
Modeling Event Extraction via Multilingual Data Sources

Andrew Hsi
Carnegie Mellon University
Pittsburgh, PA 15213 USA
ahsi@cs.cmu.edu

Jaime Carbonell
Carnegie Mellon University
Pittsburgh, PA 15213 USA
jgc@cs.cmu.edu

Yiming Yang
Carnegie Mellon University
Pittsburgh, PA 15213 USA
yiming@cs.cmu.edu

Abstract

In this paper, we describe our system for
the TAC KBP 2015 Event track. We fo-
cus in particular on development of multi-
lingual event extraction through the combi-
nation of language-dependent and language-
independent features. Our system specifically
handles texts in both English and Chinese,
but is designed in a manner to be extendable
to new languages. Our experiments on the
ACE2005 corpus show promising results for
future development.

1 Introduction

Event extraction has been a well-studied field within
the information extraction community. Most of the
work on event extraction has focused on English
texts (Grishman et al., 2005; Ji and Grishman, 2008;
Gupta and Ji, 2009; Liao and Grishman, 2010; Liao
and Grishman, 2011; Li et al., 2013; Bronstein et al.,
2015), with a smaller set of literature focusing on
other languages (Chen and Ji, 2009; Li et al., 2012;
Chen and Ng, 2012; Chen and Ng, 2014). However,
with few exceptions, most works have attempted to
simply focus on a single language.

In our system, we attempt to make some ini-
tial headway into developing approaches for cross-
lingual event extraction that utilize both language-
dependent and language-independent features in or-
der to make predictions on texts. Although we do
not make any claims to be state-of-the-art on En-
glish event extraction, our hope is to make advances
for event extraction on less well-studied languages,

potentially offering insights on how to adapt event
extraction toward low-resource settings.

The remainder of the paper is organized as fol-
lows. In Section 2, we introduce some necessary ter-
minology used in the event extraction community. In
Section 3, we first describe our overall system archi-
tecture, and subsequently describe each component
of our system. In Section 4, we describe the spe-
cific differences between our various submitted sys-
tem runs. In Section 5, we describe our experimental
results with our system, and in Section 6 we describe
our performance in the official TAC evaluations. Fi-
nally, in Section 7, we describe our conclusions and
thoughts for future work.

2 Terminology

In this section, we describe some common terminol-
ogy relevant to the remainder of this paper.

An event mention is a specific textual instance
of an event. Documents may contain multiple event
mentions that all point to the same event. For exam-
ple, consider the following pair of sentences:

(1) The man gunned down two police officers last
night. The shooting occurred outside a bank
after an attempted robbery.

This example contains two different mentions, but
both refer to the same event.

There are two common representations that event
mentions can take. An event trigger is a single word
that indicates the presence of an event in the text.
This is a more traditional representation, and was
used in the ACE program. In the above example,
“shooting” is an event trigger.



More recently, event nuggets have been proposed
as a generalization of event triggers. In particu-
lar, a key differentiating aspect of event nuggets is
that they can be multi-word phrases, rather than just
a single word. In the above example, this means
that in addition to marking “shooting” as an event
nugget, we can also consider the phrase “gunned
down” as an additional event nugget.

An event argument is an entity that fulfills some
role within the event. Typically, common roles in-
clude Time, Place, and Agent. The set of valid roles
depends on the type of event in question – for in-
stance, Conflict.Attack has an Attacker role, while
Business.Declare-Bankruptcy does not.

An event argument mention is a specific textual
instance of an event argument. As in the case with
event mentions, there may be multiple event argu-
ment mentions that reflect the same event argument.

3 System Components

3.1 Overview

Our system is designed via a set of interconnected
components, as shown in Figure 1. We begin with
a preprocessing module that takes raw text as in-
put, and runs a suite of tools to prepare the data.
The processed data is then fed into our event trig-
ger component, which outputs predictions reflect-
ing which words trigger events. This output is then
provided to both a post-processing module for ex-
tracting the Event Nugget Detection task output, and
an argument prediction component. The output ar-
gument predictions are subsequently fed into argu-
ment merging and argument post-processing mod-
ules, which format the data into the Event Argument
Detection and Linking task output.

The event argument verification module forms a
separate component that relies on the output from
our argument system, as well as the output from
the other teams’ output. The output of this mod-
ule serves as the Event Argument Verification and
Linking task output.

3.2 Preprocessing

We begin by running the Stanford CoreNLP toolkit
on the raw text (Manning et al., 2014). This provides
word segmentation, lemmatization, part-of-speech
tagging, and other system produced annotations that

are used downstream for feature extraction. Addi-
tionally, we run the Java Extraction Toolkit (JET)
(Grishman et al., 2005), which we use for extracting
entity mentions and their coreference links.

3.3 Event Trigger Classification

Given the preprocessed data, we train a logistic re-
gression classifier to classify each word in each doc-
ument as belonging to one of 33 event trigger sub-
types in the ACE2005 ontology, or NONE if the
word is not determined to be an event trigger. We
train our model with the LIBLINEAR software (Fan
et al., 2008).

We consider a variety of features for this module,
including:

• the current word/lemma

• bigrams of the current word/lemma with
words/lemmas within a fixed context window

• part-of-speech tag for the current word

• bigrams of part-of-speech tags for the current
word and words within a fixed context window

• word embedding vector for the current word

• universal part-of-speech tags

• dependent/governor information from depen-
dency parsing

For our word embedding features, we train word
embeddings on the full text of English Wikipedia,
using the word2vec software (Mikolov et al., 2013).
We create our universal part-of-speech features by
using available mappings from language-specific
part-of-speech tags to the universal part-of-speech
tagset (Petrov et al., 2012).

The final part of this component is an additional
logistic regression classifier that is run on the output
triggers. For each identified trigger word (i.e. those
with labels other than NONE), we classify the trig-
ger word into one of three realis labels: ACTUAL,
GENERIC, or OTHER. This classifier uses the same
base set of features as the previous classifier, with
an additional feature added for the predicted trigger
type.



PREPROCESSING
EVENT TRIGGER
CLASSIFICATION

EVENT NUGGET
POSTPROCESSING

EVENT ARGUMENT
CLASSIFICATION

EVENT ARGUMENT
MERGING

EVENT ARGUMENT
POSTPROCESSING

EVENT ARGUMENT
VERIFIER

DOCUMENTS

EVENT 
ARGUMENT 
DETECTION
& LINKING
OUTPUT

EVENT NUGGET 
DETECTION OUTPUT

OTHER KBP TEAM OUTPUT

EVENT ARGUMENT 
VERIFICATION & LINKING
OUTPUT

Figure 1: Event Extraction Pipeline

3.4 Event Nugget Postprocessing

Since the task at this year’s evaluation is based on
event nuggets rather than event triggers, our system
needs to account for differences between nuggets
and triggers. In particular, we need to handle the fact
that nuggets may be multi-word phrases, whereas
triggers are only ever a single word. For example,
consider the following sentences:

(2) The boss fired an employee today.

(3) My friend is out of a job.

In the first sentence, the word “fired” is both an
event trigger and an event nugget (specifically for
the event type Personnel.End-Position). However,
in the second sentence, the phrase “out of a job” can
be identified as an event nugget, but would not be a
valid event trigger.

We analyzed the RichERE English texts, and
identified all multi-word event nuggets. This re-
sulted in a list of 142 unique phrases, varying from
lengths of two words to four words. We then consid-
ered our predicted event triggers, and for each trig-
ger word, we analyzed a context window of words

surrounding the identified trigger. If we found a
set of consecutive words that matched any of the
phrases in our list, we extended the trigger to contain
the necessary context words. Using this process, we
converted the event triggers into event nuggets.

3.5 Event Argument Classification

For our event argument classifier, we consider in-
put pairs of the form (ti, ej), where ti is a predicted
trigger word (from the trigger classifier) and ej is
an entity extracted from the text with JET. We only
consider pairs such that ti and ej occur in the same
sentence.

For each such pair, we classify the relationship
between the trigger word and the entity into one of
the argument types from the ACE2005 ontology, or
NONE if the entity is not determined to be an argu-
ment for the given event mention. We train an ad-
ditional logistic regression classifier to make these
predictions. Once again, we use LIBLINEAR to
perform the actual training of our model.

We consider a variety of features for this module,
including:

• full phrase of the entity



• unigrams for each word in the entity

• head word of the entity

• entity type, subtype

• trigger word, type, subtype

• distance between the trigger and entity

• dependency links between the trigger and entity

3.6 Argument Merging

In the development of our event argument system,
we found difficulty in achieving high recall. As one
potential workaround to this problem, we added an
additional component that allows for merging argu-
ment predictions from other sources. For our pur-
poses, we used the argument predictions from JET,
though in principle any systems could be utilized in
this module.

Given two (or more) sets of argument predictions,
we create our final set of predicted arguments by in-
cluding any argument that occurred at least once in
any of the systems. Although this kind of approach
is potentially harmful for precision, it will certainly
not lower the recall, and in practice may very well
increase it. Note that this is in some sense a sim-
plified version of our Event Argument Verification
module, which will be described in Section 3.8.

3.7 Event Argument Postprocessing

Once we have obtained our set of predicted argu-
ments, we pass this output to the event argument
postprocessing module to organize the data into the
correct format. In addition to straightforward as-
pects such as providing the document ids and offsets,
there are a few non-trivial aspects of this component:

• Verifying validity of argument roles – since our
classifier does not explicitly take the validity of
argument roles into account, there is the possi-
bility of assigning an impossible role for a par-
ticular event type. For example, “Agent” is not
a valid argument role for an event of type Con-
flict.Demonstrate. We pass over each extracted
argument, and if we find any invalid roles, we
remove the predicted argument from the output.

• Ontology difference – as the KBP ontology
differs slightly from the ontology used by
ACE2005, we provide a mapping between the
two ontologies in order to account for this dif-
ference.

• Canonical Argument String (CAS) – for each
argument, we were required to report its canon-
ical argument string. To accomplish this, we
considered all coreferent entities for each argu-
ment, and applied a set of heuristics to select
the most applicable string.

• Time normalization – the KBP guidelines re-
quested that the CAS for Time arguments be in
the format “XXXX-YY-ZZ”, where XXXX is
the year, YY is the month, and ZZ is the day.
As the default choice, we provided “XXXX-
XX-XX” as the CAS, but we also applied a set
of heuristics to refine this further based on the
extracted strings. For instance, a string contain-
ing “november” or “nov” could have its month
attribute set to “11”.

• Realis label – due to time constraints, we did
not develop a classifier to determine the realis
label for arguments. As a default approach, we
listed each realis label as “ACTUAL”.

For the linking output, we linked together all ar-
guments that were assigned to the same event trig-
ger.

3.8 Event Argument Verifier

In this module, we take the output from our event
argument postprocessing, as well as the output argu-
ments from the other KBP teams. Our goal in this
component is to aggregate and filter the output of
different systems into a single output file, and link
the arguments together accordingly.

We begin with the aggregation step. We merge
together arguments from different systems that have
the same argument role, same event type, overlap-
ping CAS, and overlapping base filler. We allow for
overlapping CAS and base fillers to merge instead
of accepting only exact matches to account for mi-
nor system differences in output – intuitively, fillers
like “30-year old businessman” and “the 30-year old
businessman” should be considered identical. We



keep track of the frequency for each merged CAS
and base filler, and take the most frequently seen
strings for our final output.

After aggregating arguments together, we then
filter out arguments that we believe to be of low-
confidence. Originally, one idea we had was to
somehow incorporate the confidence values pro-
vided by system submissions. However, we found
that in practice, a large number of these confidence
values were uninformative (e.g. uniform confidence
across all arguments). As an alternative, we settled
upon a weighted voting scheme for filtering argu-
ments. We set the weights of the BBN and OSU
submissions to be 1.25, based on their performance
from last year’s Event track. For all other systems,
we set the weights uniformly at 1. For each argu-
ment, we scored it by the number of systems that
included the argument, and we set three different
thresholds α for filtering low-scoring arguments:

• α = 1.25 – the least restrictive threshold we
tried, which requires that each argument be
identified by at least two systems, or by one of
the high-confidence systems

• α = 2 – a middleground threshold, which re-
quires that each argument be identified by at
least two systems

• α = 4 – the most restrictive threshold we con-
sidered, which requires that each argument be
identified by at least four systems

For our linking strategy, we considered two sep-
arate approaches. In the first approach, we consid-
ered the provided predicate justification spans, and
linked together any pair of arguments with overlap-
ping spans and matching event types. We believe
this to be a fairly safe linking strategy in that we
will likely not make too many mistakes (higher pre-
cision). However, we may also miss a large number
of links (lower recall).

To overcome this, we attempted a higher recall
strategy for our second approach, in which we ad-
ditionally attempt to estimate coreference links by
considering the CAS. In this approach, for each pair
of arguments with the same event type, we first con-
sider whether two arguments have the same CAS. If
they do, we assume them to be coreferent, and auto-

matically link them together. If they do not, we fall
back on our first approach.

4 Description of System Runs

In this section, we describe the specific differences
between our submitted runs for the Event Track.

4.1 Event Nugget Detection

We submitted a set of three runs for the Event
Nugget Detection task.

• CMU CS EVENT1: trained using English
RichERE, English ACE2005, and Chinese
ACE2005

• CMU CS EVENT2: trained using English
RichERE and English ACE2005

• CMU CS EVENT3: trained using English
ACE2005 and Chinese ACE2005

4.2 Event Argument Detection and Linking

We submitted a set of two runs for the Event Argu-
ment Detection and Linking task.

• CMU CS EVENT1: trained using both En-
glish and Chinese documents from ACE2005

• CMU CS EVENT2: trained using only En-
glish documents from ACE2005

4.3 Event Argument Verification and Linking

We submitted a set of five runs for the Event Argu-
ment Detection and Linking task.

• CMU CS EVENT1: α = 2, estimates corefer-
ence for linking

• CMU CS EVENT2: α = 2, links based solely
on predicate justification spans

• CMU CS EVENT3: α = 4, estimates corefer-
ence for linking

• CMU CS EVENT4: α = 4, links based solely
on predicate justification spans

• CMU CS EVENT5: α = 1.25, links based
solely on predicate justification spans



5 Experimental Results

For our development purposes, we utilized the
ACE2005 English and Chinese texts. We held out
30 English documents for our test set, and an addi-
tional 40 English documents for parameter tuning.

We provide experimental results for two different
systems. In system 1 (CMU-English), we use only
the English data for training our model. In system 2
(CMU-Multilingual), we use both the English data
and the Chinese data simultaneously to train a single
model. Note that for these experiments, we skip the
Argument Merging and Verification components.

Traditionally, the event extraction literature re-
ports results on micro-averaged precision, recall,
and F1. Following past work, we also report on
micro-averaged results, but we additionally show
macro-averaged results. Our motivation for doing
so is due to the high class-imbalance within the ACE
data – certain frequently seen event types (e.g. Con-
flict.Attack, Life.Die) tend to be much easier to learn
good predictors for than the rare event types (e.g.
Justice.Extradite, Life.Divorce). Macro-averaged
results can provide some insight into how well we
are doing over classes, rather than over instances.

Results for event trigger detection are provided in
Table 1. We find that using only English provides su-
perior performance for the micro-averaged results.
However, when we switch to macro-averaged re-
sults, the multilingual version has higher perfor-
mance. This would seem to suggest that while the
frequent classes are being hurt by the Chinese data,
it is in fact helping on the low-frequency classes.

We now move on to argument detection. Since
the argument component relies heavily on both the
input triggers and the input entities, we provide re-
sults under three different settings:

• Gold triggers, gold entities

• System-predicted triggers, gold entities

• System-predicted triggers, system predicted
entities

We begin with results under the setting of perfect
information, seen in Table 2. The results are similar
to those of the trigger setting. Once again, we see
better performance under the micro-averaged setting

with the English-only baseline, but when consider-
ing the macro-averaged setting, find improved per-
formance when factoring in the additional Chinese
data.

We now show results for the setting of imperfect
information. Table 3 shows results under the sce-
nario of having system-produced triggers and gold
entity information, while Table 4 show results un-
der the setting of completely relying on system-
produced input. When moving to this setting, all
measures show drops in performance. This is to
be expected, as the system-produced input will un-
avoidably introduce noise. Under this setting, the
multilingual model lags behind the English-only
model under both the macro-averaged and micro-
averaged settings. This would seem to indicate that
the current multilingual model is not as robust to
noisy input. We hope to address this concern in fu-
ture work.

6 Official Evaluations

Our official results for the TAC 2015 Event Argu-
ment and Linking track can be seen in Table 5. In
addition to the standard precision, recall, and F1
metrics, we also report the EAArg and EALink sub-
scores used in the official evaluation. The overall
score is a weighted sum of the EAArg and EALink
scores, and is used for determining the rankings.
Our standalone system (CMU CS Event) ranked 5th
among the submissions (excluding LDC’s manual
run), and our verification system ranked 2nd among
the submitted systems. A clear weak point in our
standalone submission is our low system recall,
which results in a noticeable drop in overall perfor-
mance despite having a fairly high score for preci-
sion. The results of our verification system achieve
the highest recall among all the submissions, includ-
ing that of LDC’s manual run.

Our official results for the TAC 2015 Event
Nugget Detection track can be seen in Table 6. Runs
were ranked based on micro-average F1. Our system
ranked 11th among the submitted runs. A more de-
tailed breakdown of our system’s performance over
precision and recall (see Table 7) indicate that our re-
sults are being hurt primarily by low recall, which is
consistent with our findings in the argument-focused
track.



Training type Micro-P Micro-R Micro-F1 Macro-P Macro-R Macro-F1
CMU-English 0.805 0.538 0.645 0.629 0.411 0.474
CMU-Multilingual 0.782 0.541 0.640 0.644 0.453 0.511

Table 1: Results for Event Trigger Classification on ACE2005

Training type Micro-P Micro-R Micro-F1 Macro-P Macro-R Macro-F1
CMU-English 0.807 0.502 0.619 0.539 0.372 0.430
CMU-Multilingual 0.778 0.491 0.602 0.531 0.393 0.443

Table 2: Results for Event Argument Classification on ACE2005, using gold triggers and entities

Training type Micro-P Micro-R Micro-F1 Macro-P Macro-R Macro-F1
CMU-English 0.720 0.300 0.424 0.481 0.206 0.278
CMU-Multilingual 0.679 0.288 0.404 0.465 0.195 0.259

Table 3: Results for Event Argument Classification on ACE2005, using system triggers and gold entities

Training type Micro-P Micro-R Micro-F1 Macro-P Macro-R Macro-F1
CMU-English 0.561 0.169 0.261 0.286 0.098 0.136
CMU-Multilingual 0.525 0.164 0.250 0.285 0.090 0.131

Table 4: Results for Event Argument Classification on ACE2005, using system triggers and gold entities

Submission P R F1 EAArg EALink Overall Rank
LDC 75.5 40.0 52.3 36.7 33.7 35.2 N/A
Top-ranked system 36.8 39.2 38.0 23.6 23.3 23.5 1
ver-CMU CS event 15.0 47.8 22.8 5.6 21.1 13.4 2
CMU CS event 30.5 9.9 14.9 5.2 3.6 4.4 5
Lowest-ranked system 10.0 12.9 11.3 1.3 4.6 2.9 8

Table 5: TAC 2015 Event Argument and Linking Results

Submission Micro-Average F1
Rank 1 system 44.24
Rank 2 system 41.77
CMU CS event 25.54
Bottom-ranked system 13.89

Table 6: TAC 2015 Event Nugget Detection Results:
Overall performance

Submission P R F1
CMU CS Event 57.88 16.39 25.54

Table 7: TAC 2015 Event Nugget Detection Results:
Micro-averaged precision/recall/F1 breakdown

7 Conclusions and Future Work

In this paper, we have described our submitted sys-
tem for the Event Track of TAC KBP 2015. We fo-
cus in particular on developing techniques for multi-
lingual event extraction, via a system that uses avail-
able training data in both English and Chinese to
make predictions on a single target language (En-
glish for the purposes of KBP). Our experimental
results show that while an English-only model is
still superior for achieving high scores on micro-
averaged metrics, introducing additional multilin-
gual training data can offer improvement on macro-
averaged performance for event trigger detection, as
well as for event argument detection under certain
conditions.

We believe that there are several promising direc-



tions to pursue to improve our overall system perfor-
mance. Firstly, we did not produce a realis classifier
for the argument model, which currently uses a triv-
ial approach of always predicting ACTUAL. Train-
ing such a classifier should certainly help with our
performance in the future. Secondly, there is an im-
portant distinction between the ACE corpora and the
KBP evaluation data, in that the KBP data contains
a large amount of discussion forum data. To date,
we have not focused on development of techniques
for this kind of text, which is typically noisier than
newswire and may require specialized techniques
in order to achieve optimal performance. Thirdly,
one common challenge across all our results is that
high recall seems to be more difficult to achieve than
high precision. We would like to investigate this be-
havior further and attempt to boost recall closer to
our precision levels. Lastly, it may be beneficial
to adapt our pipeline of classifiers approach to the
structured approach of Li et al. (2013), which has
been shown to be a more effective approach to learn-
ing the model parameters.

One final observation to make is that our current
system focuses on two languages that can be consid-
ered fairly resource-rich for event extraction – com-
pared to other languages, there is a large amount of
available training data for event extraction on En-
glish and Chinese. In our experiments, we found
that the multilingual data seemed to help primarily
on the infrequent classes, where we have insufficient
example datapoints. We hypothesize that this dif-
ference could become even more significant under a
truly low-resource setting. We leave this exploration
to future work.

Acknowledgments

This research was supported in part by DARPA
grant FA8750-12-2-0342 funded under the DEFT
program.

References
Ofer Bronstein, Ido Dagan, Qi Li, Heng Ji, and Anette

Frank. 2015. Seed-based event trigger labeling: How
far can event descriptions get us? In ACL.

Zheng Chen and Heng Ji. 2009. Language specific issue
and feature exploration in chinese event extraction. In
HLT-NAACL.

Chen Chen and Vincent Ng. 2012. Joint modeling for
chinese event extraction with rich linguistic features.
In COLING.

Chen Chen and Vincent Ng. 2014. Sinocoreferencer:
An end-to-end chinese event coreference resolver. In
LREC.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. Liblinear: A library
for large linear classification. In JMLR.

Ralph Grishman, David Westbrook, and Adam Meyers.
2005. Nyus english ace 2005 system description. In
Proc. ACE 2005 Evaluation Workshop.

Prashant Gupta and Heng Ji. 2009. Predicting unknown
time arguments based on cross-event propagation. In
ACL-IJCNLP.

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In ACL.

Peifeng Li, Guodong Zhou, Qiaoming Zhu, and Libin
Hou. 2012. Employing compositional semantics and
discourse consistency in chinese event extraction. In
EMNLP.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event ex-
traction via structured prediction with global features.
In ACL.

Shasha Liao and Ralph Grishman. 2010. Filtered rank-
ing for bootstrapping in event extraction. In ACL.

Shasha Liao and Ralph Grishman. 2011. Acquiring topic
features to improve event extraction: in pre-selected
and balanced collections. In RANLP.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In ACL.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In ICLR.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In LREC.


