule. Combined, these form



a Bayesian Logic Program (Kersting and De Raedt,
2007). In testing, we apply our learned BLP to
extractions from an off-the-shelf relation extraction
system, giving us additional inferred facts. In our
UTAUSTIN1 submission, we always preferred in-
ferences made by the BLP-TI system to extractions.
Our UTAUSTIN2 submission serves as a baseline
that contains only the output of relation extraction.

3 Bayesian Logic Programs

Bayesian logic programs (BLPs) are a formalism
that unifies directed probabilistic graphical models
and traditional Prolog-style logic programming, cre-
ating templates for graphical models. A BLP de-
fines an abstract model composed of first-order Horn
clauses and associated conditional probability ta-
bles (CPTs) for each rule c such that CPT(c) =
P(head(c)|body(c)). In BLP clauses, all variables are
universally quantified and range restricted such that
variables{head} ⊆ variables{body}.

In BLP inference, these abstract models are in-
stantiated with a query and a set of ground facts.
Logical deduction (SLD resolution) is used to con-
struct the graphical model by tracing the proof struc-
ture. Evidence from multiple rules is combined us-
ing a noisy-or combining function. Standard meth-
ods for graphical model inference in Bayes nets,
such as SampleSearch (Gogate and Dechter, 2007),
may then be applied.

By constructing the ground graphical model at
query time and by only permitting Horn clauses in
the rules, it is possible to limit the size and com-
plexity of the ground networks, resulting in more
tractable inference compared to Markov Logic Net-
works (MLNs) (Domingos and Lowd, 2009). Ad-
ditionally, a study by Raghavan et al. (2012) shows
superior performance of BLPs over MLNs on a re-
lation inference task in a similar domain.

4 Training Data and Dependencies

Our rule learner and weight learner are both trained
using relations from DBpedia. We first map rela-
tion types from the DBpedia ontology to the KBP
ontology using deterministic hand-coded rules, dis-
carding tuples that do not have a reasonable mapping
in KBP. We further filter the resulting tuples to en-
sure that the arguments are type consistent with KBP

types, resulting in a total of 912,375 training tuples
for 28 KBP relation types.

The BLP-TI system expands the output of other
KBP systems. We chose to use parts of the output
of the open-source BLENDER 1.5 system (Ji and
Grishman, 2011) as input to our system at test time.

Our system did not make explicit use of the ref-
erence knowledge base supplied as part of the KBP
evaluation, but it was provided to the BLENDER sys-
tem.

5 Algorithms

5.1 Relation Extraction

For extracting base slot-fillers for queries, we used
components from the KBP toolkit developed at the
BLENDER Lab. We provide brief descriptions of
these components and their application below, but
direct the reader to the CUNY 2010 team’s TAC
workshop paper for details (Chen et al., 2010).

We first indexed the KBP reference knowledge
base and the KBP source corpus using Apache
Lucene1, an open-source search engine, as in (Chen
et al., 2010). This pipeline extracts named enti-
ties from context documents and performs query
expansion using several heuristic techniques. The
expanded queries are executed in Apache Lucene
to retrieve potentially relevant documents. Next,
each query was processed by two of the BLENDER
pipelines:

• Pattern Matching Pipeline: The document
text is matched against patterns that are shipped
with the KBP toolkit distribution, which were
learned from ground-truth sets of query-answer
pairs. Confidence scores are assigned based on
how many patterns were matched and the con-
fidence scores of those patterns.

• Information Extraction Pipeline: The
BLENDER system incorporates the informa-
tion extraction systems of (Grishman et al.,
2005; Ji and Grishman, 2008), which is trained
on ACE 2005 relations. The output of this
system is mapped to KBP relations using a
mapping described in (Chen et al., 2010).

1http://lucene.apache.org/



A filtering step checks slot fillers against pre-
compiled dictionaries of country, city, and state
names, as well as additional filtering as described
in (Chen et al., 2010). Finally, BLENDER’s trained
reranker re-scores the extracted slot-fillers from the
two pipelines based on features like the pipeline
used, confidence score assigned by the pipeline, slot
type, query entity type and others.

Our KBP submission did not use the BLENDER
system’s question answering pipeline, external
knowledge from Freebase, or the MLN-based cross-
system and cross-slot reasoning systems described
in (Chen et al., 2010).

5.2 Rule Structure Learning
Our rule learning approach follows the online ap-
proach of Raghavan and Mooney (2013), but re-
places extractions from documents with sets of tu-
ples from DBpedia.

We process 1000 relations at a time, building a
directed graph whose nodes represent relation in-
stances. Directed edges are added between relation
instances that share one or more constant arguments,
with edge direction chosen such that the edge’s head
is the more frequently seen relation instance. The
edge direction encodes the heuristic that relations
that are more frequently explicitly stated should help
us infer relations that are less frequently stated.

After all sets of relations are processed, the rule
learner traverses the resulting graph and constructs
rules where the each rule head corresponds to a tail
in the graph and each rule body conjoins the nodes
traversed to reach that tail. All constants in the re-
sulting rules are replaced with unique variables to
create first order rules.

Because BLPs are range restricted as described in
Section 3, the rule learner retains only those rules
where all variables in the head appear in the body,
discarding all other non-conforming rules. The rule
learner maintains a count of how often each rule is
satisfied in the training set, and can be set to discard
rules that do not meet a user-defined threshold.

This online rule learning algorithm has been
shown to outperform a Inductive Logic Program-
ming (ILP) system (Mccreath and Sharma, 1998) on
some relation types, and, critically, to scale to much
larger data sets than is possible with ILP systems.

We refer the reader to Raghavan and Mooney

(2013) for additional details of the algorithm and an
empirical evaluation.

5.3 Rule Weight Learning

To assign weights to the learned rules, we compute
maximum likelihood estimates from the training
data using a modified closed world assumption.
While we do not assume that our training set is com-
plete, we do assume that if the training set contains
facts with a particular entity occurring in the subject
position, then it contains all relevant facts about
that entity. (Here, by subject position we denote the
first argument of the predicate.) This assumption
is motivated by the observation that in linked open
data resources, such as DBpedia, relation instances
are often only present when a notable entity is the
subject of the relation. For example, the relation
per: children(Barack Obama, Sasha Obama)
is more likely to appear than
per: parents(Sasha Obama,Barack Obama),
since Sasha Obama may not have her own cor-
responding Wikipedia page. Because of this,
maximum likelihood estimates computed us-
ing the standard closed world assumption were
qualitatively bad, with definitional rules (like
per: children(x, y) → per: parents(y, x)) as-
signed weights far from 1. This problem is
alleviated by using the modified assumption.

Put more formally, we call a substitution good
with respect to a rule if when that substitution is
applied to the head of the rule the fact generated
matches at least one fact in the training set, in both
the predicate and the first argument. For each rule,
we set the corresponding CPT parameter in the as-
sociated noisy-or combiner to be the percentage of
good substitutions for that rule for which the fact
generated is present in the training set.

5.4 Inference

In testing, we use the output of the BLENDER KBP
system on test queries. In a second pass, we use all
the slot fillers found for the original queries as sec-
ondary queries to the system, generating additional
extractions that may satisfy the body of some of our
BLP rules.

We perform BLP inference as described in (Ker-
sting and De Raedt, 2007) and (Raghavan et al.,
2012), using each KBP slot as a query on which



we perform backwards chaining using SLD reso-
lution to construct a ground Bayesian network, as
described in Section 3. We then use SampleSearch
(Gogate and Dechter, 2007), an approximate sam-
pling method for Bayesian networks, to estimate the
marginal probability of each inferred slot filler.

5.5 Post Processing
We combine extracted and inferred facts to form our
KBP submission. Our confidence values correspond
to the probability of each inference from the BLP
times the confidence value of each extraction used
to make that inference, as reported by the BLENDER
system. In cases where an inference was used to fill
a slot, we propagate the query entity, slot filler, and
justification offsets from the extraction

6 Results

We submitted two runs of our KBP system. The
first, labeled UTAUSTIN1, combined inferred rela-
tions and extracted relations, always preferring an
inferred relation when an inference has been made.
The second system, UTAUSTIN2, provides only the
output of the relation extractor. We submitted our
system in this way so that we may evaluate the ac-
curacy of all facts inferred by the BLP.

6.1 Rules
We applied our rule learner to a set of 912,375 facts
from DBpedia mapped to the KBP ontology using
a deterministic mapping and a filter for type consis-
tency. We divided this set into 913 segments, lexi-
cographically sorted by the first argument, and pre-
sented each segment to the rule learner in turn. We
were able to map DBPedia relations to 26 of the 41
KBP predicates.

Our rule learner produced 591 rules, including
rules with up to 3 predicates in the body. We filtered
rules with little empirical support (low counts in the
training data) and those whose learned weights were
very low. Table 1 shows some of the sample rules
learned by the rule learner. We observed that many
of the definitional rules had weights close to 1.0,
while other rules and weights seemed qualitatively
plausible. Our methods did not yield rules with more
than one predicate in the body using our automated
rule learner, but we supplemented the learned rules
with a small set of hand-written rules.

Number of filled slots in responses 603
Number Correct (not in reference KB) 97
Number Redundant with reference KB 15
Number redundant with another response: 0
Number inexact 17
Number incorrect / spurious 474
Recall 0.076
Precision 0.186
F1 0.108

Table 2: Results of UTAUSTIN1 run

Number of filled slots in responses 473
Number Correct (not in reference KB) 99
Number Redundant with reference KB 20
Number redundant with another response: 0
Number inexact 14
Number incorrect / spurious 340
Recall 0.079
Precision 0.225
F1 0.123

Table 3: Results of UTAUSTIN2 run

6.2 KBP Results

The results of our two KBP submissions are pre-
sented in Tables 2 and 3.

Additionally, we performed a post-submission
run in which we preferred higher confidence ex-
tractions when we had a lower confidence inference
available. We ran the KBP scorer2 on this configu-
ration and obtained the results shown in Table 4. In
this configuration, our system was able to infer 7 ad-
ditional correct facts that were not extracted by the
BLENDER system, at the expense of precision.

2http://surdeanu.info/kbp2013/software.php

Number of filled slots in responses 603
Number Correct (not in reference KB) 105
Number Redundant with reference KB 20
Number redundant with another response: 0
Number inexact 15
Number incorrect / spurious 463
Recall 0.085
Precision 0.207
F1 0.121

Table 4: Results of unsubmitted run that prefers higher
confidence extractions to inferences when both are avail-
able



per:country of birth(A,B)→ per:countries of residence(A,B) [0.77]
If person A was born in country B, he or she likely resided in country B

org:top members employees(A,B)→ org:shareholders(A,B) [0.13]
If person B is a key employee of organization A, then B may be a shareholder in A

per:country of birth(A,B)→ per:country of death(A,B) [0.64]
If person A was born in country B, then he or she died in that country

per:country of death(A,B)→ per:country of birth(A,B) [0.66]
If person A died in country B, then he or she was likely born in that country

per:children(A,B)→ per:parents(B,A) [0.96]
If A is a child of B, B is the parent of A

Table 1: Sample learned probabilistic rules. Associated learned weights are in brackets.

7 Discussion and Future Work

Analyzing our results shows several points of poten-
tial improvement and some fundamental hurdles:

• The low precision of the input relation extrac-
tion system made it difficult to infer unseen
relations, especially using rules with multiple
predicates in the body. The performance of the
base system is described in Table 3.

• Some relations are inherently difficult to in-
fer from other relations, such as org:website or
per:charges.

• Some relations can be inferred, but may be
helped by an extractor that can provide extrac-
tions outside of the target ontology. For exam-
ple, an extractor that targets the entire DBpedia
ontology may extract relations that do not have
a KBP mapping but nonetheless can be used in
the body of a inference rule whose head is a
KBP-mappable relation.

• Because we did not target all of the phenomena
that KBP attempts to address, our team did not
expend engineering effort on various normal-
izing and filtering components that may have
increased our scores. We also did not build a
filter to check if a given inference was already
present in the reference KB.

• Our system was not able to distinguish when
the response NIL was a correct response, such
as the case of per:city of death for a person
who is still alive, from a case where a rela-
tion extractor did not find a filler for the slot.
Many of the mistakes our system made resulted

from rules such as per:city of birth(X,Y) →
per:city of death(X,Y), which is a reasonable
rule assuming that X is dead. As a result,
our system produced many spurious responses
when NIL was a correct response.

• Our rule learner may perform better if we pro-
vide more related relation instances in each
batch. We have developed a graph-splitting
method that attempts to present highly con-
nected areas in the knowledge graph as a sin-
gle training batch to the online rule learner but
have not yet evaluated it on this task.

• The structure of the justification offsets and
single-document sourcing required by the KBP
task description limits the judges to accept-
ing as correct only relations that are explicitly
stated in the text or that can be inferred di-
rectly from what is stated in a short span of
text. Our system could in principle combine
multiple facts from different documents to in-
fer a new fact, or it could correctly guess a fact
from existing facts but lacking sufficient justi-
fication to be counted as correct.

In prior work, BLPs have shown promise for in-
ferring relations in similar domains (Raghavan et al.,
2012). While we hoped to replicate this in the KBP
domain, our results are currently limited. However,
our analysis points to several areas for improvement
in future work, and several directions that can pro-
vide a better evaluation for relation inference tasks.
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