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Abstract

HITS participated in the English Entity Link-
ing and Discovery (EDL) and Event Nugget
Detection (EN task 1) tracks at TAC KBP
2015. Our EDL system introduces a novel,
interleaved multitasking approach, which al-
lows interaction between interdependent en-
tity linking subtasks while avoiding the struc-
tural and algorithmic complexity of joint mod-
els. Out of the eight systems that participated
in the monolingual English EDL evaluation,
our system is ranked first in linking and sec-
ond in clustering.

HITS also participated in the Event Nugget
Detection task. Our approach is based on
a structured perceptron which predicts entity
mentions, event triggers, and realis jointly. We
generalize to unknown triggers with hidden
units, a concept used by the frame-semantic
parser SEMAFOR.

1 EDL

1.1 Introduction

HITS’ entity discovery and linking (EDL) system at
TAC KBP 2015 (Ji et al., 2015) introduces a new
architecture that performs all EDL subtasks via in-
terleaved multitasking. Switching freely between
interdependent EDL subtasks, our system captures

fCorresponding author for EDL participation.
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interactions that are missed by common pipeline ap-
proaches, while avoiding the structural and algorith-
mic complexity of joint models.

Interleaved multitasking is implemented in the
form of sieves, or unsupervised rules, that take lo-
cal or pairwise decisions in order of precision. The
modular nature of this approach allows us to easily
integrate the system we submitted at previous TAC
KBP EDL tracks (Fahrni et al., 2014; Judea et al.,
2014), creating a hybrid system that combines local,
unsupervised sieves with global, supervised, joint
disambiguation and NIL clustering.

1.2 Interleaved Multitasking

The core of HITS’ EDL system is a pipeline of
sieves that perform the interdependent subtasks nec-
essary for EDL, i.e., mention detection, entity link-
ing, NIL classification, and NIL clustering. The
sieves are ordered in descending order of precision
and according to dependency on results of previous
sieves. This architecture follows similar approaches
in coreference resolution (Lee et al., 2011; Raghu-
nathan et al., 2010). However, unlike coreference
sieves, which are all designed for a single task, our
approach freely interleaves sieves for multiple tasks.
Sieves vary in scope: Some may only perform a very
specific part of a certain subtask, e.g., split a multi-
word mention in two, while others may perform sev-
eral subtasks jointly, such as detecting and clustering
mentions of NIL persons.

Sieve-based approaches in coreference first detect
mentions in a separate step, and then resolve corefer-
ence relations between the detected mentions. Since
mention detection and disambiguation are interde-



pendent EDL subtasks that benefit from joint infer-
ence (Sil and Yates, 2013; Luo et al., 2015), our ap-
proach integrates mention detection into the inter-
leaved multitasking framework. Because we need
to first detect mentions before they can be disam-
biguated, but also aim to base mention detection
decisions on as much contextual information — in-
cluding already disambiguated mentions — as pos-
sible, we are faced with a chicken-and-egg prob-
lem. To solve this problem, we employ bootstrap-
ping by first performing high-precision mention de-
tection and disambiguation, whose results will serve
as seeds for the iterative application of subsequent
sieves.

1.2.1 High-Precision Seeds

The purpose of the first group of sieves in our
pipeline is to find high-precision mentions and KB
links, which will serve as seeds for decisions by sub-
sequent sieves. These seeds are found by identify-
ing (almost) unambiguous mentions , which are then
verified through entity typing and information in the
KB.

Unambiguous CrossWiki mention: Having run
NER, annotate each recognized named entity (NE)
mention with the sense found in the CrossWiki dic-
tionary, if that sense has a conditional probability
> 0.95 that was obtained from at least 10 non-
Wikipedia links.

Sense label mismatch filter: Undo any sense an-
notation for which none of the known surface forms,
i.e. rdfs:label and basekb:common.topic.alias values
found in the KB, matches the corresponding men-
tion text. This effectively removes erroneous links
introduced by previous sieves, at the cost of also re-
moving some correct links.

Entity type filter: Undo any sense annotation
whose NE type, as determined by CoreNLP, does
not agree with the rdf:type values found in the ref-
erence KB. This filtering is applied to linked named
entities of type PERSON, LOCATION, and ORGA-
NIZATION.

The combination of these three sieves achieved a
strong_link_match precision > 0.9 on our de-
velopment set.

1.2.2 Person Names

Simple visual error analysis (Heinzerling and
Strube, 2015) of our previous years’ global disam-
biguation system showed that it does not deal well
with ambiguous intra-document coreference of par-
tial person names, e.g., a surname occurring after
two or more persons with the same surname were
mentioned. The following sieves aim at disam-
biguating such cases:

Possible genders: Annotate each person mention
with its compatible semantic genders using the fol-
lowing method:

1. For non-NIL person mentions already linked,
there is only one possible gender, which can
easily be queried from the KB.

2. For all remaining person mentions, assign se-
mantic gender according to preceding gender
markers such as Mr, Ms, or Lady.

3. For all remaining person mentions, mark gen-
der using CoreNLP’s gender annotator. Do not
override gender annotations from the previous
step, as gender-specific salutations and other
gender markers are not taken into account by
CoreNLP’s gender annotator.

4. All remaining person mentions not covered by
any of the previous methods are marked as
compatible with both female and male seman-
tic gender.

Person name matching: Match first- or
surname-only person name mentions with their un-
ambiguous full name antecedent, taking gender
compatibility into account.

Generic name mention removal: Remove plural
forms of known surnames, e.g. the Steenkamps, and
family references such as the Steenkamp family, as
these are not annotated in the gold data.

1.2.3 Salient Semantic Paths

Global disambiguation methods employ measures
of semantic relatedness for collectively re-ranking
candidate senses of given mentions. While lin-
guistically appealing, these methods suffers from
high complexity: The combinatorial explosion re-
sulting from considering the possible combinations
of all candidate senses for all mentions renders exact



global inference infeasible. Prior work has tackled
this problem through approximative inference by:
factorizing the set of all mentions into small “con-
nected components” that model relevant context (Sil
and Yates, 2013); identifying “collaborators” that
are most likely to help disambiguate a given men-
tion (Chen and Ji, 2011; Pan et al., 2015); or using
graph-based methods (Han et al., 2011; Hoffart et
al., 2011; Moro et al., 2014).

In contrast to these approaches, which, somewhat
simplifying, fix two candidate entities and then com-
pute their semantic relatedness, we fix one argu-
ment and a relation type, and then look for a match-
ing second argument in the input document. More
concretely, we first compile a set of paths in the
KB graph that connect two entity types of interest.
These paths generally depend on the corpus genre,
but are independent of the current input document.
Following these paths for each linked mention of
matching entity type, we query related entities in the
KB, and then check if known surface forms of any
of the related entities occur in the text. For exam-
ple, having already disambiguated a non-NIL person
mention, we check if any of this person’s children
are mentioned in the text and then assign the corre-
sponding KB IDs.

Since the TAC 2015 EDL corpus is relatively
small and limited to the news genre, we manually
compiled a list of salient paths. A more principled
method would be to obtain paths from annotated
data, which we leave to future work. We find en-
tities that are semantically related to entities already
identified along the following paths:

e Geographical containment: Transitive clo-
sure of basekb:location.location.containedby
(Figure 1a). We found that YAGO offers a
richer inventory of geographical information,'
and hence also take the transitive closure of
the corresponding YAGO entry’s <isLocate-
din> predicate.?

e Children:
(Figure 1b).

basekb:people.person.children

"Presumably due to its inclusion of the https://www.
geonames . org database.

’The transitive closure for a given predicate in the reference KB
can be queried via SPARQL property paths. For YAGO, a re-
cursive SQL query is required.

e Aliases or nicknames:
basekb:common.topic.alias (Figure 1c¢).

e Party affiliation: For all known politi-
cians, i.e., all persons with a corresponding
basekb:people.person.profession value, query
the path basekb:government.politician.party —
basekb:government.political_party _tenure.party,
which connects politicians to political parties
via a compound value type (CVT).

1.2.4 Joint global disambiguation and NIL
clustering

At this point, we run our last years” EDL system,
which jointly performs global disambiguation and
NIL clustering. The system is based on a Markov
Logic Network (MLN) whose weights were trained
on 500 Wikipedia articles. For a detailed descrip-
tion see (Fahrni et al., 2014). Mentions linked by
upstream sieves are provided to the MLN as ground
truth, which brings the advantages of reducing the
problem space, and, more importantly, providing ad-
ditional contextual information.

1.2.5 General post-processing

After global disambiguation and NIL clustering,
we apply several post-processing heuristics that are
mainly designed to increase linking recall and im-
prove NIL clustering performance.

Most frequent sense fallback: For all low-
confidence NIL mentions,’ assign the most frequent
sense according to intra-Wikipedia article links, if
that sense is dominant, i.e., its mention-sense prior
probability exceeds a threshold tuned on our devel-
opment set. While this is a crude method, the re-
sulting loss in linking precision is outweighed by in-
creased recall, leading to an increase of linking F1.

First token unification: For all multi-token men-
tions whose first token is not a frequent word, unify,
i.e., set to the same sense, all matching tokens that
have not been handled by an upstream sieve.

Abbreviations: For all multi-token mentions,
generate abbreviation strings and unify matching to-
kens.

3Low-confidence NIL mentions are all recognized NEs that
have not been linked or explicitly classified as NIL by an up-
stream component.



/location/location/contains +

T

Nigeria became Africas largest economy.... ... town of

/people/person/children

-
/people/person/children \
- >

Netanyahu ’s sons,

and

, were chosen ....

/ /common/topic/alias

Think of it as |Oscar Pistorius on steriods. I couldn’t help but think of the

Figure 1: Using salient semantic paths for mention detection and linking. Pink highlights indicate mentions that are
already linked to the KB, yellow arrow labels are salient semantic paths in Freebase predicate notation, and green text
shows string matches for known surface forms of related entities.

Country adjectivals: Map any occurrence of
country adjectivals to their corresponding country.*

1.2.6 Post-processing specific to TAC KBP 2015

Post authors: Apply a regular expression match
for post author XML attributes in discussion forum
text and perform string match for known post au-
thors in the document text, if the post author’s name
is not one of the most frequent English words.

Media and news  organization re-
moval: Remove any linked mention whose
basekb:common.topic.notable_types include
any of /tv/tv_network, /broadcast/radio_network,
or /book/newspaper.  Since the notable_types
available in the KB do not cover all media
and news organizations, this sieve is also ap-
plied if the first sentence of the corresponding
basekb:common.topic.description contains a noun
phrase such as news website or television network.

1.3 Implementation and Resources

HITS’ EDL system is implemented as a UIMA
pipeline (Ferrucci and Lally, 2004), using the Stan-
ford CoreNLP (Manning et al., 2014) UIMA compo-
nents provided by DKPro (Gurevych et al., 2007) for
text segmentation, POS tagging, and named entity

“This mapping is derived from: https://en.wikipedia.
org/wiki/List_of_adjectival_and_
demonymic_forms_for_countries_and_nations

recognition, and DKPro WSD (Miller et al., 2013)
for modeling entity mentions and links. In addition
to the reference knowledge base (KB) provided by
the organizers, our system makes use of the follow-
ing resources:

CrossWiki (Spitkovsky and Chang, 2012), as
an inventory of unambiguous surface forms;

o YAGO (Suchanek et al., 2007), as a gazetteer;

e Wikipedia (2013 dump), for most-frequent-
sense statistics collected from inter-article
links; and

e Word lists such as demonyms and gender-
specific salutations.

1.4 Results

HITS submitted four runs, whose settings are de-
scribed in Table 1. Table 2 shows each run’s per-
formance for the three main metrics. Since we
only processed the English subset of the trilingual
queries, only monolingual English results are re-
ported. We did not resolve nominal coreference,
i.e. NOM queries, as any attempt to do so degraded
overall performance. Due to time constraints, we
only submitted the output of CoreNLP’s 3-class
NER and 3-class type information from the KB as
entity type, which explains our low ranking in terms
of the strong_typed.mention match metric.



Run Setting

HITS1 Sieves, remove low-conf. NILs
HITS2 Sieves, MLN, remove low-conf. NILs
HITS3 Sieves, retain low-conf. NILs

HITS4 Sieves, MLN, retain low-conf. NILs

Table 1: Settings for the four runs we submitted. Sieves
means that all sieves were applied, MLN that our previous
years’ MLN-based system was run, and removal or reten-
tion of low-conf. NILs specifies whether low-confidence
NILs were retained in an attempt to boost recall, or re-
moved in order to increase precision.

For linking, our system is ranked first, and for clus-
tering second, with only 0.002 F1 points difference
to the first-ranked system.

1.5 Discussion

Our original intention in devising the sieves was
to let them deal with some of the easy decisions,
thereby reducing the remaining search space and
providing more contextual information to HITS’
more sophisticated, MLN-based global joint dis-
ambiguation and clustering system. As such, we
were surprised by the fact that the sieves account
for almost all of the linking and clustering per-
formance. A possible explanation is the fact that
the MLN-based system was trained on a different
corpus, while the sieves are tailored to this years’
training data, namely newswire texts and discus-
sions of news-related topics. Furthermore, there is
a certain amount of overlap between the informa-
tion used by the sieves, and the features collected by
the MLN-based system. However, even in compar-
ison to the systems of other teams, the sieves-only
setting (HITS1), achieves the same ranking in terms
of strong_link_match and mention_ceaf as
our best run (HITS2), which combines sieves and
the MLN-based system.

The sieve-only approach is, given NER and
gender annotations, essentially a deterministic se-
quence of database queries and string matching
operations, It would be interesting to examine
the mistakes this approach commits in compari-
son to other, possibly more sophisticated systems.
The top three strong_link_match and top two
mention_ceaf systems achieve similar perfor-

mance. Differing mistakes would suggest that other
systems can benefit from incorporating sieves simi-
lar to ours, while finding largely the same mistakes
would mean that state-of-the-art monolingual men-
tion detection, entity linking, and NIL clustering
performance can be achieved by database queries
and string matching.

1.6 Conclusions

By using interleaved multitasking, HITS” EDL sys-
tem is able to capture a high degree of interaction
between the EDL subtasks, namely mention detec-
tion, entity linking, NIL classification, and NIL clus-
tering. Because it is still a pipeline approach, in-
terleaved multitasking avoids the structural and al-
gorithmic complexity of joint models. A modular
implementation allowed us to easily integrate our
previous years’ system, thereby combining unsuper-
vised local disambiguation stages with a supervised,
joint global disambiguation and NIL clustering com-
ponent. In the English EDL evaluation, HITS’ sys-
tem achieved the overall best linking performance
and was ranked second in clustering.

2 EN Task 1: Event Nugget Detection

HITS’ Event Nugget Detection system is based on
a structured perceptron. The system performs seg-
mentation, classification, and realis status prediction
simultaniously. It segments a sentence into entity
mentions and event triggers>, assigns entity type and
event type labels to those segments, and predicts the
realis status of triggers.

The system is based on the structured perceptron.
Li et al. (2014) proved the effectiveness of a struc-
tured perceptron approach for entity mention and
event nugget detection. In addition to their features
for nugget prediction, we treat nuggets seen during
training as prototypes for the events they triggered.
This way we try to further generalize to triggers
never seen during training. This idea was introduced
in SEMAFOR, a frame-semantic parser (Das et al.,
2014).

We pool all documents from ACE 2005 and TAC
2015. The system learns on this document pool.
From TAC documents it learns to predict event trig-

>In this paper, we will use the terms trigger and nugget inter-
changeably



NER Linking Clustering
Run P R F1 P R F1 P R Fl1
HITS1 | 0.629 0.514 0.566 | 0.707 0.578 0.636 | 0.747 0.610 0.671
HITS2 | 0.627 0.525 0.571 | 0.703 0.588 0.640 | 0.748 0.626 0.682
HITS3 | 0.614 0.540 0.574 | 0.673 0.592 0.630 | 0.719 0.633 0.673
HITS4 | 0.617 0.536 0.574 | 0.670 0.582 0.623 | 0.709 0.616 0.659
Best 0.791 0.673 0.727 | 0.703 0.588 0.640 | 0.765 0.619 0.684

Table 2: HITS’ EDL performance for English. NER shows strong_typed mention match results, Linking is
strong.mention._match, and Clustering mention_ceaf. Bold font denotes the highest value achieved among

our runs. Best shows the overall best result for each metric.

gers, their types and the respective realis status.
For ACE documents, learning is selective. We can
choose to learn the prediction of entity mentions
only, or we can use the event annotations to have
more training data for nugget detection.

We now describe the system in more details. See
also Algorithm 1.

2.1 Approach

Our system consists of two parts. The first part is
segmentation of a sentence into entity mentions and
event triggers, and classification of those segments.
The second part is realis prediction of each nugget.
Both parts are carried out simultaniously. We now
describe each part in detail.

2.1.1 Segmentation and Classification

The first part, segmentation and classification, op-
erates intra-sentential. It is based on the idea of
semi-Markov chains (Sarawagi and Cohen, 2004).
In the standard segmentation setting (conditional
random fields, hidden markov models) individual to-
kens are labeled. For a sentence x = x1 ... x,, each
token x; is assigned a label, e.g. using the BILOU
schema. Features of x; usually cover sourrounding
tokens in a limited (and often fix-sized) window, but
they cannot incorporate features describing the en-
tire segment of interest.

In contrast, our segmenter operates on segments
of arbitrary size. It is not limited to single tokens.
Instead of labeling each ¢;, we look for the best seg-
mentation v = uj...u, of x, consisting of seg-
ments u, = (b,e,t), where b and e are begin and
end indices, and ¢ is either an entity or event type
from the allowed types T, or none of the two.

We start at the first position with a segments of
length 1. We generate segments u; = (1, 1,t),Vt €
T and rank them according to their score. We move
to second position. Here, we generate segments of
different types up to length 2 and rank them. For
the third position, we generate segments of different
types up to length 3 and rank them. We do this until
the end of the sentence. As the system moves to
the next position, it keeps track of all segmentation
histories and their scores®.

To find the best sequence of segments, we com-
pute a score for each segment, which is the weighted
sum of its features. The score s for a specific seg-
ment u.ending at position e is defined as follows.

In contrast, our segmenter is not limited to single
tokens and fixed context windows. It operates on
segments of arbitrary size. Instead of labeling each
x;, we look for the best segmentation v = uj ... un,
of x, consisting of segments u. = (b, e,t), where b
and e are begin and end indices of tokens, and ¢t is
an entity or event type from the set of allowed types
T. Note that T includes a ‘null class’.

We start at the first position with segments of
length 1. We generate segments u; = (1, 1,t),Vt €
T and rank them according to their score. We move
to second position. Here, we generate segments of
different types up to length 2 and rank them. For
the third position, we generate segments of different
types up to length 3 and rank them. We do this until
the end of the sentence. As the system moves to the
next position, it keeps track of all segmentation his-
tories and their scores’. What the system effectively
does is to pair all possible segments at each position

®The score of a history is the sum of its segment scores.
"The score of a history is the sum of its segment scores.



with all segmentation possibilities at previous posi-
tions in order to find the best sentence segmentation
in the end.

To find the best segmentation, we compute a score
for each segment, which is the weighted sum of its
features. The score s for a specific segment u, end-
ing at position e is defined as

s(ue) = f(z,u) - w. (1)

Note that the null class always has score 0.

In order to learn the weights w we use the struc-
tured perceptron framework. Formally, for each
training instance (z, @), where 4 is the gold segmen-
tation, we compute the best segmentation 2z accord-
ing to the model.

z = argmax f(z,u') - w (2)
u' €U(x)

If z # 4, we update w.

w'Y =w + f(z,0) — f(x, 2) 3)

To cope with unknown triggers the model in-
cludes a latent variable iterating over triggers seen
in training (called hidden units, Das et al. (2014)).
At inference time, hidden units serve as prototypes
for unknown words. If «/ has an event type, the fea-
ture function factorizes as follows.

f(z,u) = Z f(x,u,h)+f(z,u) 4)
heH,

Here, h is a hidden unit, H; are all hidden units for
event type ¢, and f(x,u, h) are features for hidden
units.

For TAC documents, we train on event segments.
For ACE documents, we can choose if we want to
consider only segments with an entity type or only
segments with an event type, or both for training.

Finally, we make use of parameter averaging
(Collins, 2002). We do not use the last version of
w after examining n training instances, but the av-
erage of all versions of it, that is, the average of all

2.1.2 Approximating the Search

Explicitely going through all possible segmenta-
tions of a sentence would be costly. Furthermore,
it makes no sense to generate very long segments,

since most entity mentions and event nuggets are
rather short. To account for the latter, we restrict the
maximum size of segments. Each type has a maxi-
mum length®, and we set a global maximum length
of 3. To account for the former, we approximate the
search.

Following (Li et al., 2014) we use beam search to
approximate the search. At each position, we gen-
erate all valid segmentations and rank them. Instead
of keeping the entire list, we only keep the k& best
segmentations. We set k to 3.

(Huang et al., 2012) proved that performing the
standard perceptron update with inexact search leads
to invalid updates of the weight vector which in turn
decrease performance. If z # 4, it may be that @
is not predictable by the model (because it is not in
the beam) but has a higher score than z according to
the model. In the standard case, we would update
the weights even though they are correct. The error
was introduced by the search procedure, not by the
model. Performing such invalid updates often leads
to decreased performance.

Huang et al. (2012) proved that performing the
standard perceptron update with inexact search leads
to invalid updates of the weight vector which in turn
decrease performance. If z # 4, it may be that 4
is not predictable by the model (because it is not in
the beam) but has a higher score than z according to
the model. In the standard case, we would update
the weights even though they are correct. The error
we have was introduced by the search procedure, not
by the model. Performing such invalid updates may
push the weight vector into a less god direction.

One technique to avoid invalid updates is early
update. For our system, early update is performed as
follows. We predict a partial segmentation 2z’ includ-
ing all segments up to a certain position. If 2’ is not
a prefix of the true segmentation @, we perform the
update immediately and continue with another sen-
tence. We compute a partial segmentation for each
position in the sentence.

2.1.3 Realis Status

The second part of our system is realis prediction,
carried simultaneously to the other tasks. We iterate
through all (partial) segmentations in our beam. For

8We picked the maximum length so that more than 95% of the
cases in the training data are covered.



each trigger segment, we iterate through all realis
values for it, score them using the same procedure
as for scoring segments (weighted sum of features),
and pick the one with the highest score.

2.2 Features

We define two types of features. Local features op-
erate only on a segment and its context. Global fea-
tures operate on other segments as well. Local fea-
tures capture properties of segments, e.g., the text
they cover, the part-of-speech of their head noun, or
its context words. Global features capture proper-
ties of the sequence derived so far, e.g., they assign
a weight to the decision of having two DIE event
triggers in one sentence.

Table 3 reports event nugget detection features,
including hidden unit features. For each segment
u. we extract two versions of features. In the first,
features are extracted for event subtypes, e.g. CON-
FLICT.ATTACK. In the second, features are extracted
for event supertypes, e.g., CONFLICT. The intuition
for this is that certain properties are shared across
supertypes, e.g., across JUSTICE events, captured
by the second feature version. We always extract
both versions, so each feature is concatenated with
an event supertype and with an event subtype. Our
feature set is similar to the set in (Li et al., 2013).

Table 4 reports realis features. Our feature set is
fairly simple. It characterizes the trigger and its lex-
ical and syntactic context, as well as the status of
previous triggers in the sentence, if any.

Some features make use of word clusters in order
to increase generalization. We learned word clus-
ters first training word2vec (Mikolov et al., 2013) on
a portion of Gigaword, and then applying k-means
clustering to the vectors, with k£ = 500.

2.3 Runs

We submitted three runs to TAC 2015. Table 5 re-
ports results. We now give details to the configura-
tion of each run. We describe only the differences to
the previous run.

HITS1. Beam size was 3, learning rate of the per-
ceptron 0.5. We trained for 10 epochs on ACE and
TAC documents, without using hidden unit features.

HITS2. Trained for 20 epochs, used hidden unit
features and trained nugget detection on TAC docu-
ments only.

HITS3. Here, we skipped potential triggers we
have never seen during training

The major variation in our runs is whether we
use hidden unit features or not (HITS1 vs. HITS2
and HITS3). Evaluation suggests that using hidden
unit features greatly increases recall, while decreas-
ing precision, leading to a higher F; score. Skipping
potential triggers we have never seen during train-
ing increases precision again a bit, but lowers recall
too much, resulting in a lower F; compared to not
restricting the set of potential triggers.

2.4 Conclusions

For most evaluation metrics, our system ranked 8th
of 14. Regarding runs, HITS2 was our best, i.e.,
training on TAC documents only and using hidden
units as additional features. This suggests that hid-
den units have the potential to capture triggers un-
seen during training. However, more experiments in
this regard have to be carried out. It is necessary to
test hidden units on the same training corpus, using
the same beam size and the same number of training
iterations.

We also adopted a fairly agressive update policy:
We carry out the early update as soon as the top seg-
mentation is not the correct one. This leads to de-
creased training time, but may impact results nega-
tively. Further experiments have to explore the tradi-
tional early update policy: Update when the correct
segmentation falls out of the beam.

Finally, the structured perceptron approach is ca-
pable of predicting event arguments jointly with
mentions, triggers, and the realis status. Related
work showed that joint trigger and argument pre-
diction leads to increased performance for both sub-
stasks.
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Lexical

unigrams/bigrams in u., as well as in a context window of size 2

unigrams/bigrams of part-of-speech tags in u., as well as in a context window of size 2

lemmas of words in u,

word cluster of current word

Syntactic

dependent and governor words, and depdency types of words in u,

for every word in u.: is it a modifier of a job title?

Entities

unigrams/bigrams in a context window of size 2, concatenated by the overlapping entity type

dependency features, concatenated by the overlapping entity type

nearest entity type and string in the sentence and clause

Hidden units

trigger and h have WordNet relation: indicator feature, relation, lemmas of h

lemma-POS-sequence of h equals that of trigger: indicator feature, lemma-POS-sequence

h equals trigger: indicator feature, token sequence

Table 3: Nugget detection features. u,. is a segment ending at position e in the sentence, h is a hidden unit, i.e. a
trigger for a specific event type seen during training.

unigrams/bigrams in a window of size 2 around the nugget
Lexical subtype/supertype, text, part-of-speech sequence of the nugget
string, word cluster of nugget head

’ Syntactic ‘ dependency parent and dependency children strings ‘

’ Nuggets \ realis status and string of last nugget, if any ‘

Table 4: Realis features.

Run Attributes precision | recall | F;
plain 89.0 359 | 512
mention type 82.9 335 | 477
HITSI realis status 62.6 253 | 36.0
mention type -+ realis status | 57.8 234 | 333
plain 66.0 50.7 | 574
mention type 554 42.6 | 48.2
HITS2 realis status 42.6 32.8 | 37.0
mention type + realis status | 35.2 27.0 | 30.6
plain 68.4 444 | 53.8
mention type 59.6 38.6 | 469
HITS3 realis status 45.1 293 | 355
mention type + realis status | 38.8 25.1 | 30.5

Table 5: Evaluation results for the three HITS runs.




Algorithm 1 Algorithm to process a sentence and update the weight vector.

function SEGMENT(sentence © = x . .. Tn,2old segmentation 4 of x)
init beam([1 . . . n|[beamsize]
fori=1...ndo

initialize beam;
for d = 1...global maximum length do
k=i—d+1
beamy, = beam|[k|
for type t € T do
create new segment u; = (k, ,t)
compute features for u;
beam; < copy(beamy, U u;)
end for
end for
sort and prune beam;
if training then
if 2 not prefix of % then
w —w +f(z,0) — f(z, 2)
exit procedure
end if
end if
beam U beam;
end for
return top(beam)
end function

> Early update
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