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Abstract

This paper describes the CIS slot filling sys-
tem for the TAC Cold Start evaluations 2015.
It extends and improves the system we have
built for the evaluation last year. This paper
mainly describes the changes to our last year’s
system. Especially, it focuses on the corefer-
ence and classification component. For coref-
erence, we have performed several analysis
and prepared a resource to simplify our end-
to-end system and improve its runtime. For
classification, we propose to use neural net-
works. We have trained convolutional and re-
current neural networks and combined them
with traditional evaluation methods, namely
patterns and support vector machines. Our
runs for the 2015 evaluation have been de-
signed to directly assess the effect of each net-
work on the end-to-end performance of the
system. The CIS system achieved rank 3 of all
slot filling systems participating in the task.

1 Introduction

The TAC KBP Slot Filling task addresses the chal-
lenge of gathering information about entities (per-
sons, organizations or geo-political entities) from a
large amount of unstructured text data. Previous
evaluations showed that this task includes a variety
of challenges like document retrieval, coreference
resolution, location inference, cross-document infer-
ence and relation extraction / classification. In our
slot filling system, we address most of these chal-
lenges (except for cross-document inference which
we only consider in the context of location infer-
ence). This paper focuses on the changes of our sys-

tem compared to last year (Adel and Schütze, 2014),
especially on our relation classification and corefer-
ence component. We propose to tackle relation clas-
sification with neural networks and show the impor-
tance of coreference resolution for slot filling. Ad-
ditional changes which led to significant system im-
provements included extension and automatic selec-
tion of training data and genre specific processing of
documents.

The remainder of the paper is organized as fol-
lows: First, an overview of the slot filling system
is presented (Section 2). Second, the changes of
the different components of the system are described
in detail. The forth Section describes how we inte-
grated coreference resolution and Section 5 presents
our neural classification models. Finally, the perfor-
mance of the system in the shared task is presented.

2 System overview

Our slot filling system is an extension of our system
from last year. It addresses the slot filling task in a
modular way. This has several advantages, includ-
ing extensibility, componentwise analyzability and
modular development. Figure 1 shows the compo-
nents of our system. In order to gather information
about a person, organization or geo-political entity,
the following steps need to be performed:

• expansion of the query with possible aliases for
the given name (alias component)

• retrieval of documents containing mentions of
the entity (information retrieval component and
entity linking component)
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Figure 1: System overview: Basic components of the CIS slot filling system

• retrieval of sentences with mentions of the en-
tity and possible slot fillers (candidate extrac-
tion component)

• classification of the candidates (slot filler clas-
sification component)

• postprocessing of the candidates (postprocess-
ing component)

In the following section, our work on these different
components is described in detail.

3 Component description

3.1 Alias component

For query expansion, we used a pre-compiled list
of possible aliases. The aliases were obtained
with JWPL (Ferschke et al., 2011), a Java-based
Wikipedia interface. For this study, we used a
Wikipedia dump from July 2014 and extracted all
redirect information. In order to avoid noisy aliases,
we implemented some basic cleaning steps like min-
imum length of aliases or no aliases with another
named entity type as the given entity. For orga-
nizations, we also added various company-specific
suffixes, such as “Corp”, “Co”, “Inc”. For persons,

we included nicknames taken from the web1 into the
query expansion process.

Like last year, we used only the one alias with the
lowest Levenshtein distance (Levenshtein, 1966) to
the name given in the query for the information re-
trieval component (IR alias). With this, we can cover
spelling variations but reduce the number of falsly
retrieved documents. For the candidate extraction
module, however, we used the whole list of aliases
to find as many occurrences of the entity as possible.

3.2 Information retrieval component

For document retrieval, we used the open source sys-
tem Terrier (Ounis et al., 2006). We indexed the
evaluation documents for the cold start task after
some basic cleaning steps. To retrieve documents
relevant to a given person or organization, the fol-
lowing queries were used:

• AND combination of the elements of the given
name

• AND combination of the elements of the IR
alias (see Section 3.1)

1http://usefulenglishru/vocabulary/mensnames,
http://usefulenglishru/vocabulary/womensnames



• OR combination of the elements of the given
name

We did not use phrase queries because we found
that they did not work well with spelling variations.
For geo-political entities, we only used the AND
queries. For each entity, we extracted up to 100 doc-
uments.

3.3 Entity linking component

The entity linking component was newly introduced
into our 2015 system. We did not use it for all
runs since we wanted to investigate its impact on
the end-to-end performance. The component used
WAT (Piccinno and Ferragina, 2014) to determine
to which Wikipedia entity the entity given by the
query belongs to. Then, for each document returned
by the information retrieval document, we checked
whether the mention in the document refers to the
same Wikipedia entity as the query. In case of a mis-
match, the document was ignored by the end-to-end
system.

3.4 Candidate extraction component

To find sentences with the entity in the retrieved doc-
uments, we applied fuzzy string matching (based
on Levenshtein distance) and automatic coreference
resolution. For coreference resolution, we used
Stanford CoreNLP (Manning et al., 2014). More de-
tails and analysis on this topic are presented in Sec-
tion 4.

After extracting sentences with mentions of the
given entity, the system looked for possible fillers for
the slot from the query. Similar to last year, we ap-
plied named entity recognition (with CoreNLP) and
a manual mapping from slots to possible named en-
tity types of their fillers. For string slots like per:title
or per:charges, we assembled lists of possible filler
values based on Freebase (Bollacker et al., 2008). In
difference to last year, we used larger lists and also
performed manual cleaning steps to improve their
precision.

Furthermore, we immediately filtered impossible
filler candidates like floating point answers for num-
ber of employees of a company or age of a person.

In difference to last year, our candidate extraction
module has a recall of 55% to 62% on the 2013 and
2014 evaluation data. Hence, its performance has

been doubled by keeping the number of false posi-
tive extractions almost constant.

Genre-specific document processing. The TAC
2015 evaluation corpus consists of news and discus-
sion forum documents. Those genres have differ-
ent characteristics. Thus, it is reasonable to process
them in different ways. In our system, we applied
special steps to discussion forum documents, such
as ignoring text inside <quote> tags, normalizing
casing of strings (e.g. mapping “sErVice” to “ser-
vice”), and using another flag for the sentence split-
ting component of Stanford CoreNLP.

3.5 Slot filler classification component

In this evaluation, we used a variety of classifiers
to decide whether an extracted filler candidate is a
valid filler for the given slot. In particular, we used
the distant supervised patterns by (Roth et al., 2013),
and trained support vector machines (SVMs) with
the same features as in our last year’s system (Adel
and Schütze, 2014) as well as two neural networks:
a convolutional neural network and a recurrent neu-
ral network. The classification component applied
all these models to score the context of a given en-
tity - filler candidate pair. Their scores were then
combined by linear interpolation. The interpolation
weights were tuned based on previous TAC evalua-
tion data.

Training data creation. For the SVM and the
neural networks, we created a larger set of training
examples compared to last year. We used distant
supervision with Freebase relation instances (Bol-
lacker et al., 2008) and the following corpora:

• TAC source corpus (LDC2013E45)

• NYT corpus (LDC2008T19)

• subset of ClueWeb2

• Wikipedia

• Freebase description fields

Negative examples were created in the same way as
last year (by extracting sentences with entity pairs
with the correct named entity tags for the given slot

2http://lemurproject.org/clueweb12
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that do not hold the negative relation according to
Freebase). However, we also cleaned them with trig-
ger words and patterns: If a trigger/pattern of the
negative relation appears in the sentence, we would
not include it into the set of negative examples.

Training data selection. With this data creation
process, we extracted a huge amount of data with
noisy labels. To reduce the number of wrong la-
bels, we performed an automatic training data selec-
tion process. First, we divided the extracted training
samples into k batches. Then, we trained one SVM
per slot on the annotated slot filling data which was
released by Stanford last year (Angeli et al., 2014).
Thus, the classifiers have been trained on data with
presumably correct labels and should, therefore, be
able to help in the process of selecting additional
data. For each batch of training samples, we used
the classifiers to predict labels for the samples and
selected those samples for which the distant super-
vised label corresponded to the predicted label and
the classifier had a high confidence. Those samples
were, then, added to the training data of the SVMs
and the SVMs were re-trained to predict the labels
for the next batch. This process is depicted in Fig-
ure 2. The obtained training data set was then used
to train the different classifiers.

Classification models. Based on the resulting
data, one SVM, CNN and RNN was trained per slot.
The neural networks are described in detail in Sec-
tion 5. To reduce redundant training, we trained
only one classifier for a slot and its inverse. We also
merged the “city”, “country” and “stateorprovince”
slots to one “location” slot since we expect their
fillers to appear in the same contexts.

Although we used many different sources
to create training data, there were still slots
for which not enough training data could
be extracted. Hence, no classifiers could be
trained for them. Those slots were: per:charges,
per:other family, per:religion, org:date dissolved,
org:number of employees members,
org:political religious affiliation, org:shareholders.
For them, we only used pattern matching in the
classification module.

Development data. In order to optimize the pa-
rameters of the models on data which is as clean
as possible, we automatically extracted sentences
which correspond to the manually labeled system
outputs from the previous slot filling evaluations.
Due to differences in the offset calculation of some
systems, not all available data could be used but
the resulting development data set still has a reason-
able number of examples with presumably clean la-
bels. For more details on the development data and a
script to reproduce the data, see (Adel et al., 2016).

3.6 Postprocessing component

Finally, the classification component results were
postprocessed. This included the following steps.

Output thresholds. Filler candidates with a clas-
sification score below a certain threshold were dis-
carded. The thresholds are slot-specific and have
been tuned automatically on previous evaluation
data. This had outperformed slot independent
thresholds in our last year’s system. For hop1 of
one-hop queries, we increased the thresholds by 0.1
in order to reduce the number of false positive an-
swers.

Location disambiguation. As mentioned in Sec-
tion 3.5, we did not distinguish between cities, states
or provinces, and countries in the classification com-
ponent. Before outputting the results, however, the
extracted locations needed to be disambiguated. The
system decided based on city-, state- and country
lists3 whether the location was a city, a state or
province or a country.

3http://www.listofcountriesoftheworld.
com, http://en.wikipedia.org/wiki/List_of_
U.S._state_abbreviations, Freebase



Location inference. Based on city-to-state, city-
to-country and state-to-country mappings extracted
from Freebase, we performed location inference for
the case that our system found a city or state while
the given slot was a state or country.

Date normalization. For date slots, the extracted
fillers were normalized to the output format (YYYY-
MM-DD).

Filler candidate ranking. The extracted filler
candidates were ranked according to their classifi-
cation score. For single-valued slots, only the top
filler candidate was output. For list-valued slots,
the top N filler candidates were output. (N is slot-
dependent and has been tuned on previous evalua-
tion data in order to increase the precision of the
system.)

4 Coreference resolution for slot filling

The importance of coreference resolution for slot
filling has been shown before (Min and Grishman,
2012; Pink et al., 2014). Prior to the 2015 evalua-
tions, we have investigated several aspects of coref-
erence resolution in detail. We found several com-
mon errors of automatic coreference resolution that
affect the end-to-end performance of the slot filling
system. These errors include wrongly linked pro-
noun chains (pronouns linked to the wrong entity),
unlinked pronoun chains (chains consisting of only
pronouns) and no recognition of nominal anaphora
(e.g., phrases like “the 30-year-old” are usually not
recognized as being coreferent to an entity). For the
last class of errors, we have developed a heuristic to
deal with them: If the entity from the query occurs
in sentence t and sentence t+ 1 starts with a phrase
like “the XX-year-old”, “the XX-based company”,
“the XX-born” and this phrase is not followed by
another entity, there is a high chance that this phrase
is coreferent to the entity.

In order to reduce the runtime of our slot filling
system, we pre-processed the TAC source corpus
and 2015 evaluation corpus with coreference infor-
mation. We have not processed all documents of
the source corpus yet but so far we have extracted
about 36M coreference chains with a total number
of 126M mentions. This resource will be publicly

available to the community.4

In contrast to last year, we did not only use coref-
erence information for the entities from the queries
but also for the fillers if the filler type was a person.
Especially due to the newly introduced inverse slots,
this turned out to improve the recall of the system
considerably (e.g. consider the slot org:students and
the sentence “He went to University of Munich.”)

In end-to-end experiments, we have found that the
slot filling system is able to extract up to 12% more
true positive slot fillers if it uses coreference resolu-
tion. While it also finds more false positive slot filler
candidates in the candidate extraction step, almost
all of these are ruled out by classification. Hence,
coreference resolution turned out to be a very im-
portant component in our slot filling system. In con-
trast to last year, we did not submit a run dedicated
to coreference resolution this time. However, we ran
our system without the coreference resolution com-
ponent after the official evaluation to analyze its ef-
fect on the 2015 evaluation data. We report the re-
sults in Section 6.2.

5 Neural networks for slot filling

This section describes the neural networks which we
trained to extend our candidate classification com-
ponent. All of them used word embeddings to rep-
resent the words in the input sentence. The embed-
dings have been trained with word2vec (Mikolov et
al., 2013) on English Wikipedia.

5.1 Convolutional neural networks

Convolutional neural networks (CNNs) have been
applied successfully to natural language processing
(Collobert et al., 2011; Kalchbrenner et al., 2014) in
general and relation classification (Zeng et al., 2014;
Dos Santos et al., 2015) in particular. We propose
to also integrate them into an end-to-end slot filling
system. In contrast to prior work, we trained them
on noisy distant supervised training data. Our results
show that they were still able to learn meaningful
sentence representations.

CNNs are promising models for slot filler candi-
date classification out of two reasons: (i) they create
sentence representations and extract n-gram based
features independent of the position in the sentence,

4We will provide it upon request by email.
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Figure 3: Convolutional neural network for slot filling

(ii) they use word embeddings as input and, thus, are
able to recognize similar words or phrases (which
are expected to have similar vectors).

For classification, we split the input sentence into
three parts: (1) the context left of entity and filler
candidate, (2) the context between entity and filler
candidate, (3) the context right of entity and filler
candidate. Convolution and max pooling were ap-
plied to each of these three parts individually. The
weights for convolution, however, were shared to be
able to recognize relevant n-grams independent of
their position in the input sentence. Afterwards, the
results were concatenated to one large vector. This
vector was extended with a flag indicating whether
the entity or the filler candidate appeared first in the
sentence. Then, it was passed to a multi-layer per-
ceptron consisting of a hidden layer and a softmax
layer for classification. The output of the network
was binary: 1 if the context represented the given
slot and 0 if it did not.

Figure 3 depicts the structure of the CNN.

5.2 Recurrent neural networks

Recurrent neural networks (RNNs) have been ap-
plied successfully to language modeling (Mikolov et
al., 2011). Socher et al. (2012) used recursive neural
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Figure 5: Bi-directional RNN for slot filling

networks based on dependency parse trees for rela-
tion classification. In this work, we have integrated
RNNs into our slot filling system. In particular, we
trained three different types of RNNs: (1) a tradi-
tional forward RNN, (2) a bi-directional RNN, (3) a
bi-directional RNN trained in a multi-task fashion.
All RNNs first processed the whole sentence word
by word and performed a relation classification step
with a softmax layer afterwards. The forward RNN
processed the sentence only once, accumulated the
features of the input (represented by word embed-
dings) in its hidden layer and predicted whether the
input sequence was valid for the given slot. The bi-
directional RNN processed the sentence twice: from
word 1 to word n as well as from word n to word
1. It calculuated hidden layers for both directions
and accumulated them by summing their values for
the final prediction. The multi-task RNN predicted
the type of the next word (first relation argument,
second relation argument or other) at each time step
and used this predicted type as an additional input
for the next word. In the slot filling system, we eval-
uated all three RNNs and took the decision of the



P R F1
hop 0 run 1 57.60 12.85 21.02
hop 0 run 2 31.67 23.97 27.29
hop 0 run 3 29.87 26.50 28.08
hop 0 run 4 31.71 24.13 27.41
hop 0 run 5 19.11 22.32 20.59
hop 1 run 1 15.89 1.89 3.38
hop 1 run 2 10.46 6.33 7.89
hop 1 run 3 14.13 5.89 8.31
hop 1 run 4 11.82 7.00 8.79
hop 1 run 5 5.08 4.11 4.54

all run 1 46.15 8.30 14.07
all run 2 23.99 16.65 19.66
all run 3 25.93 17.94 21.21
all run 4 24.63 17.02 20.13
all run 5 14.48 14.76 14.62

Table 1: End-to-end results, CSLDC max micro

most confident RNN as the final score.
Figures 4 and 5 depict the structures of the RNNs.

6 Slot filling evaluation

6.1 Submitted runs

We submitted the following runs to the official eval-
uation 2015:

Run 1: High precision. Similar to our second
run, this run used patterns, SVMs and CNNs for
classifying the filler candidates. However, it only re-
ported answers with high confidences (it added 0.2
to the output thresholds). It can, thus, be considered
a high precision run.

Run 2: Patterns + SVM + CNN. This run can
be considered as our base run. All the other runs
added or omitted one feature compared to this run in
order to directly assess its impact on the end-to-end
performance. In this run, we used patterns, SVMs
and CNNs in the classification module.

Run 3: Patterns + SVM + CNN + RNN. This
run added RNN models as described in Section 5.2
to the classification component.

Run 4: Entity linking. In this run, we applied the
same classification module as in run 2. Additionally,
we used entity linking and only considered those
documents for filler candidate extraction which in-
cluded mentions of the same entity as the entity from
the query (see Section 3.3).

Rank Team F1
1 Stanford 31.06
2 UGENT 22.38
3 CIS 21.21
4 UMass 17.20
5 UWashington 16.44

Table 2: End-to-end result (CSLDC max micro) com-
pared to other slot filling teams

Run 5: Patterns + SVM. In order to assess the
effect of adding neural networks to the classifica-
tion module, we only used traditional classification
methods in this run (patterns and SVMs).

6.2 Results and analysis

Table 1 shows detailed results of our runs. The
performance trends of the different runs are similar
across both hops and their combination (“all”): Run
1 had the highest precision but lowest recall, run 3
and 4 (with RNNs and entity linking, respectively)
led to the best F1 score. Compared to other slot fill-
ing systems, run 3 achieved rank 3 (see Table 2).

In experiments on previous evaluation data (2013
and 2014, slot filling track), entity linking led to
recall losses due to wrong decisions of the entity
linker. We suspect that the superior performance in
this evaluation could be explained by a large amount
of ambiguous entity names (larger than in previous
evaluations).

The RNNs (run 3) added small but consistent im-
provements to the final performance.

It is important to note that the performance dif-
ference of run 5 (without neural networks) to run
2 and run 3 (with neural networks) was quite large
(about 6 F1 points). This shows the impact of neu-
ral networks. They improved the relation classifi-
cation and, thus, the end-to-end performance a lot
even though they had been trained on noisy (distant
supervised) training data.

Impact of coreference. After the official submis-
sions, we ran the base run of our system (run 2)
again without coreference resolution in the candi-
date extraction step. Table 3 shows the end-to-end
results when using coreference (“run 2”) and when
omitting it (“- coref”). The number of true positives
was reduced considerably (from 361 to 321) when



P R F1
hop 0 run 2 31.67 23.97 27.29
hop 0 - coref 19.33 22.40 20.75
hop 1 run 2 10.46 6.33 7.89
hop 1 - coref 5.32 4.11 4.64
all run 2 23.99 16.65 19.66
all - coref 14.83 14.81 14.82

Table 3: Impact of coreference resolution on end-to-end
results, CSLDC max micro

the system did not use coreference information. The
number of false positives was also lower, but the fi-
nal results show that the impact of the number of true
positives was larger: The F1 scores dropped by al-
most 5 points when omitting coreference resolution.

7 Conclusion

This paper presented the CIS system for the TAC
KBP Cold Start Slot Filling evaluation 2015. The
system has been built upon our system from last
year. This paper showed the differences to our last
year’s system and paid special attention to the clas-
sification and coreference module. To improve the
integration of coreference resolution, we have pre-
pared a resource and performed several analysis. For
the classification of slot filler candidates, we pro-
posed to use neural networks and showed that they
improved end-to-end performance by a large mar-
gin. Our system achieved rank 3 of all slot filling
systems in the official evaluations.
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